BibTex RIS Cite

Öğretmenlerin Yükseköğrenim Alanları ile Öğrencilerin Akademik Başarısı Arasındaki İlişki

Year 2016, Volume: 7 Issue: 1, 109 - 132, 30.06.2016
https://doi.org/10.21031/epod.90787

Abstract

Bu araştırmada, “Uluslararası Matematik ve Fen Eğilimleri Araştırması-2011” (TIMSS 2011) uygulamasına katılan Singapur, Güney Kore, Japonya, Çin-Tayvan, Finlandiya, Slovenya, İngiltere, Türkiye, Malezya ve Makedonya verileri kullanılarak “Sekizinci sınıf öğrencilerinin fen bilgisi ve matematik başarıları, öğretmenlerin yükseköğrenimde aldıkları eğitimlere göre nasıl bir değişim göstermektedir?” sorusuna yanıt aranmıştır. Araştırma kapsamında incelenen ülkelerde fen bilgisi ve matematik öğretmenlerinin yükseköğrenimde hangi alanlarda aldıkları eğitimin, öğrencilerin fen bilgisi ve matematikteki akademik başarılarını istatiksel olarak anlamlı etkilediği ve akademik başarıyı artırıp artırmadığı tespit edilmeye çalışılmıştır. Bu çalışmanın veri kaynakları TIMSS 2011 uygulamasından elde edilmiştir. Veriler SPSS tabanlı çalışan HLM analiz programı ile analiz edilmiştir. Bu çerçevede matematik ve fen bilgisi öğretmenlerinin yükseköğrenimde aldıkları alan eğitimlerinin, öğrencilerin fen bilgisi ve matematik başarısına etkisi Hiyerarşik Lineer Modelleme (HLM) yöntemi ile belirlenmeye çalışılmıştır. Yükseköğreniminde biyoloji, fizik ve kimya alanlarında eğitim alan fen bilgisi öğretmenlerinin öğrencilerinin akademik fen başarı puanları, bu alanlarda eğitim almayan öğretmenlere göre daha yüksek bulunmuştur. Yükseköğreniminde matematik, yer bilimleri ve diğer olarak ifade edilen alanlarda eğitim alan matematik öğretmenlerinin öğrencilerinin akademik matematik başarı puanları, bu alanlarda eğitim almayan öğretmenlere göre daha yüksek çıkmıştır. 

References

  • Akiba, M., LeTendre, G. K. & Scribner, J. P. (2007). Teacher Quality, Opportunity Gap and National Achievement in 46 Countries. Educational Researcher, 36(7), 369-387.
  • Alexander, R. (2000). Culture and Pedagogy: International Comparisons in Primary Education. Oxford: Basil Blackwell.
  • Arnold, C. L. (1992). An Introduction to Hierarchical Linear Models. Measurement and Evaluation in Counseling and Development, 25 (2), 58-90.
  • Bassett, P. F. (2008). What the Finns know shouldn’t suprise us (but it does). International Educator, 22 (4). 9-9.
  • Bryk, A. S. & Raudenbush, S. W. (1992). Hierarchical Linear Models:
  • Applications and Data Analysis Methods. Newbury Park, CA: Sage.
  • Clotfelter, C., Ladd, H. & Vigdor, J. (2007). How and Why Do Teacher Credentials Matter for Student Achievement? (Working Paper No. 2). Washington, DC: National Center for Analysis of Longitudinal Data in Education Research.
  • Coultas, J.C. & Lewin, K.M. (2002). Who Becomes a Teacher? The Characteristics of Student Teachers in Four Countries. International Journal of Educational Development, 22, 243–260.
  • Croninger, R. G., Rice, J. K., Rathbun, A. & Nishio, M. (2007). Teacher Qualifications and Early Learning: Effects of Certification, Degree and Experience on First-Grade Student Achievement. Economics of Education Review, 26, 312-324.
  • Cruickshank, D. (2001). Good teachers, plural. Educational Leaeğitimhip, 58:(5), 26-30.
  • De Leeuw, J. and Kreft, I. (1986). Random Coefficient Models for Multilevel Analysis. Journal of Educational Statistics, 11, 57-85.
  • Darling-Hammond, L. (2000). Teacher quality and student achievement: A review of state policy evidence. Education Policy Analysis Archives, 8(1). Available: http://epaa.asu.edu/epaa/v8n1
  • Darling-Hammond, L., Berry, B. & Thoreson, A. (2001). Does Teacher Evaluation Matter? Evaluating the Evidence. Educational Evaluation and Policy Analysis, 23(1), 57-77.
  • Darling-Hammond, L., Holtzman, D., Gatlin, S. J., & Heilig, J. V. (2005). Does teacher preparation matter? Education Policy Analysis Archives, 13(42). Available: http://epaa.asu.edu/epaa/v13n42
  • Decker, P., Mayer, D. & Glazerman, S. (2004). The effects of Teach for America on Students: Findings from a National Evaluation. Princeton, NJ: Mathematical Policy Research.
  • Eberts, R. W. & Stone, J. A. (1984). Unions and Public Schools. Lexington, MA: D.C. Heath and Company
  • Goldhaber, D. & Anthony, E. (2004). Can Teacher Quality Be Effectively Assessed? The Urban Institute.
  • Goldhaber, D. & Brewer, D. (2000). Does Teacher Certification Matter? High School Teacher Certification Status and Student Achievement. Educational Evaluation and Policy Analysis, 22(2), 129-145.
  • Goldhaber, D. & Brewer, D. J. (1998). When Should We Reward Degrees for Teachers? Phi Delta Kappan, 80(2), 134-138.
  • Goldhaber, D. & Brewer, D. J. (1998). When Should We Reward Degrees for Teachers? Phi Delta Kappan, 80(2), 134-138.
  • Goldhaber, D. (2002). The Mystery of Good Teaching. Education Next, 2(1), 50-55.
  • Greenwald, Rob, Larry Hedges, and Richard Laine. (1996). The Effect of School Resources on Student Achievement. Review of Educational Research 66:361-96.
  • IEA Data Processing Center, 2013.: http://www.iea-dpc.de/
  • Kane, T., Rockoff, J. & Staiger, D. (2006). What Does Certification Tell Us About Teacher Effectiveness? Evidence from New York City (Working Paper No. 12155). Cambridge, MA: National Bureau of Economic Research.
  • Malaty, G. (2007). What are the reasons behind the success of Finland in PISA? International Journal for Mathematics Teaching and Learning, No. 28.06, 8 p.
  • McKinsey & Company. (2007). How the world’s best performing school systems come out on top. http://www.mckinsey.com/clientservice/socialsector/resources/pdf/Worlds_School_systems_final.pdf.
  • Murnane, R. J. & Phillips, B. (1981). Learning by Doing, Vintage, and Selection: Three Pieces of the Puzzle Relating Teaching Experience and Teaching Performance. Economics of Education Review, 1(4), 453–465.
  • Nye, Barbara, Spyros Konstantopoulos and Larry Hedges. (2004). How Large Are Teacher Effects? Educational Evaluation and Policy Analysis 26: 237- 57.
  • Raudenbush, S. W. & Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods. Thousand Oaks, CA: Sage
  • Raudenbush, S.W., Bryk, A.S. & Congdon, R. (2004). Hierarchical Linear and Nonlinear Modeling: HLM for Windows (Version 6.00) [Computer Software]. Lincolnwood, IL: Scientific Software International.
  • Rivkin, Steven, Eric Hanushek, and John Kain, (2005). Teachers, Schools, and Academic Achievement. Econometrica 73: 417-58.
  • Rowan, B. Correnti, R. & Miller, R. J. (2002). What Large-Scale Survey Research Tells Us About Teacher Effects on Student Achievement: Insights from the Prospects Study of Elementary Schools. Teachers College Board, 104, 1525-1567.
  • Rowan, B. Correnti, R. & Miller, R. J. (2002). What Large-Scale Survey Research Tells Us About Teacher Effects on Student Achievement: Insights from the Prospects Study of Elementary Schools. Teachers College Board, 104, 1525-1567.
  • Scott-Kassner, C. (1999). Developing Teachers for Early Childhood Programs. Music Educators Journal, 86(1), 19-25.
  • Tondeur, J., Valcke, M. & Van Braak, J. (2008). A Multidimensional Approach to Determinants of Computer Use in Primary Education: Teacher And School Characteristics. Journal of Computer Assisted Learning, 24(6), 494-506.
  • UNESCO (2000). Education for All (EFA) 2000 assesment country reports. Finland. http://www.unesco.org/education/wef/countryreports/finland/rapport_1.html
  • Wayne, A. J. & Youngs, P. (2003). Teacher Characteristics and Student Achievement Gains: A Review. Review of Educational Research, 73(1), 89-122.
  • Zuzovsky, R. (2009). Teachers’ Qualifications And Their İmpact On Student Achievement: Findings From TIMSS 2003 Data For Israel. Issues And Methodologies in Large-Scale Assessments, 37-62.
Year 2016, Volume: 7 Issue: 1, 109 - 132, 30.06.2016
https://doi.org/10.21031/epod.90787

Abstract

References

  • Akiba, M., LeTendre, G. K. & Scribner, J. P. (2007). Teacher Quality, Opportunity Gap and National Achievement in 46 Countries. Educational Researcher, 36(7), 369-387.
  • Alexander, R. (2000). Culture and Pedagogy: International Comparisons in Primary Education. Oxford: Basil Blackwell.
  • Arnold, C. L. (1992). An Introduction to Hierarchical Linear Models. Measurement and Evaluation in Counseling and Development, 25 (2), 58-90.
  • Bassett, P. F. (2008). What the Finns know shouldn’t suprise us (but it does). International Educator, 22 (4). 9-9.
  • Bryk, A. S. & Raudenbush, S. W. (1992). Hierarchical Linear Models:
  • Applications and Data Analysis Methods. Newbury Park, CA: Sage.
  • Clotfelter, C., Ladd, H. & Vigdor, J. (2007). How and Why Do Teacher Credentials Matter for Student Achievement? (Working Paper No. 2). Washington, DC: National Center for Analysis of Longitudinal Data in Education Research.
  • Coultas, J.C. & Lewin, K.M. (2002). Who Becomes a Teacher? The Characteristics of Student Teachers in Four Countries. International Journal of Educational Development, 22, 243–260.
  • Croninger, R. G., Rice, J. K., Rathbun, A. & Nishio, M. (2007). Teacher Qualifications and Early Learning: Effects of Certification, Degree and Experience on First-Grade Student Achievement. Economics of Education Review, 26, 312-324.
  • Cruickshank, D. (2001). Good teachers, plural. Educational Leaeğitimhip, 58:(5), 26-30.
  • De Leeuw, J. and Kreft, I. (1986). Random Coefficient Models for Multilevel Analysis. Journal of Educational Statistics, 11, 57-85.
  • Darling-Hammond, L. (2000). Teacher quality and student achievement: A review of state policy evidence. Education Policy Analysis Archives, 8(1). Available: http://epaa.asu.edu/epaa/v8n1
  • Darling-Hammond, L., Berry, B. & Thoreson, A. (2001). Does Teacher Evaluation Matter? Evaluating the Evidence. Educational Evaluation and Policy Analysis, 23(1), 57-77.
  • Darling-Hammond, L., Holtzman, D., Gatlin, S. J., & Heilig, J. V. (2005). Does teacher preparation matter? Education Policy Analysis Archives, 13(42). Available: http://epaa.asu.edu/epaa/v13n42
  • Decker, P., Mayer, D. & Glazerman, S. (2004). The effects of Teach for America on Students: Findings from a National Evaluation. Princeton, NJ: Mathematical Policy Research.
  • Eberts, R. W. & Stone, J. A. (1984). Unions and Public Schools. Lexington, MA: D.C. Heath and Company
  • Goldhaber, D. & Anthony, E. (2004). Can Teacher Quality Be Effectively Assessed? The Urban Institute.
  • Goldhaber, D. & Brewer, D. (2000). Does Teacher Certification Matter? High School Teacher Certification Status and Student Achievement. Educational Evaluation and Policy Analysis, 22(2), 129-145.
  • Goldhaber, D. & Brewer, D. J. (1998). When Should We Reward Degrees for Teachers? Phi Delta Kappan, 80(2), 134-138.
  • Goldhaber, D. & Brewer, D. J. (1998). When Should We Reward Degrees for Teachers? Phi Delta Kappan, 80(2), 134-138.
  • Goldhaber, D. (2002). The Mystery of Good Teaching. Education Next, 2(1), 50-55.
  • Greenwald, Rob, Larry Hedges, and Richard Laine. (1996). The Effect of School Resources on Student Achievement. Review of Educational Research 66:361-96.
  • IEA Data Processing Center, 2013.: http://www.iea-dpc.de/
  • Kane, T., Rockoff, J. & Staiger, D. (2006). What Does Certification Tell Us About Teacher Effectiveness? Evidence from New York City (Working Paper No. 12155). Cambridge, MA: National Bureau of Economic Research.
  • Malaty, G. (2007). What are the reasons behind the success of Finland in PISA? International Journal for Mathematics Teaching and Learning, No. 28.06, 8 p.
  • McKinsey & Company. (2007). How the world’s best performing school systems come out on top. http://www.mckinsey.com/clientservice/socialsector/resources/pdf/Worlds_School_systems_final.pdf.
  • Murnane, R. J. & Phillips, B. (1981). Learning by Doing, Vintage, and Selection: Three Pieces of the Puzzle Relating Teaching Experience and Teaching Performance. Economics of Education Review, 1(4), 453–465.
  • Nye, Barbara, Spyros Konstantopoulos and Larry Hedges. (2004). How Large Are Teacher Effects? Educational Evaluation and Policy Analysis 26: 237- 57.
  • Raudenbush, S. W. & Bryk, A. S. (2002). Hierarchical Linear Models: Applications and Data Analysis Methods. Thousand Oaks, CA: Sage
  • Raudenbush, S.W., Bryk, A.S. & Congdon, R. (2004). Hierarchical Linear and Nonlinear Modeling: HLM for Windows (Version 6.00) [Computer Software]. Lincolnwood, IL: Scientific Software International.
  • Rivkin, Steven, Eric Hanushek, and John Kain, (2005). Teachers, Schools, and Academic Achievement. Econometrica 73: 417-58.
  • Rowan, B. Correnti, R. & Miller, R. J. (2002). What Large-Scale Survey Research Tells Us About Teacher Effects on Student Achievement: Insights from the Prospects Study of Elementary Schools. Teachers College Board, 104, 1525-1567.
  • Rowan, B. Correnti, R. & Miller, R. J. (2002). What Large-Scale Survey Research Tells Us About Teacher Effects on Student Achievement: Insights from the Prospects Study of Elementary Schools. Teachers College Board, 104, 1525-1567.
  • Scott-Kassner, C. (1999). Developing Teachers for Early Childhood Programs. Music Educators Journal, 86(1), 19-25.
  • Tondeur, J., Valcke, M. & Van Braak, J. (2008). A Multidimensional Approach to Determinants of Computer Use in Primary Education: Teacher And School Characteristics. Journal of Computer Assisted Learning, 24(6), 494-506.
  • UNESCO (2000). Education for All (EFA) 2000 assesment country reports. Finland. http://www.unesco.org/education/wef/countryreports/finland/rapport_1.html
  • Wayne, A. J. & Youngs, P. (2003). Teacher Characteristics and Student Achievement Gains: A Review. Review of Educational Research, 73(1), 89-122.
  • Zuzovsky, R. (2009). Teachers’ Qualifications And Their İmpact On Student Achievement: Findings From TIMSS 2003 Data For Israel. Issues And Methodologies in Large-Scale Assessments, 37-62.
There are 38 citations in total.

Details

Journal Section Articles
Authors

İlkay Abazaoğlu

Murat Yatağan

Ahmet Arifoğlu This is me

Publication Date June 30, 2016
Published in Issue Year 2016 Volume: 7 Issue: 1

Cite

APA Abazaoğlu, İ., Yatağan, M., & Arifoğlu, A. (2016). Öğretmenlerin Yükseköğrenim Alanları ile Öğrencilerin Akademik Başarısı Arasındaki İlişki. Journal of Measurement and Evaluation in Education and Psychology, 7(1), 109-132. https://doi.org/10.21031/epod.90787