BibTex RIS Kaynak Göster

EXPERIMENTAL CHARACTERISATION AND PREDICTION OF ELASTIC PROPERTIES OF WOVEN FABRIC REINFORCED TEXTILE COMPOSITE LAMINATES

Yıl 2018, Cilt: 19 Sayı: 3, 660 - 670, 01.09.2018

Öz

This paper first presents the well-established analytical and numerical methods used to calculate the elastic properties of woven fabric reinforced textile composite laminates. An experimental study follows where an E-glass plain woven fabric/epoxy composite laminate was manufactured and tested in order to measure the modulus of elasticity and yarn dimensions, and also to observe the typical damage patterns. Next, a state-of-the-art geometry modelling and a finite element analysis software was used in combination to predict the modulus of elasticity using the experimentally determined yarn dimensions. Several numerical procedure alternatives were investigated to evaluate their effect on the agreement of the results with the experimental data and the computational cost.

Kaynakça

  • [1] Ataş, A., et al., Bolted Joints in Three Axially Braided Carbon Fibre/Epoxy Textile Composites with Moulded-in and Drilled Fastener Holes. Applied Composite Materials, 2017. 24(2): p. 449-460.
  • [2] Ogin, S. and P. Potluri, Textile-reinforced composite materials. Handbook of Technical Textiles: Technical Textile Applications, 2016. 2: p. 1.
  • [3] Adanur, S. and T. Liao, 3D modeling of textile composite preforms. Composites Part B: Engineering, 1998. 29(6): p. 787-793.
  • [4] Chou, T.-W., Microstructural design of fiber composites. 1992: Cambridge University Press.
  • [5] Naik, R.A., Analysis of woven and braided fabric reinforced composites. 1994.
  • [6] Ishikawa, T. and T.-W. Chou, Stiffness and strength behaviour of woven fabric composites. Journal of Materials Science, 1982. 17(11): p. 3211-3220.
  • [7] Naik, N. and P. Shembekar, Elastic behavior of woven fabric composites: I—Lamina analysis. Journal of composite materials, 1992. 26(15): p. 2196-2225.
  • [8] Naik, N. and V. Ganesh, Prediction of on-axes elastic properties of plain weave fabric composites. Composites Science and Technology, 1992. 45(2): p. 135-152.
  • [9] Naik, N. and V. Ganesh, An analytical method for plain weave fabric composites. Composites, 1995. 26(4): p. 281-289.
  • [10] Scida, D., et al., A micromechanics model for 3D elasticity and failure of woven-fibre composite materials. Composites Science and Technology, 1999. 59(4): p. 505-517.
  • [11] Whitcomb, J., K. Woo, and S. Gundapaneni, Macro finite element for analysis of textile composites. Journal of composite materials, 1994. 28(7): p. 607-618.
  • [12] Whitcomb, J. and K. Woo, Enhanced direct stiffness method for finite element analysis of textile composites. Composite structures, 1994. 28(4): p. 385-390.
  • [13] Chapman, C. and J. Whitcomb, Effect of assumed tow architecture on predicted moduli and stresses in plain weave composites. Journal of Composite Materials, 1995. 29(16): p. 2134-2159.
  • [14] Whitcomb, J., K. Srirengan, and C. Chapman, Evaluation of homogenization for global/local stress analysis of textile composites. Composite structures, 1995. 31(2): p. 137-149.
  • [15] Whitcomb, J. and K. Srirengan, Effect of various approximations on predicted progressive failure in plain weave composites. Composite structures, 1996. 34(1): p. 13-20.
  • [16] Woo, K. and J.D. Whitcomb, Three-dimensional failure analysis of plain weave textile composites using a global/local finite element method. Journal of composite materials, 1996. 30(9): p. 984-1003.
  • [17] Srirengan, K., J. Whitcomb, and C. Chapman, Modal technique for three-dimensional global/local stress analysis of plain weave composites. Composite structures, 1997. 39(1): p. 145-156.
  • [18] Whitcomb, J., Three-dimensional stress analysis of plain weave composites. Composite materials: Fatigue and fracture., 1991. 3: p. 417-438.
  • [19] Woo, K. and J. Whitcomb, Global/local finite element analysis for textile composites. Journal of Composite Materials, 1994. 28(14): p. 1305-1321.
  • [20] ASTM, D., 3171-11.(2-011). ASTM International, West Conshohocken, PA.
  • [21] Sherburn, M., Geometric and mechanical modelling of textiles. 2007, University of Nottingham.
  • [22] Datasheet for E-glass fibre. AZo Materials. AZoM.com.
  • [23] Datasheet for EPIKOTE™ Resin MGS™ LR160 Hexion Inc.
Yıl 2018, Cilt: 19 Sayı: 3, 660 - 670, 01.09.2018

Öz

Kaynakça

  • [1] Ataş, A., et al., Bolted Joints in Three Axially Braided Carbon Fibre/Epoxy Textile Composites with Moulded-in and Drilled Fastener Holes. Applied Composite Materials, 2017. 24(2): p. 449-460.
  • [2] Ogin, S. and P. Potluri, Textile-reinforced composite materials. Handbook of Technical Textiles: Technical Textile Applications, 2016. 2: p. 1.
  • [3] Adanur, S. and T. Liao, 3D modeling of textile composite preforms. Composites Part B: Engineering, 1998. 29(6): p. 787-793.
  • [4] Chou, T.-W., Microstructural design of fiber composites. 1992: Cambridge University Press.
  • [5] Naik, R.A., Analysis of woven and braided fabric reinforced composites. 1994.
  • [6] Ishikawa, T. and T.-W. Chou, Stiffness and strength behaviour of woven fabric composites. Journal of Materials Science, 1982. 17(11): p. 3211-3220.
  • [7] Naik, N. and P. Shembekar, Elastic behavior of woven fabric composites: I—Lamina analysis. Journal of composite materials, 1992. 26(15): p. 2196-2225.
  • [8] Naik, N. and V. Ganesh, Prediction of on-axes elastic properties of plain weave fabric composites. Composites Science and Technology, 1992. 45(2): p. 135-152.
  • [9] Naik, N. and V. Ganesh, An analytical method for plain weave fabric composites. Composites, 1995. 26(4): p. 281-289.
  • [10] Scida, D., et al., A micromechanics model for 3D elasticity and failure of woven-fibre composite materials. Composites Science and Technology, 1999. 59(4): p. 505-517.
  • [11] Whitcomb, J., K. Woo, and S. Gundapaneni, Macro finite element for analysis of textile composites. Journal of composite materials, 1994. 28(7): p. 607-618.
  • [12] Whitcomb, J. and K. Woo, Enhanced direct stiffness method for finite element analysis of textile composites. Composite structures, 1994. 28(4): p. 385-390.
  • [13] Chapman, C. and J. Whitcomb, Effect of assumed tow architecture on predicted moduli and stresses in plain weave composites. Journal of Composite Materials, 1995. 29(16): p. 2134-2159.
  • [14] Whitcomb, J., K. Srirengan, and C. Chapman, Evaluation of homogenization for global/local stress analysis of textile composites. Composite structures, 1995. 31(2): p. 137-149.
  • [15] Whitcomb, J. and K. Srirengan, Effect of various approximations on predicted progressive failure in plain weave composites. Composite structures, 1996. 34(1): p. 13-20.
  • [16] Woo, K. and J.D. Whitcomb, Three-dimensional failure analysis of plain weave textile composites using a global/local finite element method. Journal of composite materials, 1996. 30(9): p. 984-1003.
  • [17] Srirengan, K., J. Whitcomb, and C. Chapman, Modal technique for three-dimensional global/local stress analysis of plain weave composites. Composite structures, 1997. 39(1): p. 145-156.
  • [18] Whitcomb, J., Three-dimensional stress analysis of plain weave composites. Composite materials: Fatigue and fracture., 1991. 3: p. 417-438.
  • [19] Woo, K. and J. Whitcomb, Global/local finite element analysis for textile composites. Journal of Composite Materials, 1994. 28(14): p. 1305-1321.
  • [20] ASTM, D., 3171-11.(2-011). ASTM International, West Conshohocken, PA.
  • [21] Sherburn, M., Geometric and mechanical modelling of textiles. 2007, University of Nottingham.
  • [22] Datasheet for E-glass fibre. AZo Materials. AZoM.com.
  • [23] Datasheet for EPIKOTE™ Resin MGS™ LR160 Hexion Inc.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Akın Ataş Bu kişi benim

Oğuzcan İnal Bu kişi benim

Yayımlanma Tarihi 1 Eylül 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 19 Sayı: 3

Kaynak Göster

AMA Ataş A, İnal O. EXPERIMENTAL CHARACTERISATION AND PREDICTION OF ELASTIC PROPERTIES OF WOVEN FABRIC REINFORCED TEXTILE COMPOSITE LAMINATES. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering. Eylül 2018;19(3):660-670.