Araştırma Makalesi
BibTex RIS Kaynak Göster

Empirical Mode Decomposition for Power Spectral Density Features in Radar-Based Fall Detection

Yıl 2025, Cilt: 41 Sayı: 1, 318 - 330, 30.04.2025

Öz

In recent years, the increase in the number of older people and their tendency to live alone has made them more vulnerable to accidents. The most suffered situation in this regard is their falls. In this study, fall detection is carried out using radar. The proposed method classifies different falls and activities of daily living using radar-based measurements. The signals obtained by means of empirical mode decomposition (EMD) are separated into intrinsic mode functions (IMFs). The power spectral densities (PSD) of IMFs are calculated using the Welch method to provide features for classification. Thus, the effect of IMFs on classification is observed. In the study, conventional machine learning classes are employed, and the Support Vector Machine (SVM) (cubic) classifier detects the fall with 100% accuracy as a result of the PSDs calculated depending on the IMF 2-6 values. Furthermore, the classification results obtained based on other IMFs are almost error-free for some classifiers. Therefore, classification is also performed for seven different movements depending on IMFs. The SVM (cubic) algorithm performs above 90% in this case. The proposed method demonstrates that the effect of classical machine learning remains operative and efficacious.

Kaynakça

  • United Nations. 2024. World Population Prospects. https://desapublications.un.org/publications/world-population-prospects-2024-summary-results (Access date: 13.01.2025).
  • Kılıç, D., Ata, G., Hendekci, A. 2021. Yaşlılık döneminin önemli sağlık sorunlarından biri: düşme ve düşmeyi etkileyen faktörler. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi, 12(2), 517-523.
  • Kızılkaya, N., Saka, S. 2022. GERİATRİK BİREYLERDE POLİFARMASİ VE KARDİYAK RİSK FAKTÖRLERİNİN DENGE, DÜŞME VE FONKSİYONEL BAĞIMSIZLIĞA ETKİSİNİN İNCELENMESİ. Sağlık Bilimleri Dergisi, 31(2), 198-203.
  • World Health Organization. 2021. Falls. https: //www.who.int/news-room/fact-sheets/ detail/falls (Access date: 15.01.2025).
  • Noury N, Fleury A, Rumeau P, Bourke AK, Laighin GO, Rialle V, Lundy JE. 2007. Fall detection principles and methods. Annu Int Conf IEEE Eng Med Biol Soc, August 22-26, Lyon, France, 1663–1666.
  • Kwolek, B., Kepski, M. 2014. Human fall detection on embedded platform using depth maps and wireless accelerometer. Computer methods and programs in biomedicine, 117(3), 489-501.
  • Giansanti, D., Maccioni, G., Macellari, V. 2005. The development and test of a device for the reconstruction of 3-D position and orientation by means of a kinematic sensor assembly with rate gyroscopes and accelerometers. IEEE transactions on biomedical engineering, 52(7), 1271-1277.
  • De Araujo, I. L., Dourado, L., Fernandes, L., Andrade, R. M. D. C., Aguilar, P. A. C. 2018. An algorithm for fall detection using data from smartwatch. In 2018 13th Annual Conference on System of Systems Engineering (SoSE), June 19-22, Paris, France, 124-131.
  • Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., Vecchio, A. 2012. A smartphone-based fall detection system. Pervasive and Mobile Computing, 8(6), 883-899.
  • Rougier, C., Meunier, J., St-Arnaud, A., & Rousseau, J. 2011. Robust video surveillance for fall detection based on human shape deformation. IEEE Transactions on circuits and systems for video Technology, 21(5), 611-622.
  • Cucchiara, R., Prati, A., Vezzani, R. 2007. A multi‐camera vision system for fall detection and alarm generation. Expert Systems, 24(5), 334-345.
  • De Miguel, K., Brunete, A., Hernando, M., & Gambao, E. 2017. Home camera-based fall detection system for the elderly. Sensors, 17(12), 2864.
  • Li, Y., Ho, K. C., Popescu, M. 2012. A microphone array system for automatic fall detection. IEEE Transactions on Biomedical Engineering, 59(5), 1291-1301.
  • Frøvik, N., Malekzai, B. A., Øvsthus, K. 2021. Utilising LiDAR for fall detection. Healthcare Technology Letters, 8(1), 11-17.
  • Seflek, I., Acar, Y. E., Yaldiz, E. 2020. Small motion detection and non-contact vital signs monitoring with continuous wave doppler radars. Elektronika ir elektrotechnika, 26(3), 54-60.
  • Islam, S. M. M., Borić-Lubecke, O., Zheng, Y., Lubecke, V. M. 2020. Radar-based non-contact continuous identity authentication. Remote Sensing, 12(14), 2279.
  • Wang, C., Zhu, D., Sun, L., Han, C., Guo, J. 2023. Real-time through-wall multihuman localization and behavior recognition based on MIMO radar. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-12.
  • Baboli, M., Singh, A., Soll, B., Boric-Lubecke, O., Lubecke, V. M. 2019. Wireless sleep apnea detection using continuous wave quadrature Doppler radar. IEEE Sensors Journal, 20(1), 538-545.
  • Acar, Y. E., SARITAŞ, İ., Yaldiz, E. 2022. Comparison of ML algorithms to distinguish between human or human-like targets using the HOG features of range-time and range-Doppler images in through-the-wall applications. Turkish Journal of Electrical Engineering and Computer Sciences, 30(6), 2086-2096.
  • Liu, L., Popescu, M., Skubic, M., Rantz, M., Yardibi, T., & Cuddihy, P. 2011. Automatic fall detection based on Doppler radar motion signature. In 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, May 23-26, Dublin, Ireland 222-225.
  • Liu, L., Popescu, M., Rantz, M., Skubic, M. 2012. Fall detection using doppler radar and classifier fusion. In Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics , January 2-7, Hong Kong, China 180-183.
  • Su, B. Y., Ho, K. C., Rantz, M. J., Skubic, M. 2014. Doppler radar fall activity detection using the wavelet transform. IEEE Transactions on Biomedical Engineering, 62(3), 865-875.
  • Jokanovic, B., Amin, M. G., Zhang, Y. D., Ahmad, F. 2015. Multi‐window time–frequency signature reconstruction from undersampled continuous‐wave radar measurements for fall detection. IET Radar, Sonar & Navigation, 9(2), 173-183.
  • Anishchenko, L., Zhuravlev, A., Chizh, M. 2019. Fall detection using multiple bioradars and convolutional neural networks. Sensors, 19(24), 5569.
  • Sadreazami, H., Bolic, M., Rajan, S. 2021. Contactless fall detection using time-frequency analysis and convolutional neural networks. IEEE Transactions on Industrial Informatics, 17(10), 6842-6851.
  • Zheng, P., Zhang, A., Chen, J., Li, Q., Yang, M. 2024. Real-time fall recognition using a lightweight convolution neural network based on millimeter-wave radar. IEEE Sensors Journal, 24(5), 7185-7195.
  • Ding, C., Zhang, L., Chen, H., Hong, H., Zhu, X.,Fioranelli, F. 2023. Sparsity-based human activity recognition with PointNet using a portable FMCW radar. IEEE Internet of Things Journal, 10(11), 10024-10037.
  • Lin, J., Yang, Z., Chu, P., Lian, T., Zhou, J. 2025. Human fall detection based on adaptive local region-duration features using MIMO radar. Measurement Science and Technology. 36, 036114.
  • Huang, L., Zhu, A., Qian, M., & An, H. (2024). Human fall detection with ultra-wideband radar and adaptive weighted fusion. Sensors, 24(16), 5294.
  • RFbeam Microwave. 2022. https://rfbeam.ch/wp-content/uploads/dlm_uploads/2022/10/K-LD7_Datasheet.pdf (Access date: 19.01.2025).
  • Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... Liu, H. H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995.
  • Solomon Jr, O. M. 1991. PSD computations using Welch’s method. NASA STI/Recon Technical Report N, 92, 23584.
  • Şeflek, I. 2024. A Preliminary Study for Radar-based Fall Detection using Power Spectral Density Features obtained by Welch Method. In 2024 8th International Artificial Intelligence and Data Processing Symposium (IDAP), September 21-22, Malatya, Türkiye, 1-5.
  • Yakut, Ö., Bolat, E. D. 2022. A high-performance arrhythmic heartbeat classification using ensemble learning method and PSD based feature extraction approach. Biocybernetics and Biomedical Engineering, 42(2), 667-680.
  • Kim, C., Sun, J., Liu, D., Wang, Q., Paek, S. 2018. An effective feature extraction method by power spectral density of EEG signal for 2-class motor imagery-based BCI. Medical & biological engineering & computing, 56, 1645-1658.
  • Saettler, A., Laber, E., & Pereira, F. D. A. M. 2017. Decision tree classification with bounded number of errors. Information Processing Letters, 127, 27-31.
  • Cortes, C., Vapnik, V. 1995. Support-vector networks. Machine learning, 20, 273-297.
  • Kotsiantis, S. B., Zaharakis, I., Pintelas, P. 2007. Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering, 160(1), 3-24.
  • Khan, A. A., Chaudhari, O., & Chandra, R. (2024). A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation and evaluation. Expert Systems with Applications, 244, 122778.
  • Şeflek, İ. 2024. Radar-based Elderly Fall Detection Using Power Spectral Density Features Obtained by Different Methods. In 2024 8th International Symposium on Innovative Approaches in Smart Technologies (ISAS), December 6-7, İstanbul, Türkiye, 1-5.

Radar-Tabanlı Düşme Tespitinde Güç Spektral Yoğunluk Özellikleri için Ampirik Mod Ayrıştırması

Yıl 2025, Cilt: 41 Sayı: 1, 318 - 330, 30.04.2025

Öz

Son dönemde yaşlı bireylerin artması ve yalnız yaşama eğilimleri onları kazalara açık hale getirmektedir. Bu hususta en fazla muzdarip olunan durum onların düşmesidir. Bu çalışmada radar kullanılarak düşmenin tespiti gerçekleştirilmektedir. Çeşitli düşme ve günlük aktiviteler radar tabanlı ölçümler yapılarak önerilen metot ile sınıflandırılmaktadır. Ampirik mod ayrıştırma (EMD) vasıtasıyla elde edilen sinyaller içsel mod fonksiyonlara (IMFs) ayrılmaktadır. IMF’lerin Welch yöntemiyle güç spektral yoğunlukları (PSD) hesaplanarak sınıflandırma için özellik olması sağlanmaktadır. Böylece IMF’lerin sınıflandırma üzerine etkisi gözlemlenmektedir. Geleneksel makine öğrenme sınıflarının kullanıldığı çalışmada IMF 2-6 değerlerine bağlı olarak hesaplanan PSD’ler sonucu Destek Vektör Makinesi (SVM) (kübik) sınıflandırıcısı düşmeyi %100 doğrulukla tespit etmektedir. Ayrıca diğer IMF’lere bağlı olarak elde edilen sınıflandırma sonuçları da bazı sınıflandırıcılar için neredeyse hatasızdır. Bundan dolayı yedi farklı hareket için de IMF’lere bağlı olarak sınıflandırma gerçekleştirilmektedir. SVM (kübik) algoritması bu durum içinde %90’ının üzerinde bir performans sergilemektedir. Önerilen yöntem ile geleneksel makine öğrenmesinin etkisinin hala aktif ve etkili olduğu sunulmaktadır.

Kaynakça

  • United Nations. 2024. World Population Prospects. https://desapublications.un.org/publications/world-population-prospects-2024-summary-results (Access date: 13.01.2025).
  • Kılıç, D., Ata, G., Hendekci, A. 2021. Yaşlılık döneminin önemli sağlık sorunlarından biri: düşme ve düşmeyi etkileyen faktörler. Acıbadem Üniversitesi Sağlık Bilimleri Dergisi, 12(2), 517-523.
  • Kızılkaya, N., Saka, S. 2022. GERİATRİK BİREYLERDE POLİFARMASİ VE KARDİYAK RİSK FAKTÖRLERİNİN DENGE, DÜŞME VE FONKSİYONEL BAĞIMSIZLIĞA ETKİSİNİN İNCELENMESİ. Sağlık Bilimleri Dergisi, 31(2), 198-203.
  • World Health Organization. 2021. Falls. https: //www.who.int/news-room/fact-sheets/ detail/falls (Access date: 15.01.2025).
  • Noury N, Fleury A, Rumeau P, Bourke AK, Laighin GO, Rialle V, Lundy JE. 2007. Fall detection principles and methods. Annu Int Conf IEEE Eng Med Biol Soc, August 22-26, Lyon, France, 1663–1666.
  • Kwolek, B., Kepski, M. 2014. Human fall detection on embedded platform using depth maps and wireless accelerometer. Computer methods and programs in biomedicine, 117(3), 489-501.
  • Giansanti, D., Maccioni, G., Macellari, V. 2005. The development and test of a device for the reconstruction of 3-D position and orientation by means of a kinematic sensor assembly with rate gyroscopes and accelerometers. IEEE transactions on biomedical engineering, 52(7), 1271-1277.
  • De Araujo, I. L., Dourado, L., Fernandes, L., Andrade, R. M. D. C., Aguilar, P. A. C. 2018. An algorithm for fall detection using data from smartwatch. In 2018 13th Annual Conference on System of Systems Engineering (SoSE), June 19-22, Paris, France, 124-131.
  • Abbate, S., Avvenuti, M., Bonatesta, F., Cola, G., Corsini, P., Vecchio, A. 2012. A smartphone-based fall detection system. Pervasive and Mobile Computing, 8(6), 883-899.
  • Rougier, C., Meunier, J., St-Arnaud, A., & Rousseau, J. 2011. Robust video surveillance for fall detection based on human shape deformation. IEEE Transactions on circuits and systems for video Technology, 21(5), 611-622.
  • Cucchiara, R., Prati, A., Vezzani, R. 2007. A multi‐camera vision system for fall detection and alarm generation. Expert Systems, 24(5), 334-345.
  • De Miguel, K., Brunete, A., Hernando, M., & Gambao, E. 2017. Home camera-based fall detection system for the elderly. Sensors, 17(12), 2864.
  • Li, Y., Ho, K. C., Popescu, M. 2012. A microphone array system for automatic fall detection. IEEE Transactions on Biomedical Engineering, 59(5), 1291-1301.
  • Frøvik, N., Malekzai, B. A., Øvsthus, K. 2021. Utilising LiDAR for fall detection. Healthcare Technology Letters, 8(1), 11-17.
  • Seflek, I., Acar, Y. E., Yaldiz, E. 2020. Small motion detection and non-contact vital signs monitoring with continuous wave doppler radars. Elektronika ir elektrotechnika, 26(3), 54-60.
  • Islam, S. M. M., Borić-Lubecke, O., Zheng, Y., Lubecke, V. M. 2020. Radar-based non-contact continuous identity authentication. Remote Sensing, 12(14), 2279.
  • Wang, C., Zhu, D., Sun, L., Han, C., Guo, J. 2023. Real-time through-wall multihuman localization and behavior recognition based on MIMO radar. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-12.
  • Baboli, M., Singh, A., Soll, B., Boric-Lubecke, O., Lubecke, V. M. 2019. Wireless sleep apnea detection using continuous wave quadrature Doppler radar. IEEE Sensors Journal, 20(1), 538-545.
  • Acar, Y. E., SARITAŞ, İ., Yaldiz, E. 2022. Comparison of ML algorithms to distinguish between human or human-like targets using the HOG features of range-time and range-Doppler images in through-the-wall applications. Turkish Journal of Electrical Engineering and Computer Sciences, 30(6), 2086-2096.
  • Liu, L., Popescu, M., Skubic, M., Rantz, M., Yardibi, T., & Cuddihy, P. 2011. Automatic fall detection based on Doppler radar motion signature. In 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops, May 23-26, Dublin, Ireland 222-225.
  • Liu, L., Popescu, M., Rantz, M., Skubic, M. 2012. Fall detection using doppler radar and classifier fusion. In Proceedings of 2012 IEEE-EMBS International Conference on Biomedical and Health Informatics , January 2-7, Hong Kong, China 180-183.
  • Su, B. Y., Ho, K. C., Rantz, M. J., Skubic, M. 2014. Doppler radar fall activity detection using the wavelet transform. IEEE Transactions on Biomedical Engineering, 62(3), 865-875.
  • Jokanovic, B., Amin, M. G., Zhang, Y. D., Ahmad, F. 2015. Multi‐window time–frequency signature reconstruction from undersampled continuous‐wave radar measurements for fall detection. IET Radar, Sonar & Navigation, 9(2), 173-183.
  • Anishchenko, L., Zhuravlev, A., Chizh, M. 2019. Fall detection using multiple bioradars and convolutional neural networks. Sensors, 19(24), 5569.
  • Sadreazami, H., Bolic, M., Rajan, S. 2021. Contactless fall detection using time-frequency analysis and convolutional neural networks. IEEE Transactions on Industrial Informatics, 17(10), 6842-6851.
  • Zheng, P., Zhang, A., Chen, J., Li, Q., Yang, M. 2024. Real-time fall recognition using a lightweight convolution neural network based on millimeter-wave radar. IEEE Sensors Journal, 24(5), 7185-7195.
  • Ding, C., Zhang, L., Chen, H., Hong, H., Zhu, X.,Fioranelli, F. 2023. Sparsity-based human activity recognition with PointNet using a portable FMCW radar. IEEE Internet of Things Journal, 10(11), 10024-10037.
  • Lin, J., Yang, Z., Chu, P., Lian, T., Zhou, J. 2025. Human fall detection based on adaptive local region-duration features using MIMO radar. Measurement Science and Technology. 36, 036114.
  • Huang, L., Zhu, A., Qian, M., & An, H. (2024). Human fall detection with ultra-wideband radar and adaptive weighted fusion. Sensors, 24(16), 5294.
  • RFbeam Microwave. 2022. https://rfbeam.ch/wp-content/uploads/dlm_uploads/2022/10/K-LD7_Datasheet.pdf (Access date: 19.01.2025).
  • Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., ... Liu, H. H. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: mathematical, physical and engineering sciences, 454(1971), 903-995.
  • Solomon Jr, O. M. 1991. PSD computations using Welch’s method. NASA STI/Recon Technical Report N, 92, 23584.
  • Şeflek, I. 2024. A Preliminary Study for Radar-based Fall Detection using Power Spectral Density Features obtained by Welch Method. In 2024 8th International Artificial Intelligence and Data Processing Symposium (IDAP), September 21-22, Malatya, Türkiye, 1-5.
  • Yakut, Ö., Bolat, E. D. 2022. A high-performance arrhythmic heartbeat classification using ensemble learning method and PSD based feature extraction approach. Biocybernetics and Biomedical Engineering, 42(2), 667-680.
  • Kim, C., Sun, J., Liu, D., Wang, Q., Paek, S. 2018. An effective feature extraction method by power spectral density of EEG signal for 2-class motor imagery-based BCI. Medical & biological engineering & computing, 56, 1645-1658.
  • Saettler, A., Laber, E., & Pereira, F. D. A. M. 2017. Decision tree classification with bounded number of errors. Information Processing Letters, 127, 27-31.
  • Cortes, C., Vapnik, V. 1995. Support-vector networks. Machine learning, 20, 273-297.
  • Kotsiantis, S. B., Zaharakis, I., Pintelas, P. 2007. Supervised machine learning: A review of classification techniques. Emerging artificial intelligence applications in computer engineering, 160(1), 3-24.
  • Khan, A. A., Chaudhari, O., & Chandra, R. (2024). A review of ensemble learning and data augmentation models for class imbalanced problems: Combination, implementation and evaluation. Expert Systems with Applications, 244, 122778.
  • Şeflek, İ. 2024. Radar-based Elderly Fall Detection Using Power Spectral Density Features Obtained by Different Methods. In 2024 8th International Symposium on Innovative Approaches in Smart Technologies (ISAS), December 6-7, İstanbul, Türkiye, 1-5.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Öğrenme (Diğer), Elektrik Devreleri ve Sistemleri, Mühendislik Elektromanyetiği
Bölüm Makaleler
Yazarlar

İbrahim Şeflek 0000-0002-6782-9513

Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 3 Mart 2025
Kabul Tarihi 6 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 41 Sayı: 1

Kaynak Göster

APA Şeflek, İ. (2025). Empirical Mode Decomposition for Power Spectral Density Features in Radar-Based Fall Detection. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 41(1), 318-330.
AMA Şeflek İ. Empirical Mode Decomposition for Power Spectral Density Features in Radar-Based Fall Detection. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Nisan 2025;41(1):318-330.
Chicago Şeflek, İbrahim. “Empirical Mode Decomposition for Power Spectral Density Features in Radar-Based Fall Detection”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 41, sy. 1 (Nisan 2025): 318-30.
EndNote Şeflek İ (01 Nisan 2025) Empirical Mode Decomposition for Power Spectral Density Features in Radar-Based Fall Detection. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 41 1 318–330.
IEEE İ. Şeflek, “Empirical Mode Decomposition for Power Spectral Density Features in Radar-Based Fall Detection”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 41, sy. 1, ss. 318–330, 2025.
ISNAD Şeflek, İbrahim. “Empirical Mode Decomposition for Power Spectral Density Features in Radar-Based Fall Detection”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 41/1 (Nisan 2025), 318-330.
JAMA Şeflek İ. Empirical Mode Decomposition for Power Spectral Density Features in Radar-Based Fall Detection. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2025;41:318–330.
MLA Şeflek, İbrahim. “Empirical Mode Decomposition for Power Spectral Density Features in Radar-Based Fall Detection”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 41, sy. 1, 2025, ss. 318-30.
Vancouver Şeflek İ. Empirical Mode Decomposition for Power Spectral Density Features in Radar-Based Fall Detection. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2025;41(1):318-30.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.