BibTex RIS Cite

COMPUTATIONAL IDENTIFICATION OF MICRORNAS FROM SSDNA VIRUSES

Year 2018, Volume: 19 Issue: 3, 565 - 573, 01.09.2018

Abstract

MicroRNAs (miRNAs) are post-transcriptional regulators of gene expression and the fact that they are associated with various disease phenotypes is one of the main reasons for their importance. The complexity of experimental detection of miRNAs due to their characteristics led to the development of computational methods. In this work, a machine learning based approach was applied to identify and analyze potential miRNAs that might be originated from 60 single strand DNA (ssDNA) viruses’ genomes. The results suggest that 53 of these viruses may possibly produce proper miRNA precursors. Moreover, the possibility of these candidate miRNA precursors’ ability to generate mature miRNAs that could target human genes and viral genomes has been tested. Overall, the outcomes of this research indicate that there might be another level of host-virus interaction through miRNAs which requires further experimental confirmation.

References

  • [1] Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic acids research 2011; 39: D152–7.
  • [2] Tüfekci KU, Oner MG, Meuwissen RLJ, Genç S. The role of microRNAs in human diseases. Methods in molecular biology (Clifton, N.J.) 2014; 1107: 33–50.
  • [3] Scaria V, Hariharan M, Maiti S et al. Host-virus interaction: a new role for microRNAs. Retrovirology 2006; 3: 68.
  • [4] Saçar MD, Bağcı C, Allmer J. Computational prediction of MicroRNAs from toxoplasma gondii potentially regulating the hosts’ gene expression. Genomics, Proteomics and Bioinformatics 2014; 12: 228–38.
  • [5] Saçar Demirci MD, Bağcı C, Allmer J. Differential Expression of Toxoplasma gondii MicroRNAs in Murine and Human Hosts. Non-Coding RNAs and Inter-Kingdom Communication. Cham: Springer International Publishing, 2016: 143–59.
  • [6] Skalsky RL, Cullen BR. Viruses, microRNAs, and host interactions. Annual review of microbiology 2010; 64: 123–41.
  • [7] Grundhoff A, Sullivan CS. Virus-encoded microRNAs. Virology 2011; 411: 325–43.
  • [8] Saçar Demirci MD, Baumbach J, Allmer J. On the performance of pre-microRNA detection algorithms. Nature Communications 2017; 8.
  • [9] Saçar MD, Allmer J. Machine Learning Methods for MicroRNA Gene Prediction. In: Yousef M, Allmer J, eds. miRNomics: MicroRNA Biology and Computational Analysis SE - 10. Vol1107. Humana Press, 2014: 177–87.
  • [10] Kincaid RP, Burke JM, Cox JC, de Villiers E-M, Sullivan CS. A human torque teno virus encodes a microRNA that inhibits interferon signaling. PLoS pathogens 2013; 9: e1003818.
  • [11] Allmer J, Saçar Demirci MD. izMiR: computational ab initio microRNA detection. Protocol Exchange, 2016.
  • [12] Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Research 2003; 31: 3429–31.
  • [13] Chou CH, Chang NW, Shrestha S et al. miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Research 2016; 44: D239–47.
  • [14] Gkirtzou K, Tsamardinos I, Tsakalides P, Poirazi P. MatureBayes: a probabilistic algorithm for identifying the mature miRNA within novel precursors. PloS one 2010; 5: e11843.
  • [15] Xu Q-S, Liang Y-Z. Monte Carlo cross validation. Chemometrics and Intelligent Laboratory Systems 2001; 56: 1–11.
  • [16] Saçar Demirci MD, Allmer J. Delineating the impact of machine learning elements in pre-microRNA detection. PeerJ 2017; 5: e3131.
  • [17] Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD. Bioinformatic tools for microRNA dissection. Nucleic Acids Research 2016; 44: 24–44.
  • [18] Dai X, Zhao PX. PsRNATarget: A plant small RNA target analysis server. Nucleic Acids Research 2011; 39: W155–9.
  • [19] Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S. AmiGO: online access to ontology and annotation data. BIOINFORMATICS APPLICATIONS NOTE 2009; 25: 288–28910.
  • [20] The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Research 2017; 45: D331–8.
  • [21] Saçar Demirci MD, Toprak M, Allmer J. A Machine Learning Approach for MicroRNA Precursor Prediction in Retro-transcribing Virus Genomes. Journal of integrative bioinformatics 2016; 13.
  • [22] He Y, Yang K, Zhang X. Viral microRNAs targeting virus genes promote virus infection in shrimp in vivo. Journal of virology 2014; 88: 1104–12.
  • [23] García-Álvarez M, Berenguer J, Álvarez E et al. Association of torque teno virus (TTV) and torque teno mini virus (TTMV) with liver disease among patients coinfected with human immunodeficiency virus and hepatitis C virus. European Journal of Clinical Microbiology & Infectious Diseases 2013; 32: 289–97.
  • [24] Ssemadaali MA, Effertz K, Singh P, Kolyvushko O, Ramamoorthy S. Identification of heterologous Torque Teno Viruses in humans and swine. Nature Publishing Group2016.
Year 2018, Volume: 19 Issue: 3, 565 - 573, 01.09.2018

Abstract

References

  • [1] Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic acids research 2011; 39: D152–7.
  • [2] Tüfekci KU, Oner MG, Meuwissen RLJ, Genç S. The role of microRNAs in human diseases. Methods in molecular biology (Clifton, N.J.) 2014; 1107: 33–50.
  • [3] Scaria V, Hariharan M, Maiti S et al. Host-virus interaction: a new role for microRNAs. Retrovirology 2006; 3: 68.
  • [4] Saçar MD, Bağcı C, Allmer J. Computational prediction of MicroRNAs from toxoplasma gondii potentially regulating the hosts’ gene expression. Genomics, Proteomics and Bioinformatics 2014; 12: 228–38.
  • [5] Saçar Demirci MD, Bağcı C, Allmer J. Differential Expression of Toxoplasma gondii MicroRNAs in Murine and Human Hosts. Non-Coding RNAs and Inter-Kingdom Communication. Cham: Springer International Publishing, 2016: 143–59.
  • [6] Skalsky RL, Cullen BR. Viruses, microRNAs, and host interactions. Annual review of microbiology 2010; 64: 123–41.
  • [7] Grundhoff A, Sullivan CS. Virus-encoded microRNAs. Virology 2011; 411: 325–43.
  • [8] Saçar Demirci MD, Baumbach J, Allmer J. On the performance of pre-microRNA detection algorithms. Nature Communications 2017; 8.
  • [9] Saçar MD, Allmer J. Machine Learning Methods for MicroRNA Gene Prediction. In: Yousef M, Allmer J, eds. miRNomics: MicroRNA Biology and Computational Analysis SE - 10. Vol1107. Humana Press, 2014: 177–87.
  • [10] Kincaid RP, Burke JM, Cox JC, de Villiers E-M, Sullivan CS. A human torque teno virus encodes a microRNA that inhibits interferon signaling. PLoS pathogens 2013; 9: e1003818.
  • [11] Allmer J, Saçar Demirci MD. izMiR: computational ab initio microRNA detection. Protocol Exchange, 2016.
  • [12] Hofacker IL. Vienna RNA secondary structure server. Nucleic Acids Research 2003; 31: 3429–31.
  • [13] Chou CH, Chang NW, Shrestha S et al. miRTarBase 2016: Updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Research 2016; 44: D239–47.
  • [14] Gkirtzou K, Tsamardinos I, Tsakalides P, Poirazi P. MatureBayes: a probabilistic algorithm for identifying the mature miRNA within novel precursors. PloS one 2010; 5: e11843.
  • [15] Xu Q-S, Liang Y-Z. Monte Carlo cross validation. Chemometrics and Intelligent Laboratory Systems 2001; 56: 1–11.
  • [16] Saçar Demirci MD, Allmer J. Delineating the impact of machine learning elements in pre-microRNA detection. PeerJ 2017; 5: e3131.
  • [17] Akhtar MM, Micolucci L, Islam MS, Olivieri F, Procopio AD. Bioinformatic tools for microRNA dissection. Nucleic Acids Research 2016; 44: 24–44.
  • [18] Dai X, Zhao PX. PsRNATarget: A plant small RNA target analysis server. Nucleic Acids Research 2011; 39: W155–9.
  • [19] Carbon S, Ireland A, Mungall CJ, Shu S, Marshall B, Lewis S. AmiGO: online access to ontology and annotation data. BIOINFORMATICS APPLICATIONS NOTE 2009; 25: 288–28910.
  • [20] The Gene Ontology Consortium. Expansion of the Gene Ontology knowledgebase and resources. Nucleic Acids Research 2017; 45: D331–8.
  • [21] Saçar Demirci MD, Toprak M, Allmer J. A Machine Learning Approach for MicroRNA Precursor Prediction in Retro-transcribing Virus Genomes. Journal of integrative bioinformatics 2016; 13.
  • [22] He Y, Yang K, Zhang X. Viral microRNAs targeting virus genes promote virus infection in shrimp in vivo. Journal of virology 2014; 88: 1104–12.
  • [23] García-Álvarez M, Berenguer J, Álvarez E et al. Association of torque teno virus (TTV) and torque teno mini virus (TTMV) with liver disease among patients coinfected with human immunodeficiency virus and hepatitis C virus. European Journal of Clinical Microbiology & Infectious Diseases 2013; 32: 289–97.
  • [24] Ssemadaali MA, Effertz K, Singh P, Kolyvushko O, Ramamoorthy S. Identification of heterologous Torque Teno Viruses in humans and swine. Nature Publishing Group2016.
There are 24 citations in total.

Details

Journal Section Articles
Authors

Müşerref Duygu Saçar Demirci This is me

Publication Date September 1, 2018
Published in Issue Year 2018 Volume: 19 Issue: 3

Cite

AMA Demirci MDS. COMPUTATIONAL IDENTIFICATION OF MICRORNAS FROM SSDNA VIRUSES. Estuscience - Se. September 2018;19(3):565-573.