Research Article
BibTex RIS Cite

TEMPERATURE DEPENDENT (83-483 K) RAMAN SPECTROSCOPY ANALYSIS OF CVD GROWN WS2 MONOLAYERS

Year 2020, , 155 - 164, 31.03.2020
https://doi.org/10.18038/estubtda.675907

Abstract

For novel materials to be used in practical applications, their temperature dependent behavior and limitations need to be understood thoroughly. For example, the mobility of charge carriers, one of the important performance parameters in transistors, strongly depend on the change in the ambient temperature. Hence, characterization of potential optoelectronic materials at extreme temperatures is critical for future applications. In this study, we report on the changes of Raman scattering spectra as the temperature is changed from 83 K to 483 K for the 2D transition metal dichalcogenide materials, namely WS2 monolayers formed by chemical vapor deposition technique (CVD). Our results show that both E′ (E12g) and A1(A1g) modes red shift linearly as the temperature increases. The first order thermal coefficients have been calculated with the Grüneisen model, which suggests that in-plane mode is affected more by the increased temperature than that of out of plane mode. This difference is attributed to the defects in the sample as the flakes are grown by the CVD method. We also investigated the temperature dependence of the second order, 2LA(M) (at 345.7 cm-1) which is one of the most intense peaks in the spectra.

Supporting Institution

Eskişehir Teknik Üniversitesi, TÜBİTAK

Project Number

BAP 19ADP050, BAP 19ADP052, TUBITAK Project No: 116F445

Thanks

This work was supported by Eskişehir Technical University Research Project Numbers: BAP 19ADP050, BAP 19ADP052 and TUBITAK Project No: 116F445.

References

  • [1] Bolotin, K.I., K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355.
  • [2] Balandin, A.A., S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano letters, 2008. 8(3): p. 902-907.
  • [3] Bunch, J.S., A.M. Van Der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, and P.L. McEuen, Electromechanical resonators from graphene sheets. Science, 2007. 315(5811): p. 490-493.
  • [4] Reddy, D., L.F. Register, G.D. Carpenter, and S.K. Banerjee, Graphene field-effect transistors. Journal of Physics D: Applied Physics, 2011. 44(31): p. 313001.
  • [5] Palacios, T., A. Hsu, and H. Wang, Applications of graphene devices in RF communications. IEEE Communications Magazine, 2010. 48(6): p. 122-128.
  • [6] Bosi, M., Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Advances, 2015. 5(92): p. 75500-75518.
  • [7] Wang, Q.H., K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 2012. 7(11): p. 699.
  • [8] Choi, W., N. Choudhary, G.H. Han, J. Park, D. Akinwande, and Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116-130.
  • [9] Voiry, D., A. Mohite, and M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chemical Society Reviews, 2015. 44(9): p. 2702-2712.
  • [10] Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-425.
  • [11] Eda, G., H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Photoluminescence from Chemically Exfoliated MoS2. Nano Letters, 2011. 11(12): p. 5111-5116.
  • [12] Mak, K.F., C. Lee, J. Hone, J. Shan, and T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Physical review letters, 2010. 105(13): p. 136805.
  • [13] Amin, B., T.P. Kaloni, and U. Schwingenschlögl, Strain engineering of WS 2, WSe 2, and WTe 2. Rsc Advances, 2014. 4(65): p. 34561-34565.
  • [14] Zhang, Y., T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, and Y. Chen, Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe 2. Nature nanotechnology, 2014. 9(2): p. 111.
  • [15] Elías, A.L., N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A.D. Long, T. Hayashi, Y.A. Kim, M. Endo, et al., Controlled Synthesis and Transfer of Large-Area WS2 Sheets: From Single Layer to Few Layers. ACS Nano, 2013. 7(6): p. 5235-5242.
  • [16] Lee, Y.-H., L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.-T. Chang, C.-S. Chang, et al., Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. Nano Letters, 2013. 13(4): p. 1852-1857.
  • [17] Ovchinnikov, D., A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, Electrical transport properties of single-layer WS2. ACS nano, 2014. 8(8): p. 8174-8181.
  • [18] Jo, S., N. Ubrig, H. Berger, A.B. Kuzmenko, and A.F. Morpurgo, Mono-and bilayer WS2 light-emitting transistors. Nano letters, 2014. 14(4): p. 2019-2025.
  • [19] McCreary, K.M., A.T. Hanbicki, S. Singh, R.K. Kawakami, G.G. Jernigan, M. Ishigami, A. Ng, T.H. Brintlinger, R.M. Stroud, and B.T. Jonker, The effect of preparation conditions on Raman and photoluminescence of monolayer WS 2. Scientific reports, 2016. 6: p. 35154.
  • [20] Iqbal, M.W., M.Z. Iqbal, M.F. Khan, M.A. Shehzad, Y. Seo, J.H. Park, C. Hwang, and J. Eom, High-mobility and air-stable single-layer WS 2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Scientific reports, 2015. 5: p. 10699.
  • [21] Late, D.J., B. Liu, H.S.S.R. Matte, V.P. Dravid, and C.N.R. Rao, Hysteresis in Single-Layer MoS2 Field Effect Transistors. ACS Nano, 2012. 6(6): p. 5635-5641.
  • [22] Sahoo, S., A.P. Gaur, M. Ahmadi, M.J.-F. Guinel, and R.S. Katiyar, Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. The Journal of Physical Chemistry C, 2013. 117(17): p. 9042-9047.
  • [23] Şar, H., A. Özden, B. Yorulmaz, C. Sevik, N.K. Perkgoz, and F. Ay, A comparative device performance assesment of CVD grown MoS 2 and WS 2 monolayers. Journal of Materials Science: Materials in Electronics, 2018. 29(10): p. 8785-8792.
  • [24] Gutiérrez, H.R., N. Perea-López, A.L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V.H. Crespi, H. Terrones, and M. Terrones, Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano letters, 2012. 13(8): p. 3447-3454.
  • [25] Thripuranthaka, M., R.V. Kashid, C. Sekhar Rout, and D.J. Late, Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets. Applied Physics Letters, 2014. 104(8): p. 081911.
  • [26] Su, L., Y. Yu, L. Cao, and Y. Zhang, Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS 2. Nano Research, 2015. 8(8): p. 2686-2697.
  • [27] Late, D., Temperature dependent phonon shifts in single-layer WS (2). ACS applied materials & interfaces, 2014. 6(2): p. 1158-1163.
  • [28] Yorulmaz, B., A. Özden, H. Şar, F. Ay, C. Sevik, and N.K. Perkgöz, CVD growth of monolayer WS2 through controlled seed formation and vapor density. Materials Science in Semiconductor Processing, 2019. 93: p. 158-163.
  • [29] Zhang, X., Q.-H. Tan, J.-B. Wu, W. Shi, and P.-H. Tan, Review on the Raman spectroscopy of different types of layered materials. Nanoscale, 2016. 8(12): p. 6435-6450.
  • [30] Shi, W., M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, and P.-H. Tan, Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2. 2D Materials, 2016. 3(2): p. 025016.
  • [31] Sourisseau, C., F. Cruege, M. Fouassier, and M. Alba, Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2. Chemical physics, 1991. 150(2): p. 281-293.
  • [32] Berkdemir, A., H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C.-I. Chia, B. Wang, V.H. Crespi, F. López-Urías, and J.-C. Charlier, Identification of individual and few layers of WS 2 using Raman spectroscopy. Scientific reports, 2013. 3: p. 1755.
  • [33] Bradley, M.S., Lineshapes in IR and Raman spectroscopy: A primer. Spectroscopy, 2015. 30(11): p. 42-+.
  • [34] Stacey, F.D. and J.H. Hodgkinson, Thermodynamics with the Grüneisen parameter: Fundamentals and applications to high pressure physics and geophysics. Physics of the Earth and Planetary Interiors, 2019. 286: p. 42-68.
  • [35] Gurioli, M., A. Vinattieri, M. Colocci, C. Deparis, J. Massies, G. Neu, A. Bosacchi, and S. Franchi, Temperature dependence of the radiative and nonradiative recombination time in GaAs/Al x Ga 1− x As quantum-well structures. Physical Review B, 1991. 44(7): p. 3115.
  • [36] Yang, M., X. Cheng, Y. Li, Y. Ren, M. Liu, and Z. Qi, Anharmonicity of monolayer MoS2, MoSe2, and WSe2: A Raman study under high pressure and elevated temperature. Applied Physics Letters, 2017. 110(9): p. 093108.
  • [37] Streetman, B.G. and S. Banerjee, Solid State Electronic Devices. 2001: Prentice-Hall of India.

TEMPERATURE DEPENDENT (83-483 K) RAMAN SPECTROSCOPY ANALYSIS OF CVD GROWN WS2 MONOLAYERS

Year 2020, , 155 - 164, 31.03.2020
https://doi.org/10.18038/estubtda.675907

Abstract

Project Number

BAP 19ADP050, BAP 19ADP052, TUBITAK Project No: 116F445

References

  • [1] Bolotin, K.I., K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355.
  • [2] Balandin, A.A., S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano letters, 2008. 8(3): p. 902-907.
  • [3] Bunch, J.S., A.M. Van Der Zande, S.S. Verbridge, I.W. Frank, D.M. Tanenbaum, J.M. Parpia, H.G. Craighead, and P.L. McEuen, Electromechanical resonators from graphene sheets. Science, 2007. 315(5811): p. 490-493.
  • [4] Reddy, D., L.F. Register, G.D. Carpenter, and S.K. Banerjee, Graphene field-effect transistors. Journal of Physics D: Applied Physics, 2011. 44(31): p. 313001.
  • [5] Palacios, T., A. Hsu, and H. Wang, Applications of graphene devices in RF communications. IEEE Communications Magazine, 2010. 48(6): p. 122-128.
  • [6] Bosi, M., Growth and synthesis of mono and few-layers transition metal dichalcogenides by vapour techniques: a review. RSC Advances, 2015. 5(92): p. 75500-75518.
  • [7] Wang, Q.H., K. Kalantar-Zadeh, A. Kis, J.N. Coleman, and M.S. Strano, Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature nanotechnology, 2012. 7(11): p. 699.
  • [8] Choi, W., N. Choudhary, G.H. Han, J. Park, D. Akinwande, and Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Materials Today, 2017. 20(3): p. 116-130.
  • [9] Voiry, D., A. Mohite, and M. Chhowalla, Phase engineering of transition metal dichalcogenides. Chemical Society Reviews, 2015. 44(9): p. 2702-2712.
  • [10] Geim, A.K. and I.V. Grigorieva, Van der Waals heterostructures. Nature, 2013. 499(7459): p. 419-425.
  • [11] Eda, G., H. Yamaguchi, D. Voiry, T. Fujita, M. Chen, and M. Chhowalla, Photoluminescence from Chemically Exfoliated MoS2. Nano Letters, 2011. 11(12): p. 5111-5116.
  • [12] Mak, K.F., C. Lee, J. Hone, J. Shan, and T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Physical review letters, 2010. 105(13): p. 136805.
  • [13] Amin, B., T.P. Kaloni, and U. Schwingenschlögl, Strain engineering of WS 2, WSe 2, and WTe 2. Rsc Advances, 2014. 4(65): p. 34561-34565.
  • [14] Zhang, Y., T.-R. Chang, B. Zhou, Y.-T. Cui, H. Yan, Z. Liu, F. Schmitt, J. Lee, R. Moore, and Y. Chen, Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe 2. Nature nanotechnology, 2014. 9(2): p. 111.
  • [15] Elías, A.L., N. Perea-López, A. Castro-Beltrán, A. Berkdemir, R. Lv, S. Feng, A.D. Long, T. Hayashi, Y.A. Kim, M. Endo, et al., Controlled Synthesis and Transfer of Large-Area WS2 Sheets: From Single Layer to Few Layers. ACS Nano, 2013. 7(6): p. 5235-5242.
  • [16] Lee, Y.-H., L. Yu, H. Wang, W. Fang, X. Ling, Y. Shi, C.-T. Lin, J.-K. Huang, M.-T. Chang, C.-S. Chang, et al., Synthesis and Transfer of Single-Layer Transition Metal Disulfides on Diverse Surfaces. Nano Letters, 2013. 13(4): p. 1852-1857.
  • [17] Ovchinnikov, D., A. Allain, Y.-S. Huang, D. Dumcenco, and A. Kis, Electrical transport properties of single-layer WS2. ACS nano, 2014. 8(8): p. 8174-8181.
  • [18] Jo, S., N. Ubrig, H. Berger, A.B. Kuzmenko, and A.F. Morpurgo, Mono-and bilayer WS2 light-emitting transistors. Nano letters, 2014. 14(4): p. 2019-2025.
  • [19] McCreary, K.M., A.T. Hanbicki, S. Singh, R.K. Kawakami, G.G. Jernigan, M. Ishigami, A. Ng, T.H. Brintlinger, R.M. Stroud, and B.T. Jonker, The effect of preparation conditions on Raman and photoluminescence of monolayer WS 2. Scientific reports, 2016. 6: p. 35154.
  • [20] Iqbal, M.W., M.Z. Iqbal, M.F. Khan, M.A. Shehzad, Y. Seo, J.H. Park, C. Hwang, and J. Eom, High-mobility and air-stable single-layer WS 2 field-effect transistors sandwiched between chemical vapor deposition-grown hexagonal BN films. Scientific reports, 2015. 5: p. 10699.
  • [21] Late, D.J., B. Liu, H.S.S.R. Matte, V.P. Dravid, and C.N.R. Rao, Hysteresis in Single-Layer MoS2 Field Effect Transistors. ACS Nano, 2012. 6(6): p. 5635-5641.
  • [22] Sahoo, S., A.P. Gaur, M. Ahmadi, M.J.-F. Guinel, and R.S. Katiyar, Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. The Journal of Physical Chemistry C, 2013. 117(17): p. 9042-9047.
  • [23] Şar, H., A. Özden, B. Yorulmaz, C. Sevik, N.K. Perkgoz, and F. Ay, A comparative device performance assesment of CVD grown MoS 2 and WS 2 monolayers. Journal of Materials Science: Materials in Electronics, 2018. 29(10): p. 8785-8792.
  • [24] Gutiérrez, H.R., N. Perea-López, A.L. Elías, A. Berkdemir, B. Wang, R. Lv, F. López-Urías, V.H. Crespi, H. Terrones, and M. Terrones, Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano letters, 2012. 13(8): p. 3447-3454.
  • [25] Thripuranthaka, M., R.V. Kashid, C. Sekhar Rout, and D.J. Late, Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets. Applied Physics Letters, 2014. 104(8): p. 081911.
  • [26] Su, L., Y. Yu, L. Cao, and Y. Zhang, Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS 2. Nano Research, 2015. 8(8): p. 2686-2697.
  • [27] Late, D., Temperature dependent phonon shifts in single-layer WS (2). ACS applied materials & interfaces, 2014. 6(2): p. 1158-1163.
  • [28] Yorulmaz, B., A. Özden, H. Şar, F. Ay, C. Sevik, and N.K. Perkgöz, CVD growth of monolayer WS2 through controlled seed formation and vapor density. Materials Science in Semiconductor Processing, 2019. 93: p. 158-163.
  • [29] Zhang, X., Q.-H. Tan, J.-B. Wu, W. Shi, and P.-H. Tan, Review on the Raman spectroscopy of different types of layered materials. Nanoscale, 2016. 8(12): p. 6435-6450.
  • [30] Shi, W., M.-L. Lin, Q.-H. Tan, X.-F. Qiao, J. Zhang, and P.-H. Tan, Raman and photoluminescence spectra of two-dimensional nanocrystallites of monolayer WS2 and WSe2. 2D Materials, 2016. 3(2): p. 025016.
  • [31] Sourisseau, C., F. Cruege, M. Fouassier, and M. Alba, Second-order Raman effects, inelastic neutron scattering and lattice dynamics in 2H-WS2. Chemical physics, 1991. 150(2): p. 281-293.
  • [32] Berkdemir, A., H.R. Gutiérrez, A.R. Botello-Méndez, N. Perea-López, A.L. Elías, C.-I. Chia, B. Wang, V.H. Crespi, F. López-Urías, and J.-C. Charlier, Identification of individual and few layers of WS 2 using Raman spectroscopy. Scientific reports, 2013. 3: p. 1755.
  • [33] Bradley, M.S., Lineshapes in IR and Raman spectroscopy: A primer. Spectroscopy, 2015. 30(11): p. 42-+.
  • [34] Stacey, F.D. and J.H. Hodgkinson, Thermodynamics with the Grüneisen parameter: Fundamentals and applications to high pressure physics and geophysics. Physics of the Earth and Planetary Interiors, 2019. 286: p. 42-68.
  • [35] Gurioli, M., A. Vinattieri, M. Colocci, C. Deparis, J. Massies, G. Neu, A. Bosacchi, and S. Franchi, Temperature dependence of the radiative and nonradiative recombination time in GaAs/Al x Ga 1− x As quantum-well structures. Physical Review B, 1991. 44(7): p. 3115.
  • [36] Yang, M., X. Cheng, Y. Li, Y. Ren, M. Liu, and Z. Qi, Anharmonicity of monolayer MoS2, MoSe2, and WSe2: A Raman study under high pressure and elevated temperature. Applied Physics Letters, 2017. 110(9): p. 093108.
  • [37] Streetman, B.G. and S. Banerjee, Solid State Electronic Devices. 2001: Prentice-Hall of India.
There are 37 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Merve Oper 0000-0002-2262-1081

Nihan Kosku Perkgöz 0000-0003-1331-0959

Project Number BAP 19ADP050, BAP 19ADP052, TUBITAK Project No: 116F445
Publication Date March 31, 2020
Published in Issue Year 2020

Cite

AMA Oper M, Kosku Perkgöz N. TEMPERATURE DEPENDENT (83-483 K) RAMAN SPECTROSCOPY ANALYSIS OF CVD GROWN WS2 MONOLAYERS. Estuscience - Se. March 2020;21(1):155-164. doi:10.18038/estubtda.675907