Research Article
BibTex RIS Cite

Investigation of the potential of greenhouse post-harvest wastes for bioenergy production and utilization for heating and carbon dioxide application

Year 2022, Volume: 5 Issue: 3, 272 - 277, 30.09.2022
https://doi.org/10.35208/ert.1128457

Abstract

In this study, raw biomass feedstock characterization of greenhouse post-harvest residues of tomato, pepper, and eggplant has been investigated using the wastes of stem and leaves as a source of energy gained from palletization. The characterization was compared to both sawdust and the relevant ISO and EU pellet standards. The proximate and ultimate analyses results of all the tested feedstock materials have proven to be successful candidates for pelletizing and combustion process. The bulk density of tomato, pepper, and eggplant pellets were found to be 568 kg/m3, 575 kg/m3, 589 kg/m3, respectively, and the higher heating values of these produces were found to be 17.25 MJ/kg, 17.45 MJ/kg, and 17.80 MJ/kg, respectively. Based on the results, it is possible to generate 10 tons of waste per hectare capable of producing almost 50 MWh of heating energy. Furthermore, this waste could generate more than 6.5 tons of CO2 per hectare. The study results suggest that the heating energy potential and the amount of CO2 emitted could be used in greenhouses to support photosynthesis during low temperature and low solar radiation periods.

Supporting Institution

TÜBİTAK BİDEB 2236

Project Number

120C218

References

  • Akarsu, K., Duman, G., Yilmazer, A., Keskin, T., Azbar, N., Yanik, J. (2019). Sustainable valorization of food wastes into solid fuel by hydrothermal carbonization. Bioresource Technology, 292, 121959.
  • Ayrancı, Y. (2007). Muğla ili Dalaman, Ortaca ve Fethiye ilçelerinin sera varlığı ve sera bitkisel atık potansiyelinin belirlenmesi. Selcuk Journal of Agriculture and Food Sciences, 21(41), 36-41.
  • Bilgin, S. (2015). A Research on Briquetting of greenhouse pepper crop residues. Agricultural Engineering International: CIGR Journal. Special issue 2015. 185-192.
  • Blasi, C., Tanzi, V., Lanzetta, M. A. (1997). A study on the production of agricultural residues in Italy. Biomass and Bioenergy, 12(5), 321-331.
  • Celma, A. R., Cuadros, F., López-Rodríguez, F. (2012). Characterization of pellets from industrial tomato residues. Food and Bioproducts Processing, 90(4), 700-706.
  • Dede, Ö. H., Gülgün, D. E. D. E., Cemile, D. E. D. E., Özdemir, S. (2018). Hayvansal atıklardan biyogaz üretimi için küçük ölçekli reaktör modeli geliştirilmesi. Karaelmas Fen ve Mühendislik Dergisi, 8(1), 138-146.
  • Duranay, N. D., Çaycı, N. (2019). Production of solid fuel with torrefaction from agricultural wastes. Res. Eng. Struct. Mater., 5(3), 311. http://dx.doi.org/10.17515/resm2019.85en1227
  • Heya, N. M., Foroughbakhch Pournavab, R., Carrillo Parra, A., Zelinski, V., Salas Cruz, L. R. (2019). Elemental composition and flue gas emissions of different components from five semi-arid woody species in pyrolysed and non-pyrolysed material. Sustainability, 11(5), 1245.
  • Ikeura, H., Sato, K., Miyashita, T., Inakuma, T. (2014). Combustion ash from tomato stem and leaf pellets as a fertilizer. Journal of sustainable development, 7(3), 78.
  • Kraiem, N., Lajili, M., Limousy, L., Said, R., Jeguirim, M. (2016). Energy recovery from Tunisian agri-food wastes: Evaluation of combustion performance and emissions characteristics of green pellets prepared from tomato residues and grape marc. Energy, 107, 409-418. https://doi.org/10.1016/j.energy.2016.04.037
  • Llorach-Massana, P., Lopez-Capel, E., Peña, J., Rieradevall, J., Montero, J. I., Puy, N. (2017). Technical feasibility and carbon footprint of biochar co-production with tomato plant residue. Waste Management, 67, 121-130.
  • Menardo, S., Bauer, A., Theuretzbacher, F., Piringer, G., Nilsen, P. J., Balsari, P., Pavliska, O., Amon, T. (2013). Biogas production from steam-exploded miscanthus and utilization of biogas energy and CO2 in greenhouses. BioEnergy Research, 6(2), 620-630. https://doi.org/10.1007/s12155-012-9280-5
  • Oleszek, M., Tys, J., Wiącek, D., Król, A., Kuna, J. (2016). The possibility of meeting greenhouse energy and CO2 demands through utilisation of cucumber and tomato residues. BioEnergy Research, 9(2), 624-632.
  • Ozdemir S, Er A. Investigation of biofuel characteristics of poultry litter and crop residues. Sakarya Univ J Science. 2018; 22(2): 489- 494.
  • Ozdemir, S., Demir, M. S. (2021). Biofuel characteristics and combustion emissions of poultry litter and lignocellulosic biomass. Environmental Progress & Sustainable Energy, 40(3), e13555.
  • Ozdemir, S., Şimşek, A., Ozdemir, S., Dede, C. (2022). Investigation of poultry slaughterhouse waste stream to produce bio-fuel for internal utilization. Renewable Energy, 190, 274-282.
  • Unal, H. Alibas, K. (2007). Agricultural residues as biomass energy. Energy Sources, Part B, 2(2), 123-140. https://doi.org/10.1080/15567240600629401
  • Yılmaz, H., Çanakcı, M., Topakcı, M., Karayel, D. (2021). The effect of raw material moisture and particle size on agri-pellet production parameters and physical properties: A case study for greenhouse melon residues. Biomass and Bioenergy, 150, 106125.
Year 2022, Volume: 5 Issue: 3, 272 - 277, 30.09.2022
https://doi.org/10.35208/ert.1128457

Abstract

Project Number

120C218

References

  • Akarsu, K., Duman, G., Yilmazer, A., Keskin, T., Azbar, N., Yanik, J. (2019). Sustainable valorization of food wastes into solid fuel by hydrothermal carbonization. Bioresource Technology, 292, 121959.
  • Ayrancı, Y. (2007). Muğla ili Dalaman, Ortaca ve Fethiye ilçelerinin sera varlığı ve sera bitkisel atık potansiyelinin belirlenmesi. Selcuk Journal of Agriculture and Food Sciences, 21(41), 36-41.
  • Bilgin, S. (2015). A Research on Briquetting of greenhouse pepper crop residues. Agricultural Engineering International: CIGR Journal. Special issue 2015. 185-192.
  • Blasi, C., Tanzi, V., Lanzetta, M. A. (1997). A study on the production of agricultural residues in Italy. Biomass and Bioenergy, 12(5), 321-331.
  • Celma, A. R., Cuadros, F., López-Rodríguez, F. (2012). Characterization of pellets from industrial tomato residues. Food and Bioproducts Processing, 90(4), 700-706.
  • Dede, Ö. H., Gülgün, D. E. D. E., Cemile, D. E. D. E., Özdemir, S. (2018). Hayvansal atıklardan biyogaz üretimi için küçük ölçekli reaktör modeli geliştirilmesi. Karaelmas Fen ve Mühendislik Dergisi, 8(1), 138-146.
  • Duranay, N. D., Çaycı, N. (2019). Production of solid fuel with torrefaction from agricultural wastes. Res. Eng. Struct. Mater., 5(3), 311. http://dx.doi.org/10.17515/resm2019.85en1227
  • Heya, N. M., Foroughbakhch Pournavab, R., Carrillo Parra, A., Zelinski, V., Salas Cruz, L. R. (2019). Elemental composition and flue gas emissions of different components from five semi-arid woody species in pyrolysed and non-pyrolysed material. Sustainability, 11(5), 1245.
  • Ikeura, H., Sato, K., Miyashita, T., Inakuma, T. (2014). Combustion ash from tomato stem and leaf pellets as a fertilizer. Journal of sustainable development, 7(3), 78.
  • Kraiem, N., Lajili, M., Limousy, L., Said, R., Jeguirim, M. (2016). Energy recovery from Tunisian agri-food wastes: Evaluation of combustion performance and emissions characteristics of green pellets prepared from tomato residues and grape marc. Energy, 107, 409-418. https://doi.org/10.1016/j.energy.2016.04.037
  • Llorach-Massana, P., Lopez-Capel, E., Peña, J., Rieradevall, J., Montero, J. I., Puy, N. (2017). Technical feasibility and carbon footprint of biochar co-production with tomato plant residue. Waste Management, 67, 121-130.
  • Menardo, S., Bauer, A., Theuretzbacher, F., Piringer, G., Nilsen, P. J., Balsari, P., Pavliska, O., Amon, T. (2013). Biogas production from steam-exploded miscanthus and utilization of biogas energy and CO2 in greenhouses. BioEnergy Research, 6(2), 620-630. https://doi.org/10.1007/s12155-012-9280-5
  • Oleszek, M., Tys, J., Wiącek, D., Król, A., Kuna, J. (2016). The possibility of meeting greenhouse energy and CO2 demands through utilisation of cucumber and tomato residues. BioEnergy Research, 9(2), 624-632.
  • Ozdemir S, Er A. Investigation of biofuel characteristics of poultry litter and crop residues. Sakarya Univ J Science. 2018; 22(2): 489- 494.
  • Ozdemir, S., Demir, M. S. (2021). Biofuel characteristics and combustion emissions of poultry litter and lignocellulosic biomass. Environmental Progress & Sustainable Energy, 40(3), e13555.
  • Ozdemir, S., Şimşek, A., Ozdemir, S., Dede, C. (2022). Investigation of poultry slaughterhouse waste stream to produce bio-fuel for internal utilization. Renewable Energy, 190, 274-282.
  • Unal, H. Alibas, K. (2007). Agricultural residues as biomass energy. Energy Sources, Part B, 2(2), 123-140. https://doi.org/10.1080/15567240600629401
  • Yılmaz, H., Çanakcı, M., Topakcı, M., Karayel, D. (2021). The effect of raw material moisture and particle size on agri-pellet production parameters and physical properties: A case study for greenhouse melon residues. Biomass and Bioenergy, 150, 106125.
There are 18 citations in total.

Details

Primary Language English
Subjects Environmental Engineering, Environmentally Sustainable Engineering
Journal Section Research Articles
Authors

Burak Şen 0000-0003-2454-9287

Project Number 120C218
Publication Date September 30, 2022
Submission Date June 9, 2022
Acceptance Date August 10, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Şen, B. (2022). Investigation of the potential of greenhouse post-harvest wastes for bioenergy production and utilization for heating and carbon dioxide application. Environmental Research and Technology, 5(3), 272-277. https://doi.org/10.35208/ert.1128457
AMA Şen B. Investigation of the potential of greenhouse post-harvest wastes for bioenergy production and utilization for heating and carbon dioxide application. ERT. September 2022;5(3):272-277. doi:10.35208/ert.1128457
Chicago Şen, Burak. “Investigation of the Potential of Greenhouse Post-Harvest Wastes for Bioenergy Production and Utilization for Heating and Carbon Dioxide Application”. Environmental Research and Technology 5, no. 3 (September 2022): 272-77. https://doi.org/10.35208/ert.1128457.
EndNote Şen B (September 1, 2022) Investigation of the potential of greenhouse post-harvest wastes for bioenergy production and utilization for heating and carbon dioxide application. Environmental Research and Technology 5 3 272–277.
IEEE B. Şen, “Investigation of the potential of greenhouse post-harvest wastes for bioenergy production and utilization for heating and carbon dioxide application”, ERT, vol. 5, no. 3, pp. 272–277, 2022, doi: 10.35208/ert.1128457.
ISNAD Şen, Burak. “Investigation of the Potential of Greenhouse Post-Harvest Wastes for Bioenergy Production and Utilization for Heating and Carbon Dioxide Application”. Environmental Research and Technology 5/3 (September 2022), 272-277. https://doi.org/10.35208/ert.1128457.
JAMA Şen B. Investigation of the potential of greenhouse post-harvest wastes for bioenergy production and utilization for heating and carbon dioxide application. ERT. 2022;5:272–277.
MLA Şen, Burak. “Investigation of the Potential of Greenhouse Post-Harvest Wastes for Bioenergy Production and Utilization for Heating and Carbon Dioxide Application”. Environmental Research and Technology, vol. 5, no. 3, 2022, pp. 272-7, doi:10.35208/ert.1128457.
Vancouver Şen B. Investigation of the potential of greenhouse post-harvest wastes for bioenergy production and utilization for heating and carbon dioxide application. ERT. 2022;5(3):272-7.