Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 9 , 1 - 8, 29.06.2020

Öz

Kaynakça

  • [1] W. C. Stwalley, Long-range molecules, Contemporary Physics 19 (1978) 65. [2] W. C. Stwalley, H. Wang, Photoassociation of ultracold atoms: A new spectroscopic technique, Journal of Molecular Spectroscopy 195 (1999) 194–228. [3] K. M. Jones, E. Tiesinga, P. D. Lett, P. S. Julienne, Ultracold photoas- sociation spectroscopy: Long-range molecules and atomic scattering, Reviews of Modern Physics 78 (2006) 423. [4] L. D. Carr, D. DeMille, R. V. Krems, J. Ye, Cold and ultracold molecules: science, technology and applications, New Journal of Physics, 11 (2009) 055049. [5] J. T. Bahns, P. L. Gould, W. C. Stwalley, Formation of cold molecules, Advances In Atomic, Molecular, and Optical Physics 42 (2000) 171–224. [6] B. H. McGuyer, M. McDonald, G. Z. Iwata, M. G. Tarallo, W. Sko- morowski, R. Moszynski, T. Zelevinsky, Precise study of asymptotic physics with subradiant ultracold molecules, Nature Physics 11 (2015) 32–36. [7] N. Balakrishnan, Perspective: Ultracold molecules and the dawn of cold controlled chemistry, Journal of Chemical Physics 145 (2016) 150901. [8] R. V. Krems, Cold controlled chemistry, Physical Chemistry Chemical Physics 10 (2008) 4079. [9] J. B. Bauera, J. P. Toennies, An accurate semi-empirical potential model for the a3Σ+ state of the alkali dimers Na2, K2, Rb2, and Cs2 which reproduces the scattering length, J. Chem. Phys. 150 (2019) 144310. [10] P. T. Arndt, V. B. Sovkov, J. X. Pan, D. S. Beecher, J. Y. Tsai, Y. Guan, A. M. Lyyra, E. H. Ahmed, Experimental study of the 61Σg+ state of the rubidium dimer, Phys. Rev. A 99 (2019) 052511. [11] S. Magnier, D. O. M.-S. F. Millie, P., Potential curves for the ground and excited states of the Na2 molecule up to the (3s + 5p) dissociation limit: Results of two different effective potential calculations, J. Chem. Phys. 98 (9) (1993) 7113–7125. [12] M. Saaranen, D. Wagle, E. McLaughlin, A. Paladino, S. Ashman, S. B. Bayram, Time-resolved double-resonance spectroscopy: Lifetime measurement of the 61Σg+(7, 31) electronic state of molecular sodium, J. Chem. Phys. 149 (2018) 204302. [13] G. Baumgartner, W. Demtr¨oder, M. Stock. Lifetime measurements of alkali molecules excited by different laser lines., Zeitschrift fur Physik 232 (1970) 462. [14] N. Jayasundara, R.B. Anunciado, E. Burgess, S. Ashman and L.Hu¨wel, Ro-vibrational level dependence of the radiative lifetime of the Na2 41Σg+ shelf state, J. Chem. Phys. 150 (2019), 064301

Rovibrationally and Time-Resolved Radiative Lifetime and Collisional Cross Section Measurements of the 61Σ+g(v=6, J=31) State of Molecular Sodium

Yıl 2020, Cilt: 9 , 1 - 8, 29.06.2020

Öz

In recent years, cold and ultracold alkali diatomic molecules have been at the forefront of quantum chemistry and manybody physics. Thus, there has been an increased interest in the determination of the radiative lifetimes for accurate knowledge of the transition dipole matrix elements of these molecules. In this work, we report on radiative lifetime measurements of the sodium diatomic molecule of the 61Σ+g (v=6,J=31) and 61Σ+g (v=8,J=31) molecular levels by a time-resolved laser spectroscopy technique. The ion-pair character of these potential energies makes their lifetimes interesting because of the unusual behavior of their transition dipole moments. The excitation to the Na2 61Σ+g(3s+5s) electronic state was done using two synchronized pulsed lasers, directed to the sodium heatpipe oven, via X1Σ+g (v=0,31) → A1Σ+g (9,30) → 61Σ+g (8,31) and X1Σ+g (v=0,31) → A1Σ+g (7,30) → 61Σ+g (6,31) transition paths. Disperse molecular fluorescence decay time as a function of argon buffer gas was recorded using a time-correlated photon counting technique. Radiative lifetime was measured and collisional cross section between the excited sodium molecules and ground state argon atoms was extracted.

Kaynakça

  • [1] W. C. Stwalley, Long-range molecules, Contemporary Physics 19 (1978) 65. [2] W. C. Stwalley, H. Wang, Photoassociation of ultracold atoms: A new spectroscopic technique, Journal of Molecular Spectroscopy 195 (1999) 194–228. [3] K. M. Jones, E. Tiesinga, P. D. Lett, P. S. Julienne, Ultracold photoas- sociation spectroscopy: Long-range molecules and atomic scattering, Reviews of Modern Physics 78 (2006) 423. [4] L. D. Carr, D. DeMille, R. V. Krems, J. Ye, Cold and ultracold molecules: science, technology and applications, New Journal of Physics, 11 (2009) 055049. [5] J. T. Bahns, P. L. Gould, W. C. Stwalley, Formation of cold molecules, Advances In Atomic, Molecular, and Optical Physics 42 (2000) 171–224. [6] B. H. McGuyer, M. McDonald, G. Z. Iwata, M. G. Tarallo, W. Sko- morowski, R. Moszynski, T. Zelevinsky, Precise study of asymptotic physics with subradiant ultracold molecules, Nature Physics 11 (2015) 32–36. [7] N. Balakrishnan, Perspective: Ultracold molecules and the dawn of cold controlled chemistry, Journal of Chemical Physics 145 (2016) 150901. [8] R. V. Krems, Cold controlled chemistry, Physical Chemistry Chemical Physics 10 (2008) 4079. [9] J. B. Bauera, J. P. Toennies, An accurate semi-empirical potential model for the a3Σ+ state of the alkali dimers Na2, K2, Rb2, and Cs2 which reproduces the scattering length, J. Chem. Phys. 150 (2019) 144310. [10] P. T. Arndt, V. B. Sovkov, J. X. Pan, D. S. Beecher, J. Y. Tsai, Y. Guan, A. M. Lyyra, E. H. Ahmed, Experimental study of the 61Σg+ state of the rubidium dimer, Phys. Rev. A 99 (2019) 052511. [11] S. Magnier, D. O. M.-S. F. Millie, P., Potential curves for the ground and excited states of the Na2 molecule up to the (3s + 5p) dissociation limit: Results of two different effective potential calculations, J. Chem. Phys. 98 (9) (1993) 7113–7125. [12] M. Saaranen, D. Wagle, E. McLaughlin, A. Paladino, S. Ashman, S. B. Bayram, Time-resolved double-resonance spectroscopy: Lifetime measurement of the 61Σg+(7, 31) electronic state of molecular sodium, J. Chem. Phys. 149 (2018) 204302. [13] G. Baumgartner, W. Demtr¨oder, M. Stock. Lifetime measurements of alkali molecules excited by different laser lines., Zeitschrift fur Physik 232 (1970) 462. [14] N. Jayasundara, R.B. Anunciado, E. Burgess, S. Ashman and L.Hu¨wel, Ro-vibrational level dependence of the radiative lifetime of the Na2 41Σg+ shelf state, J. Chem. Phys. 150 (2019), 064301
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Dinesh Wagle

Lok Raj Pant

Joseph Converse

Scott Wenner

Michael Saaranen

S. Burcin Bayram

Yayımlanma Tarihi 29 Haziran 2020
Yayımlandığı Sayı Yıl 2020Cilt: 9

Kaynak Göster

APA Wagle, D., Pant, L. R., Converse, J., Wenner, S., vd. (2020). Rovibrationally and Time-Resolved Radiative Lifetime and Collisional Cross Section Measurements of the 61Σ+g(v=6, J=31) State of Molecular Sodium. The Eurasia Proceedings of Science Technology Engineering and Mathematics, 9, 1-8.