An in-vitro study on the effectiveness of different irrigation solutions against Enterococcus faecalis with/without Erbium laser activation.
Yıl 2020,
, 45 - 51, 31.12.2020
Gülşah Balan
,
Sadık Kalaycı
Ayşen Yarat
,
Serap Akyüz
Fikrettin Şahin
Öz
Objective: Questions have been raised on the safety of prolonged use of NaOCl. There is a demand on developing alternative agents and activation methods for effective irrigation in a short time. Our study compares sodium hypochlorite to different irrigants with and without laser activation to evaluate antibacterial efficiency against Enterococcus faecalis.
Methods: Bacteria was inoculated into 54 human teeth and incubated for 28 days to build up biofilm. The teeth then were randomly divided according to the irrigation method into two; (1) syringe (S) and (2) Erbium laser activation (LA) groups. In each group, teeth were divided into 4 experimental subgroups to evaluate the antibacterial properties of four different solutions of saline (NaCl), sodium hypochlorite (NaOCl), sodium pentaborate pentahydrate (NaB) and deuterium depleted water (DDW). For S subgroups the amount of applied irrigant solution was 10 mL and for LA subgroups it was 10 mL. Samples were taken from canal wall and colony forming units were determined by plate counting after 24 hours. The survival rates of the bacteria were calculated as data.
Results: Both techniques were reduced the bacterial survivors and no statistically difference was found between S and LA (p>0.05). As expected, NaOCl-LA found more effective than Saline-LA (p<0.05) but not superior than NaOCl-S (p>0.05). NaB solution showed similar antibacterial effect as NaOCl (p>0.05)
Conclusion: The most effective NaOCl solution was followed by NaB, DDW and Saline, respectively. Laser activation did not increase effectiveness of solutions compared to syringe irrigation.
Destekleyen Kurum
Marmara University Scientific Research Projects Unit-BAPKO
Proje Numarası
SAG-C-DRP-241018-0573
Teşekkür
This work is supported in part by the grant Marmara University Scientific Research Projects Unit. I would like to thank all co-authors and the staff of Yeditepe University Biocidal and AR-GE Laboratory unit.
Kaynakça
- 1. Sundqvist G, Figdor D, Persson S, Sjogren U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(1):86-93.
2. Molander A, Reit C, Dahlen G, Kvist T. Microbiological status of root‐filled teeth with apical periodontitis. International endodontic journal. 1998;31(1):1-7.
3. Pashley DH, Michelich V, Kehl T. Dentin permeability: effects of smear layer removal. J Prosthet Dent. 1981;46(5):531-7.
4. Haapasalo M, Endal U, Zandi H, Coil JM. Eradication of endodontic infection by instrumentation and irrigation solutions. Endodontic topics. 2005;10(1):77-102.
5. Hülsmann M, Hahn W. Complications during root canal irrigation–literature review and case reports. International Endodontic Journal. 2000;33(3):186-93.
6. Yang F, Zhu M, Zhang J, Zhou H. Synthesis of biologically active boron-containing compounds. Medchemcomm. 2018;9(2):201-11.
7. Dogan A, Demirci S, Caglayan AB, Kilic E, Gunal MY, Uslu U, et al. Sodium pentaborate pentahydrate and pluronic containing hydrogel increases cutaneous wound healing in vitro and in vivo. Biol Trace Elem Res. 2014;162(1-3):72-9.
8. Kuru R, Yarat A. Bor ve sağlığımıza olan etkilerine güncel bir bakış. Clinical and Experimental Health Sciences. 2017;7(3):107-14.
9. Bailey PJ, Cousins G, Snow GA, White AJ. Boron-containing antibacterial agents: effects on growth and morphology of bacteria under various culture conditions. Antimicrobial agents and chemotherapy. 1980;17(4):549-53.
10. Iyigundogdu ZU, Demir O, Asutay AB, Sahin F. Developing novel antimicrobial and antiviral textile products. Applied biochemistry and biotechnology. 2017;181(3):1155-66.
11. Turk T, Kaval ME, Sen BH. Evaluation of the smear layer removal and erosive capacity of EDTA, boric acid, citric acid and desy clean solutions: an in vitro study. BMC Oral Health. 2015;15:104.
12. Culhaoglu AK, Özcan E, Kilicarslan MA, Seker E. Effect of Boric Acid Versus Conventional Irrigation Solutions on the Bond Strength Between Fiber Post and Root Dentin. Journal of Adhesive Dentistry. 2017;19(2).
13. Luan Q, Desta T, Chehab L, Sanders V, Plattner J, Graves D. Inhibition of experimental periodontitis by a topical boron-based antimicrobial. Journal of dental research. 2008;87(2):148-52.
14. Taşlı PN, Doğan A, Demirci S, Şahin F. Boron Enhances Odontogenic and Osteogenic Differentiation of Human Tooth Germ Stem Cells (hTGSCs) In Vitro. Biological Trace Element Research. 2013;153(1):419-27.
15. Demirci S, Kaya MS, Dogan A, Kalay Ş, Altin NÖ, Yarat A, et al. Antibacterial and cytotoxic properties of boron-containing dental composite. Turkish Journal of Biology. 2015;39:417-26.
16. Shakouie S, Milani AS, Eskandarnejad M, Rahimi S, Froughreyhani M, Galedar S, et al. Antimicrobial activity of tetraacetylethylenediamine-sodium perborate versus sodium hypochlorite against Enterococcus faecalis. Journal of dental research, dental clinics, dental prospects. 2016;10(1):43.
17. Harbeson SL, Tung RD. Deuterium in Drug Discovery and Development. In: Macor JE, editor. Annual Reports in Medicinal Chemistry. Annual Reports in Medicinal Chemistry. 46: Academic Press; 2011. p. 403-17.
18. Mosin O, Ignatov I. Studying of Isotopic Effects of Deuterium in Biological Objects. European Reviews of Chemical Research. 2015;3(1):25-42.
19. Rasooli A, Fatemi F, Akbarzadeh K, Dini S, Bahremand S. Synergistic protective activity of deuterium depleted water (DDW) and Satureja rechingeri essential oil on hepatic oxidative injuries induced by acetaminophen in rats. Journal of Essential Oil Bearing Plants. 2016;19(5):1086-101.
20. Basov A, Fedulova L, Baryshev M, Dzhimak S. Deuterium-Depleted Water Influence on the Isotope (2)H/(1)H Regulation in Body and Individual Adaptation. Nutrients. 2019;11(8):1903.
21. Somlyai G, Jancsó G, Jákli G, Vass K, Barna B, Lakics V, et al. Naturally occurring deuterium is essential for the normal growth rate of cells. FEBS Letters. 1993;317(1-2):1-4.
22. Fisher-Wellman KH, Lin C-T, Ryan TE, Reese LR, Gilliam LA, Cathey BL, et al. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy consuming redox circuit. The Biochemical journal. 2015;467(2):271.
23. Opitz C, Ahrné E, Goldie KN, Schmidt A, Grzesiek S. Deuterium induces a distinctive Escherichia coli proteome that correlates with the reduction in growth rate. Journal of Biological Chemistry. 2019;294(7):2279-92.
24. Flaumenhaft E, Bose S, Crespi H, Katz J. Deuterium isotope effects in cytology. International review of cytology. 18: Elsevier; 1965. p. 313-61.
25. Katz JJ, Crespi HL. Deuterated organisms: cultivation and uses. Science. 1966;151(3715):1187-94.
26. Unno k, Busujima h, Shimba s, Narita k, Okada s. Characteristics of growth and deuterium incorporation in Chlorella ellipsoidea grown in deuterium oxide. Chemical and pharmaceutical bulletin. 1988;36(5):1828-33.
27. Wright PP, Walsh LJ. Optimizing Antimicrobial Agents in Endodontics. In: Kumavath RN, editor. Antibacterial Agents. Rijeka: InTech; 2017. p. Ch. 05.
28. Peeters HH, Gutknecht N. Efficacy of laser-driven irrigation versus ultrasonic in removing an airlock from the apical third of a narrow root canal. Aust Endod J. 2014;40(2):47-53.
29. Peeters HH, De Moor RJ, Suharto D. Visualization of removal of trapped air from the apical region in simulated root canals by laser-activated irrigation using an Er,Cr:YSGG laser. Lasers Med Sci. 2015;30(6):1683-8.
30. Blanken JW, Verdaasdonk RM. Cavitation as a Working Mechanism of the Er, Cr: YSGG Laser in Endodontics: A Visualization Study. Journal of Oral Laser Applications. 2007;7(2).
31. Matsumoto H, Yoshimine Y, Akamine A. Visualization of Irrigant Flow and Cavitation Induced by Er:YAG Laser within a Root Canal Model. Journal of Endodontics. 2011;37(6):839-43.
32. Yao K, Satake K, Watanabe S, Ebihara A, Kobayashi C, Okiji T. Effect of Laser Energy and Tip Insertion Depth on the Pressure Generated Outside the Apical Foramen During Er:YAG Laser-Activated Root Canal Irrigation. Photomed Laser Surg. 2017;35(12):682-7.
33. De Moor RJ, Blanken J, Meire M, Verdaasdonk R. Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 2: evaluation of the efficacy. Lasers Surg Med. 2009;41(7):520-3.
34. De Moor RJ, Meire M, Goharkhay K, Moritz A, Vanobbergen J. Efficacy of ultrasonic versus laser-activated irrigation to remove artificially placed dentin debris plugs. J Endod. 2010;36(9):1580-3.
- 35. Haapasalo M, Orstavik D. In vitro infection and disinfection of dentinal tubules. J Dent Res. 1987;66(8):1375-9.
36. Love RM. Enterococcus faecalis– a mechanism for its role in endodontic failure. International Endodontic Journal. 2001;34(5):399-405.
37. Vatkar NA, Hegde V, Sathe S. Vitality of Enterococcus faecalis inside dentinal tubules after five root canal disinfection methods. J Conserv Dent. 2016;19(5):445-9.
38. del Carpio-Perochena AE, Bramante CM, Duarte MAH, Cavenago BC, Villas-Boas MH, Graeff MS, et al. Biofilm dissolution and cleaning ability of different irrigant solutions on intraorally infected dentin. Journal of endodontics. 2011;37(8):1134-8.
39. Retamozo B, Shabahang S, Johnson N, Aprecio RM, Torabinejad M. Minimum contact time and concentration of sodium hypochlorite required to eliminate Enterococcus faecalis. Journal of Endodontics. 2010;36(3):520-3.
40. Christo JE, Zilm PS, Sullivan T, Cathro PR. Efficacy of low concentrations of sodium hypochlorite and low-powered Er,Cr:YSGG laser activated irrigation against an Enterococcus faecalis biofilm. Int Endod J. 2016;49(3):279-86.
41. Radcliffe C, Potouridou L, Qureshi R, Habahbeh N, Qualtrough A, Worthington H, et al. Antimicrobial activity of varying concentrations of sodium hypochlorite on the endodontic microorganisms Actinomyces israelii, A. naeslundii, Candida albicans and Enterococcus faecalis. International endodontic journal. 2004;37(7):438-46.
42. Spangberg L, Engstrom B, Langeland K. Biologic effects of dental materials. 3. Toxicity and antimicrobial effect of endodontic antiseptics in vitro. Oral Surg Oral Med Oral Pathol. 1973;36(6):856-71.
43. Sippus J, Gutknecht N. Deep disinfection and tubular smear layer removal with Er:YAG using photon-induced photoacoustic streaming (PIPS) contra laser-activated irrigation (LAI) technics. Lasers in Dental Science. 2019;3(1):37-42.
44. Pedulla E, Genovese C, Campagna E, Tempera G, Rapisarda E. Decontamination efficacy of photon-initiated photoacoustic streaming (PIPS) of irrigants using low-energy laser settings: an ex vivo study. Int Endod J. 2012;45(9):865-70.
45. Ordinola‐Zapata R, Bramante CM, Aprecio RM, Handysides R, Jaramillo DE. Biofilm removal by 6% sodium hypochlorite activated by different irrigation techniques. International Endodontic Journal. 2014;47(7):659-66.
46. Betancourt P, Merlos A, Sierra JM, Camps-Font O, Arnabat-Dominguez J, Vinas M. Effectiveness of low concentration of sodium hypochlorite activated by Er,Cr:YSGG laser against Enterococcus faecalis biofilm. Lasers Med Sci. 2019;34(2):247-54.
Yıl 2020,
, 45 - 51, 31.12.2020
Gülşah Balan
,
Sadık Kalaycı
Ayşen Yarat
,
Serap Akyüz
Fikrettin Şahin
Proje Numarası
SAG-C-DRP-241018-0573
Kaynakça
- 1. Sundqvist G, Figdor D, Persson S, Sjogren U. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(1):86-93.
2. Molander A, Reit C, Dahlen G, Kvist T. Microbiological status of root‐filled teeth with apical periodontitis. International endodontic journal. 1998;31(1):1-7.
3. Pashley DH, Michelich V, Kehl T. Dentin permeability: effects of smear layer removal. J Prosthet Dent. 1981;46(5):531-7.
4. Haapasalo M, Endal U, Zandi H, Coil JM. Eradication of endodontic infection by instrumentation and irrigation solutions. Endodontic topics. 2005;10(1):77-102.
5. Hülsmann M, Hahn W. Complications during root canal irrigation–literature review and case reports. International Endodontic Journal. 2000;33(3):186-93.
6. Yang F, Zhu M, Zhang J, Zhou H. Synthesis of biologically active boron-containing compounds. Medchemcomm. 2018;9(2):201-11.
7. Dogan A, Demirci S, Caglayan AB, Kilic E, Gunal MY, Uslu U, et al. Sodium pentaborate pentahydrate and pluronic containing hydrogel increases cutaneous wound healing in vitro and in vivo. Biol Trace Elem Res. 2014;162(1-3):72-9.
8. Kuru R, Yarat A. Bor ve sağlığımıza olan etkilerine güncel bir bakış. Clinical and Experimental Health Sciences. 2017;7(3):107-14.
9. Bailey PJ, Cousins G, Snow GA, White AJ. Boron-containing antibacterial agents: effects on growth and morphology of bacteria under various culture conditions. Antimicrobial agents and chemotherapy. 1980;17(4):549-53.
10. Iyigundogdu ZU, Demir O, Asutay AB, Sahin F. Developing novel antimicrobial and antiviral textile products. Applied biochemistry and biotechnology. 2017;181(3):1155-66.
11. Turk T, Kaval ME, Sen BH. Evaluation of the smear layer removal and erosive capacity of EDTA, boric acid, citric acid and desy clean solutions: an in vitro study. BMC Oral Health. 2015;15:104.
12. Culhaoglu AK, Özcan E, Kilicarslan MA, Seker E. Effect of Boric Acid Versus Conventional Irrigation Solutions on the Bond Strength Between Fiber Post and Root Dentin. Journal of Adhesive Dentistry. 2017;19(2).
13. Luan Q, Desta T, Chehab L, Sanders V, Plattner J, Graves D. Inhibition of experimental periodontitis by a topical boron-based antimicrobial. Journal of dental research. 2008;87(2):148-52.
14. Taşlı PN, Doğan A, Demirci S, Şahin F. Boron Enhances Odontogenic and Osteogenic Differentiation of Human Tooth Germ Stem Cells (hTGSCs) In Vitro. Biological Trace Element Research. 2013;153(1):419-27.
15. Demirci S, Kaya MS, Dogan A, Kalay Ş, Altin NÖ, Yarat A, et al. Antibacterial and cytotoxic properties of boron-containing dental composite. Turkish Journal of Biology. 2015;39:417-26.
16. Shakouie S, Milani AS, Eskandarnejad M, Rahimi S, Froughreyhani M, Galedar S, et al. Antimicrobial activity of tetraacetylethylenediamine-sodium perborate versus sodium hypochlorite against Enterococcus faecalis. Journal of dental research, dental clinics, dental prospects. 2016;10(1):43.
17. Harbeson SL, Tung RD. Deuterium in Drug Discovery and Development. In: Macor JE, editor. Annual Reports in Medicinal Chemistry. Annual Reports in Medicinal Chemistry. 46: Academic Press; 2011. p. 403-17.
18. Mosin O, Ignatov I. Studying of Isotopic Effects of Deuterium in Biological Objects. European Reviews of Chemical Research. 2015;3(1):25-42.
19. Rasooli A, Fatemi F, Akbarzadeh K, Dini S, Bahremand S. Synergistic protective activity of deuterium depleted water (DDW) and Satureja rechingeri essential oil on hepatic oxidative injuries induced by acetaminophen in rats. Journal of Essential Oil Bearing Plants. 2016;19(5):1086-101.
20. Basov A, Fedulova L, Baryshev M, Dzhimak S. Deuterium-Depleted Water Influence on the Isotope (2)H/(1)H Regulation in Body and Individual Adaptation. Nutrients. 2019;11(8):1903.
21. Somlyai G, Jancsó G, Jákli G, Vass K, Barna B, Lakics V, et al. Naturally occurring deuterium is essential for the normal growth rate of cells. FEBS Letters. 1993;317(1-2):1-4.
22. Fisher-Wellman KH, Lin C-T, Ryan TE, Reese LR, Gilliam LA, Cathey BL, et al. Pyruvate dehydrogenase complex and nicotinamide nucleotide transhydrogenase constitute an energy consuming redox circuit. The Biochemical journal. 2015;467(2):271.
23. Opitz C, Ahrné E, Goldie KN, Schmidt A, Grzesiek S. Deuterium induces a distinctive Escherichia coli proteome that correlates with the reduction in growth rate. Journal of Biological Chemistry. 2019;294(7):2279-92.
24. Flaumenhaft E, Bose S, Crespi H, Katz J. Deuterium isotope effects in cytology. International review of cytology. 18: Elsevier; 1965. p. 313-61.
25. Katz JJ, Crespi HL. Deuterated organisms: cultivation and uses. Science. 1966;151(3715):1187-94.
26. Unno k, Busujima h, Shimba s, Narita k, Okada s. Characteristics of growth and deuterium incorporation in Chlorella ellipsoidea grown in deuterium oxide. Chemical and pharmaceutical bulletin. 1988;36(5):1828-33.
27. Wright PP, Walsh LJ. Optimizing Antimicrobial Agents in Endodontics. In: Kumavath RN, editor. Antibacterial Agents. Rijeka: InTech; 2017. p. Ch. 05.
28. Peeters HH, Gutknecht N. Efficacy of laser-driven irrigation versus ultrasonic in removing an airlock from the apical third of a narrow root canal. Aust Endod J. 2014;40(2):47-53.
29. Peeters HH, De Moor RJ, Suharto D. Visualization of removal of trapped air from the apical region in simulated root canals by laser-activated irrigation using an Er,Cr:YSGG laser. Lasers Med Sci. 2015;30(6):1683-8.
30. Blanken JW, Verdaasdonk RM. Cavitation as a Working Mechanism of the Er, Cr: YSGG Laser in Endodontics: A Visualization Study. Journal of Oral Laser Applications. 2007;7(2).
31. Matsumoto H, Yoshimine Y, Akamine A. Visualization of Irrigant Flow and Cavitation Induced by Er:YAG Laser within a Root Canal Model. Journal of Endodontics. 2011;37(6):839-43.
32. Yao K, Satake K, Watanabe S, Ebihara A, Kobayashi C, Okiji T. Effect of Laser Energy and Tip Insertion Depth on the Pressure Generated Outside the Apical Foramen During Er:YAG Laser-Activated Root Canal Irrigation. Photomed Laser Surg. 2017;35(12):682-7.
33. De Moor RJ, Blanken J, Meire M, Verdaasdonk R. Laser induced explosive vapor and cavitation resulting in effective irrigation of the root canal. Part 2: evaluation of the efficacy. Lasers Surg Med. 2009;41(7):520-3.
34. De Moor RJ, Meire M, Goharkhay K, Moritz A, Vanobbergen J. Efficacy of ultrasonic versus laser-activated irrigation to remove artificially placed dentin debris plugs. J Endod. 2010;36(9):1580-3.
- 35. Haapasalo M, Orstavik D. In vitro infection and disinfection of dentinal tubules. J Dent Res. 1987;66(8):1375-9.
36. Love RM. Enterococcus faecalis– a mechanism for its role in endodontic failure. International Endodontic Journal. 2001;34(5):399-405.
37. Vatkar NA, Hegde V, Sathe S. Vitality of Enterococcus faecalis inside dentinal tubules after five root canal disinfection methods. J Conserv Dent. 2016;19(5):445-9.
38. del Carpio-Perochena AE, Bramante CM, Duarte MAH, Cavenago BC, Villas-Boas MH, Graeff MS, et al. Biofilm dissolution and cleaning ability of different irrigant solutions on intraorally infected dentin. Journal of endodontics. 2011;37(8):1134-8.
39. Retamozo B, Shabahang S, Johnson N, Aprecio RM, Torabinejad M. Minimum contact time and concentration of sodium hypochlorite required to eliminate Enterococcus faecalis. Journal of Endodontics. 2010;36(3):520-3.
40. Christo JE, Zilm PS, Sullivan T, Cathro PR. Efficacy of low concentrations of sodium hypochlorite and low-powered Er,Cr:YSGG laser activated irrigation against an Enterococcus faecalis biofilm. Int Endod J. 2016;49(3):279-86.
41. Radcliffe C, Potouridou L, Qureshi R, Habahbeh N, Qualtrough A, Worthington H, et al. Antimicrobial activity of varying concentrations of sodium hypochlorite on the endodontic microorganisms Actinomyces israelii, A. naeslundii, Candida albicans and Enterococcus faecalis. International endodontic journal. 2004;37(7):438-46.
42. Spangberg L, Engstrom B, Langeland K. Biologic effects of dental materials. 3. Toxicity and antimicrobial effect of endodontic antiseptics in vitro. Oral Surg Oral Med Oral Pathol. 1973;36(6):856-71.
43. Sippus J, Gutknecht N. Deep disinfection and tubular smear layer removal with Er:YAG using photon-induced photoacoustic streaming (PIPS) contra laser-activated irrigation (LAI) technics. Lasers in Dental Science. 2019;3(1):37-42.
44. Pedulla E, Genovese C, Campagna E, Tempera G, Rapisarda E. Decontamination efficacy of photon-initiated photoacoustic streaming (PIPS) of irrigants using low-energy laser settings: an ex vivo study. Int Endod J. 2012;45(9):865-70.
45. Ordinola‐Zapata R, Bramante CM, Aprecio RM, Handysides R, Jaramillo DE. Biofilm removal by 6% sodium hypochlorite activated by different irrigation techniques. International Endodontic Journal. 2014;47(7):659-66.
46. Betancourt P, Merlos A, Sierra JM, Camps-Font O, Arnabat-Dominguez J, Vinas M. Effectiveness of low concentration of sodium hypochlorite activated by Er,Cr:YSGG laser against Enterococcus faecalis biofilm. Lasers Med Sci. 2019;34(2):247-54.