BibTex RIS Cite

MOLECULAR DYNAMICS STUDY ON THE STRUCTURAL, THERMAL AND ENERGETIC PROPERTIES OF GaAs NANOPARTICLES

Year 2018, Volume: 19 Issue: 3, 620 - 627, 01.09.2018

Abstract

In this work, the structural and energetic properties of GaAs nanoparticles (NPs) are investigated using the bond order potential (BOP) based on modern classical molecular dynamics (MD) method. All MD simulations are performed by means of LAMMPS. Some physical properties such as variation of potential energy depending on temperature, order parameter, coordination number in terms of probability distribution and radial distribution function (RDF) are searched. The heat capacity calculation is also performed as depending on temperature using a non-equilibrated molecular dynamics simulation strategy. Temperature dependence of these physical properties was obtained. The calculated physical properties are found to be sensitive to temperature.

References

  • [1] Wang CL, Zhang H, Zhang JH, Li MJ. Sun H. Z. Yan B. Application of Ultrasonic Irradiation in Aqueous Synthesis of Highly Fluorescent CdTe/CdS Core-Shell Nanocrystals. J Phys Chem C 2007; 111: 2465–2469.
  • [2] Yang P, Tretiak S, Masunov AE, Ivanov SJ. Quantum chemistry of the minimal CdSe clusters. Chem Phys 2008; 129(7): 74709-1-74709–12.
  • [3] Kushwaha AK. Lattice dynamical calculations for HgTe, CdTe and their ternary alloy CdxHg1−xTe. Comput Mater Sci 2012; 65: 315–319.
  • [4] Streetman BG, Sanjay B. Solid State Electronic Devices. 5th ed. Prentice Hall, New Jersey, 2000.
  • [5] Pluengphon P, Bovornratanaraks T, Vannarat S, Pinsook U. Structural and mechanical properties of GaAs under pressure up to 200 Gpa. Solid State Commun 2014; 195: 26-30.
  • [6] Smida A, Laatar F, Hassen M, Ezzaouia H. Structural and optical properties of vapor-etched porous GaAs. J Lumin 2016; 176: 118–123.
  • [7] Saghrouni H, Jomni S, Cherif A, Belgacem W, Beji L. The temperature dependence on the electrical properties of dysprosium oxide deposited on n-porous GaAs. J Alloys Compd 2016; 676: 127-134.
  • [8] Danilchenko BA, Budnyk AP, Shpinar LI, Yaskovets II, Barnham KWJ, Ekins-Daukes N. Radiation resistance of GaAs solar cells and hot carriers. J Sol Energy Mater Sol Cells 2011; 95: 2551–2556.
  • [9] Yoon J, Jo S, Chun IS, Jung I, Kim H-S, Meitl M, Menard E, Li X, Coleman JJ, Paik U, Rogers JA. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nat Lett 2010; 465: 329-333.
  • [10] Moon S, Kim K, Kim Y, Heo J, Lee J. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci Rep 2016; 6: 30107-1- 30107-6.
  • [11] Li Q, Shen K, Yang R, Zhao Y, Lu S, Wang R, Dong J, Wang D. Comparative study of GaAs and CdTe solar cell performance under low-intensity light irradiance. Sol Energy 2017; 157: 216-226.
  • [12] Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 1986; 90 (12): 2555–2560.
  • [13] Graf A, Sonnenberg D, Paulava V, Schliwa A, Heyn Ch, Hansen W. Excitonic states in GaAs quantum dots fabricated by local droplet etching. Phys Rev B 2014; 89: 115314-1-115314-6.
  • [14] Sallen G, Kunz S, Amand T, Bouet L, Kuroda T, Mano T, Paget D, Krebs O, Marie X, Sakoda K, Urbaszek B. Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field. Nat Commun 2014; 5: 3268-1-3268-7.
  • [15] LAMMPS, lammps.sandia.gov/download.
  • [16] Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Comput Phys 1995; 117: 1-19.
  • [17] Murdick DA, Zhou XW, Wadley HNG, Nguyen-Manh D, Drautz R, Pettifor DG. Analytic bond-order potential for the gallium arsenide system. Phys Rev B 2006; 73: 045206-1-045206-20.
  • [18] Ward DK, Zhou XW, Wong BM, Doty FP, Zimmerman JA. Accuracy of existing atomic potentials for the CdTe semiconductor compound. J Chem Phys 2011; 134: 244703-1-244703-13.
  • [19] Ward DK, Zhou XW, Wong BM, Doty FP, Zimmerman JA. Analytical bond-order potential for the cadmium telluride binary system. Phys Rev B 2012; 85: 115206-1-115206-19.
  • [20] Zhou XW, Ward DK, Wong BM, Doty FP. Melt-Growth Dynamics in CdTe Crystals. Phys Rev Lett 2012; 108: 245503-1-245503-4.
  • [21] Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 1984; 81: 511-519.
  • [22] Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev 1985; A31: 1695-1697.
  • [23] Hanha TTT, Hoang VV. Structure and diffusion in simulated liquid GaAs. Eur Phys J Appl Phys 2010; 49: 30301-p1-30301-p7.
  • [24] Boyacioglu B, Chatterjee A. Heat capacity and entropy of a GaAs quantum dot with Gaussian confinement. J Appl Phys 2012; 112: 083514-1-083514-6.
  • [25] Yu T-C, Brebrick RF. The Hg-Cd-Zn-Te phase diagram. J Phase Equilib 1992; 13: 476-496.
  • [26] Lu C, Cheng Y, Pan Q, Tao X, Yang B, Ye G. One-dimensional Growth of Zinc Crystals on a Liquid Surface. Sci Rep 2016; 6: 19870-1-19870-7.
  • [27] Kurban M, Malcıoğlu OB, Erkoç Ş. Structural and thermal properties of Cd-Zn-Te ternary nanoparticles: Molecular-dynamics simulations. Chem Phys 2016; 464: 40-45.
  • [28] Kurban M, Erkoç Ş. Segregation formation, thermal and electronic properties of ternary cubic CdZnTe clusters: MD simulations and DFT calculations. Physica E 2017; 88: 243-251.
  • [29] Wu X, Wei Z, Liu Q, Pang T, Wu G. Structure and bonding in quaternary Ag-Au-Pd-Pt clusters. J Alloys Compd 2016; 687: 115-120.
Year 2018, Volume: 19 Issue: 3, 620 - 627, 01.09.2018

Abstract

References

  • [1] Wang CL, Zhang H, Zhang JH, Li MJ. Sun H. Z. Yan B. Application of Ultrasonic Irradiation in Aqueous Synthesis of Highly Fluorescent CdTe/CdS Core-Shell Nanocrystals. J Phys Chem C 2007; 111: 2465–2469.
  • [2] Yang P, Tretiak S, Masunov AE, Ivanov SJ. Quantum chemistry of the minimal CdSe clusters. Chem Phys 2008; 129(7): 74709-1-74709–12.
  • [3] Kushwaha AK. Lattice dynamical calculations for HgTe, CdTe and their ternary alloy CdxHg1−xTe. Comput Mater Sci 2012; 65: 315–319.
  • [4] Streetman BG, Sanjay B. Solid State Electronic Devices. 5th ed. Prentice Hall, New Jersey, 2000.
  • [5] Pluengphon P, Bovornratanaraks T, Vannarat S, Pinsook U. Structural and mechanical properties of GaAs under pressure up to 200 Gpa. Solid State Commun 2014; 195: 26-30.
  • [6] Smida A, Laatar F, Hassen M, Ezzaouia H. Structural and optical properties of vapor-etched porous GaAs. J Lumin 2016; 176: 118–123.
  • [7] Saghrouni H, Jomni S, Cherif A, Belgacem W, Beji L. The temperature dependence on the electrical properties of dysprosium oxide deposited on n-porous GaAs. J Alloys Compd 2016; 676: 127-134.
  • [8] Danilchenko BA, Budnyk AP, Shpinar LI, Yaskovets II, Barnham KWJ, Ekins-Daukes N. Radiation resistance of GaAs solar cells and hot carriers. J Sol Energy Mater Sol Cells 2011; 95: 2551–2556.
  • [9] Yoon J, Jo S, Chun IS, Jung I, Kim H-S, Meitl M, Menard E, Li X, Coleman JJ, Paik U, Rogers JA. GaAs photovoltaics and optoelectronics using releasable multilayer epitaxial assemblies. Nat Lett 2010; 465: 329-333.
  • [10] Moon S, Kim K, Kim Y, Heo J, Lee J. Highly efficient single-junction GaAs thin-film solar cell on flexible substrate. Sci Rep 2016; 6: 30107-1- 30107-6.
  • [11] Li Q, Shen K, Yang R, Zhao Y, Lu S, Wang R, Dong J, Wang D. Comparative study of GaAs and CdTe solar cell performance under low-intensity light irradiance. Sol Energy 2017; 157: 216-226.
  • [12] Brus L. Electronic wave functions in semiconductor clusters: experiment and theory. J Phys Chem 1986; 90 (12): 2555–2560.
  • [13] Graf A, Sonnenberg D, Paulava V, Schliwa A, Heyn Ch, Hansen W. Excitonic states in GaAs quantum dots fabricated by local droplet etching. Phys Rev B 2014; 89: 115314-1-115314-6.
  • [14] Sallen G, Kunz S, Amand T, Bouet L, Kuroda T, Mano T, Paget D, Krebs O, Marie X, Sakoda K, Urbaszek B. Nuclear magnetization in gallium arsenide quantum dots at zero magnetic field. Nat Commun 2014; 5: 3268-1-3268-7.
  • [15] LAMMPS, lammps.sandia.gov/download.
  • [16] Plimpton S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. Comput Phys 1995; 117: 1-19.
  • [17] Murdick DA, Zhou XW, Wadley HNG, Nguyen-Manh D, Drautz R, Pettifor DG. Analytic bond-order potential for the gallium arsenide system. Phys Rev B 2006; 73: 045206-1-045206-20.
  • [18] Ward DK, Zhou XW, Wong BM, Doty FP, Zimmerman JA. Accuracy of existing atomic potentials for the CdTe semiconductor compound. J Chem Phys 2011; 134: 244703-1-244703-13.
  • [19] Ward DK, Zhou XW, Wong BM, Doty FP, Zimmerman JA. Analytical bond-order potential for the cadmium telluride binary system. Phys Rev B 2012; 85: 115206-1-115206-19.
  • [20] Zhou XW, Ward DK, Wong BM, Doty FP. Melt-Growth Dynamics in CdTe Crystals. Phys Rev Lett 2012; 108: 245503-1-245503-4.
  • [21] Nosé S. A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 1984; 81: 511-519.
  • [22] Hoover WG. Canonical dynamics: Equilibrium phase-space distributions. Phys Rev 1985; A31: 1695-1697.
  • [23] Hanha TTT, Hoang VV. Structure and diffusion in simulated liquid GaAs. Eur Phys J Appl Phys 2010; 49: 30301-p1-30301-p7.
  • [24] Boyacioglu B, Chatterjee A. Heat capacity and entropy of a GaAs quantum dot with Gaussian confinement. J Appl Phys 2012; 112: 083514-1-083514-6.
  • [25] Yu T-C, Brebrick RF. The Hg-Cd-Zn-Te phase diagram. J Phase Equilib 1992; 13: 476-496.
  • [26] Lu C, Cheng Y, Pan Q, Tao X, Yang B, Ye G. One-dimensional Growth of Zinc Crystals on a Liquid Surface. Sci Rep 2016; 6: 19870-1-19870-7.
  • [27] Kurban M, Malcıoğlu OB, Erkoç Ş. Structural and thermal properties of Cd-Zn-Te ternary nanoparticles: Molecular-dynamics simulations. Chem Phys 2016; 464: 40-45.
  • [28] Kurban M, Erkoç Ş. Segregation formation, thermal and electronic properties of ternary cubic CdZnTe clusters: MD simulations and DFT calculations. Physica E 2017; 88: 243-251.
  • [29] Wu X, Wei Z, Liu Q, Pang T, Wu G. Structure and bonding in quaternary Ag-Au-Pd-Pt clusters. J Alloys Compd 2016; 687: 115-120.
There are 29 citations in total.

Details

Journal Section Articles
Authors

Mustafa Kurban This is me

Publication Date September 1, 2018
Published in Issue Year 2018 Volume: 19 Issue: 3

Cite

AMA Kurban M. MOLECULAR DYNAMICS STUDY ON THE STRUCTURAL, THERMAL AND ENERGETIC PROPERTIES OF GaAs NANOPARTICLES. Estuscience - Se. September 2018;19(3):620-627.