Research Article
BibTex RIS Cite

EXPLORING THE POTENTIAL OF SLAG WASTE GENERATED AFTER ZINC METAL RECOVERY IN GEOPOLYMER MORTAR PRODUCTION

Year 2024, , 308 - 319, 28.06.2024
https://doi.org/10.18038/estubtda.1482349

Abstract

During the purification of zinc metal, the slag waste generated causes various problems such as environmental pollution and storage. It is necessary to evaluate these wastes in different areas for effective management. In this study, the effect of slag from zinc production facilities on the mechanical properties of mortars obtained by substituting slag for fly ash in geopolymers at a replacement rate of 10-50% by weight was evaluated. Mortar mixtures were subjected to various tests including workability, flexural strength, compressive strength, water-absorption, and void ratio. Mortar mixtures containing NaOH with a liquid/binder ratio 0.40 were subjected to thermal curing at 90°C for 24 hours. Flexural and compressive strength tests were conducted on 7 and 28 days of samples. As a result of the tests, it was determined that the flexural strengths of mortars produced with slag ranged from 3.0 MPa to 5.8 MPa after 28 days, while the compressive strengths ranged from 28.2 MPa to 45 MPa. Mortar mixtures containing slag achieved 48-136% higher compressive strength values than the control mixture containing fly ash (19MPa). High-temperature tests (400, 600, 800°C) revealed that mortar mixtures containing up to 30% slag achieved higher flexural and compressive strengths than the control. As the amount of slag in the mortar increased, water absorption and void ratios also increased. These results indicate that slag waste can enhance the mechanical performance of geopolymers.

References

  • [1] Sun Q, Zhu H, Li H, Zhu H, Gao M. Application of response surface methodology in the optimization of fly ash geopolymer concrete, Romanian J Mater. 2018; 48; 45-52.
  • [2] Atabey İİ, Bayer Ozturk Z. Investigation of usability of ceramic sanitaryware wastes in geopolymer mortar production, Int. J. Engineering Res. Develop, 2021; 13; 212-219.
  • [3] Robayo-Salazar RA, de Gutiérrez, RM. Natural Volcanic Pozzolans as an Available Raw Material for Alkali-activated Materials in the Foreseeable Future: A Review, Constr. Build. Mater. 2018; 189, 109–118.
  • [4] Kaplan G, Gültekin AB. Yapı Sektöründe Uçucu Kül Kullanımının Çevresel ve Toplumsal Etkiler Açısından İncelenmesi, International Sustainable Building Symposium, 2010; 1-8, Ankara.
  • [5] Eser A, Bayer Ozturk Z, Atabey İİ, Çelikten S. Mechanical properties of geopolymer mortars produced with fly ash and various ceramic industry wastes, Nigde Omer Halisdemir University J Engineering Sci. 2024; 13; 550-557.
  • [6] Web site-1: https://www.dw.com/tr/avrupak%C3%B6m%C3%B% C3%BC-santralleri-kapat%C4%B1yor
  • [7] Mudgal M, Singh A, Chouhan RK, Acharya A, Srivastava AK. Fly ash red mud geopolymer with improved mechanical strength, Clean. Engineering Tech, 2021; 4; 100215.
  • [8] Kulkarni S. Experimental Study on Red Mud, Fly Ash, GGBFS Based Geopolymer Concrete. International J Engineering Res. Tech, 2018; 7; 107- 111.
  • [9] Amin SK, El-Sherbiny SA, El-Magd AAMA, Belal A, Abadir MF. Fabrication of geopolymer bricks using ceramic dust waste. Construction and Building Materials, 2017;157; 610–620.
  • [10] Bayer Ozturk Z., Cırık R., Atabey II. Sustainable environment approach by the usage of ceramic pottery waste in geopolymer mortar. Inter. J Envi. Sci. Tech, 2023; 20; 7577-7588.
  • [11] Rashad AM, Essa GMF. Effect of ceramic waste powder on alkali-activated slag pastes cured in hot weather after exposure to elevated temperature. Cement and Concrete Composites, 2020; 111; 103617.
  • [12] Bayer Ozturk Z, Çam T. Performance of eco-friendly fly ash-based geopolymer mortars with stone-cutting waste, Materials Chemistry and Physics, 2023; 307; 128112.
  • [13] Mehta A, Siddique R. An overview of geopolymers derived from industrial by-products, Const. Build. Mater. 2016; 127; 183–198.
  • [14] Aydın T, Pehlivanlı ZO. Jeopolimer esaslı gözenekli hafif yapı malzemelerinin geliştirilmesi, Dicle University J Engineering. 2017; 8; 227-236.
  • [15] Web sitesi-2: http://cinkom.com/enindex.html
  • [16] Bayer Ozturk Z, Bağıran MN, Sağlar B, Arslan L, Aycan Ş. Agrega Olarak Çinko Madeni Cürufu Kullanımının Beton Basınç Dayanımına Etkisi. J Int. Engineering Res. Develop. 2018; 10; 144-152.
  • [17] Alwaeli, M. Investigation of gamma radiation shielding and compressive strength properties of concrete containing scale and granulated lead-zinc slag wastes. J. Clean. Prod. 2017; 156; 157–162.
  • [18] Alwaeli, M. Application of granulated lead–zinc slag in concrete as an opportunity to save natural resources. Radiat. Phy. Chem, 2013;83; 54–60.
  • [19] Bayer Ozturk Z, Pekkan K, Taşcı E, Yılmaz S. The effect of granulated lead–zinc slag on aesthetic and microstructural properties of single-fired wall tile glazes, J. Australian Ceram.Soc. 2020; 56; 609-617.
  • [20] Zhang Q, Cao X, Sun S, Yang W, Fang L, Ma R, Lin C, Li H. Lead zinc slag-based geopolymer: Demonstration of heavy metal solidification mechanism from the new perspectives of electronegativity and ion potential. Environmental Pollution 2022; 293; 118509
  • [21] Zhao S, Xia M, Yu L, Huang X, Jiao B, Li D. Optimization for the preparation of composite geopolymer usingresponse surface methodology and its application in lead-zinc tailings solidification. Construct. Build. Mater. 2021; 266; 120969.
  • [22] TS EN 1097-6, Agregaların mekanik ve fiziksel özellikleri için deneyler - Bölüm 6: Tane yoğunluğunun ve su emme oranının tayini, Türk Standartları Enstitüsü, Ankara, 2013.
  • [23] TS EN 1008, Beton-Karma suyu-Numune alma, deneyler ve beton endüstrisindeki işlemlerden geri kazanılan su dahil, suyun, beton karma suyu olarak uygunluğunun tayini kuralları, Türk Standartları Enstitüsü, Ankara, 2003.
  • [24] TS EN 196-1, Çimento Deney Metotları – Bölüm 1: Dayanım Tayini, Türk Standartları Enstitüsü, 2009.
  • [25] TS EN 1015-3/A1, Kâgir harcı- Deney metotları- Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile), Türk Standartları Enstitüsü, Ankara, 2006.
  • [26] TS EN 1015-11/A1, Kâgir Harcı-Deney Metotları-Bölüm 11: Sertleşmiş Harcın Basınç ve Eğilme Dayanımının Tayini, Türk Standartları Enstitüsü, Ankara, 2013.
  • [27] Shilar FA, Gnachari SV, Patil VB, Nisar KS, Abdel-Aty AH, Yahia IS. Evaluation of the effect of granite waste powder by varying the molarity of activator on the mechanical properties of ground granulated blast-furnace slag-based geopolymer concrete, Polymers, 2022; 14; 306.
  • [28] Liew YM, Heah CY, Li L, Jaya NA, Abdullah MMAB, Tan SJ, Hussin K. Formation of one-part-mixing geopolymers and geopolymer ceramics from geopolymer powder, Construct. Build. Mater. 2017; 156, 9-18.
  • [29] Qian J, Song M, Scrivener K, Favier A. (Eds.) Study on Influence of Limestone Powder on the Fresh and Hardened Properties of Early Age Metakaolin Based Geopolymer, Calcined Clays for Sustainable Concrete, Springer, 2015; pp. 253-259.
  • [30] Bernal SA, Rodriguez ED, Gutierrez M, Gordillo M, Provis JL. Mechanical and thermal characterization of geopolymers based on silicate-activated metakolin/slag blends. J. Mater. Sci. 2011; 46, 5477-5486.
  • [31] Yip CK, Provis JL, Lukey GC, Deventer JSJ. Carbonate mineral addition to metakalin-based geopolymers, Cement Concr. Compos., 2008; 30; 979-985.
  • [32] Peyne J, Gautron J, Doudeau J, Joussein E, Rossignol S. Influence of calcium addition on calcined brick clay based geopolymers: a thermal and ftir spectroscopy study, Construct. Build. Mater. 2017; 152; 794-803.
  • [33] Çelikten S. Mechanical and microstructural properties of waste andesite dust-based geopolymer mortars, Adv. Powder Technol., 2021; 32, 1-9.
  • [34] Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, Deventer JSJ. Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids Surfaces A Physicochem. Eng. Asp., 2005; 269; 47-58.
  • [35] Ozer I, Soyer-Uzun S. Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios, Ceram. Int.,2015; 41; 10192-10198.
  • [36] Lahoti M, Yang EH, Tan KH. Influence of mix design parameters on geopolymer mechanical properties and microstructure, Ceram. Eng. Sci. Proc. 2017; 37; 21-33.

EXPLORING THE POTENTIAL OF SLAG WASTE GENERATED AFTER ZINC METAL RECOVERY IN GEOPOLYMER MORTAR PRODUCTION

Year 2024, , 308 - 319, 28.06.2024
https://doi.org/10.18038/estubtda.1482349

Abstract

During the purification of zinc metal, the slag waste generated causes various problems such as environmental pollution and storage. It is necessary to evaluate these wastes in different areas for effective management. In this study, the effect of slag from zinc production facilities on the mechanical properties of mortars obtained by substituting slag for fly ash in geopolymers at a replacement rate of 10-50% by weight was evaluated. Mortar mixtures were subjected to various tests including workability, flexural strength, compressive strength, water-absorption, and void ratio. Mortar mixtures containing NaOH with a liquid/binder ratio 0.40 were subjected to thermal curing at 90°C for 24 hours. Flexural and compressive strength tests were conducted on 7 and 28 days of samples. As a result of the tests, it was determined that the flexural strengths of mortars produced with slag ranged from 3.0 MPa to 5.8 MPa after 28 days, while the compressive strengths ranged from 28.2 MPa to 45 MPa. Mortar mixtures containing slag achieved 48-136% higher compressive strength values than the control mixture containing fly ash (19MPa). High-temperature tests (400, 600, 800°C) revealed that mortar mixtures containing up to 30% slag achieved higher flexural and compressive strengths than the control. As the amount of slag in the mortar increased, water absorption and void ratios also increased. These results indicate that slag waste can enhance the mechanical performance of geopolymers.

Thanks

The authors would like to thank Cinkur Factory (Kayseri/Turkey) for their support with waste materials.

References

  • [1] Sun Q, Zhu H, Li H, Zhu H, Gao M. Application of response surface methodology in the optimization of fly ash geopolymer concrete, Romanian J Mater. 2018; 48; 45-52.
  • [2] Atabey İİ, Bayer Ozturk Z. Investigation of usability of ceramic sanitaryware wastes in geopolymer mortar production, Int. J. Engineering Res. Develop, 2021; 13; 212-219.
  • [3] Robayo-Salazar RA, de Gutiérrez, RM. Natural Volcanic Pozzolans as an Available Raw Material for Alkali-activated Materials in the Foreseeable Future: A Review, Constr. Build. Mater. 2018; 189, 109–118.
  • [4] Kaplan G, Gültekin AB. Yapı Sektöründe Uçucu Kül Kullanımının Çevresel ve Toplumsal Etkiler Açısından İncelenmesi, International Sustainable Building Symposium, 2010; 1-8, Ankara.
  • [5] Eser A, Bayer Ozturk Z, Atabey İİ, Çelikten S. Mechanical properties of geopolymer mortars produced with fly ash and various ceramic industry wastes, Nigde Omer Halisdemir University J Engineering Sci. 2024; 13; 550-557.
  • [6] Web site-1: https://www.dw.com/tr/avrupak%C3%B6m%C3%B% C3%BC-santralleri-kapat%C4%B1yor
  • [7] Mudgal M, Singh A, Chouhan RK, Acharya A, Srivastava AK. Fly ash red mud geopolymer with improved mechanical strength, Clean. Engineering Tech, 2021; 4; 100215.
  • [8] Kulkarni S. Experimental Study on Red Mud, Fly Ash, GGBFS Based Geopolymer Concrete. International J Engineering Res. Tech, 2018; 7; 107- 111.
  • [9] Amin SK, El-Sherbiny SA, El-Magd AAMA, Belal A, Abadir MF. Fabrication of geopolymer bricks using ceramic dust waste. Construction and Building Materials, 2017;157; 610–620.
  • [10] Bayer Ozturk Z., Cırık R., Atabey II. Sustainable environment approach by the usage of ceramic pottery waste in geopolymer mortar. Inter. J Envi. Sci. Tech, 2023; 20; 7577-7588.
  • [11] Rashad AM, Essa GMF. Effect of ceramic waste powder on alkali-activated slag pastes cured in hot weather after exposure to elevated temperature. Cement and Concrete Composites, 2020; 111; 103617.
  • [12] Bayer Ozturk Z, Çam T. Performance of eco-friendly fly ash-based geopolymer mortars with stone-cutting waste, Materials Chemistry and Physics, 2023; 307; 128112.
  • [13] Mehta A, Siddique R. An overview of geopolymers derived from industrial by-products, Const. Build. Mater. 2016; 127; 183–198.
  • [14] Aydın T, Pehlivanlı ZO. Jeopolimer esaslı gözenekli hafif yapı malzemelerinin geliştirilmesi, Dicle University J Engineering. 2017; 8; 227-236.
  • [15] Web sitesi-2: http://cinkom.com/enindex.html
  • [16] Bayer Ozturk Z, Bağıran MN, Sağlar B, Arslan L, Aycan Ş. Agrega Olarak Çinko Madeni Cürufu Kullanımının Beton Basınç Dayanımına Etkisi. J Int. Engineering Res. Develop. 2018; 10; 144-152.
  • [17] Alwaeli, M. Investigation of gamma radiation shielding and compressive strength properties of concrete containing scale and granulated lead-zinc slag wastes. J. Clean. Prod. 2017; 156; 157–162.
  • [18] Alwaeli, M. Application of granulated lead–zinc slag in concrete as an opportunity to save natural resources. Radiat. Phy. Chem, 2013;83; 54–60.
  • [19] Bayer Ozturk Z, Pekkan K, Taşcı E, Yılmaz S. The effect of granulated lead–zinc slag on aesthetic and microstructural properties of single-fired wall tile glazes, J. Australian Ceram.Soc. 2020; 56; 609-617.
  • [20] Zhang Q, Cao X, Sun S, Yang W, Fang L, Ma R, Lin C, Li H. Lead zinc slag-based geopolymer: Demonstration of heavy metal solidification mechanism from the new perspectives of electronegativity and ion potential. Environmental Pollution 2022; 293; 118509
  • [21] Zhao S, Xia M, Yu L, Huang X, Jiao B, Li D. Optimization for the preparation of composite geopolymer usingresponse surface methodology and its application in lead-zinc tailings solidification. Construct. Build. Mater. 2021; 266; 120969.
  • [22] TS EN 1097-6, Agregaların mekanik ve fiziksel özellikleri için deneyler - Bölüm 6: Tane yoğunluğunun ve su emme oranının tayini, Türk Standartları Enstitüsü, Ankara, 2013.
  • [23] TS EN 1008, Beton-Karma suyu-Numune alma, deneyler ve beton endüstrisindeki işlemlerden geri kazanılan su dahil, suyun, beton karma suyu olarak uygunluğunun tayini kuralları, Türk Standartları Enstitüsü, Ankara, 2003.
  • [24] TS EN 196-1, Çimento Deney Metotları – Bölüm 1: Dayanım Tayini, Türk Standartları Enstitüsü, 2009.
  • [25] TS EN 1015-3/A1, Kâgir harcı- Deney metotları- Bölüm 3: Taze harç kıvamının tayini (yayılma tablası ile), Türk Standartları Enstitüsü, Ankara, 2006.
  • [26] TS EN 1015-11/A1, Kâgir Harcı-Deney Metotları-Bölüm 11: Sertleşmiş Harcın Basınç ve Eğilme Dayanımının Tayini, Türk Standartları Enstitüsü, Ankara, 2013.
  • [27] Shilar FA, Gnachari SV, Patil VB, Nisar KS, Abdel-Aty AH, Yahia IS. Evaluation of the effect of granite waste powder by varying the molarity of activator on the mechanical properties of ground granulated blast-furnace slag-based geopolymer concrete, Polymers, 2022; 14; 306.
  • [28] Liew YM, Heah CY, Li L, Jaya NA, Abdullah MMAB, Tan SJ, Hussin K. Formation of one-part-mixing geopolymers and geopolymer ceramics from geopolymer powder, Construct. Build. Mater. 2017; 156, 9-18.
  • [29] Qian J, Song M, Scrivener K, Favier A. (Eds.) Study on Influence of Limestone Powder on the Fresh and Hardened Properties of Early Age Metakaolin Based Geopolymer, Calcined Clays for Sustainable Concrete, Springer, 2015; pp. 253-259.
  • [30] Bernal SA, Rodriguez ED, Gutierrez M, Gordillo M, Provis JL. Mechanical and thermal characterization of geopolymers based on silicate-activated metakolin/slag blends. J. Mater. Sci. 2011; 46, 5477-5486.
  • [31] Yip CK, Provis JL, Lukey GC, Deventer JSJ. Carbonate mineral addition to metakalin-based geopolymers, Cement Concr. Compos., 2008; 30; 979-985.
  • [32] Peyne J, Gautron J, Doudeau J, Joussein E, Rossignol S. Influence of calcium addition on calcined brick clay based geopolymers: a thermal and ftir spectroscopy study, Construct. Build. Mater. 2017; 152; 794-803.
  • [33] Çelikten S. Mechanical and microstructural properties of waste andesite dust-based geopolymer mortars, Adv. Powder Technol., 2021; 32, 1-9.
  • [34] Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, Deventer JSJ. Understanding the relationship between geopolymer composition, microstructure and mechanical properties, Colloids Surfaces A Physicochem. Eng. Asp., 2005; 269; 47-58.
  • [35] Ozer I, Soyer-Uzun S. Relations between the structural characteristics and compressive strength in metakaolin based geopolymers with different molar Si/Al ratios, Ceram. Int.,2015; 41; 10192-10198.
  • [36] Lahoti M, Yang EH, Tan KH. Influence of mix design parameters on geopolymer mechanical properties and microstructure, Ceram. Eng. Sci. Proc. 2017; 37; 21-33.
There are 36 citations in total.

Details

Primary Language English
Subjects Cement Technology
Journal Section Articles
Authors

Zahide Bayer Oztürk 0000-0001-8069-0694

Mehmet Engür 0000-0002-9606-0125

Publication Date June 28, 2024
Submission Date May 11, 2024
Acceptance Date June 24, 2024
Published in Issue Year 2024

Cite

AMA Bayer Oztürk Z, Engür M. EXPLORING THE POTENTIAL OF SLAG WASTE GENERATED AFTER ZINC METAL RECOVERY IN GEOPOLYMER MORTAR PRODUCTION. Estuscience - Se. June 2024;25(2):308-319. doi:10.18038/estubtda.1482349