Araştırma Makalesi
BibTex RIS Kaynak Göster

Upconversion luminescence properties of Ga2O3: Yb3+, Er3+ nanoparticles: Effects of calcination temperature and dopant concentration

Yıl 2018, Cilt: 19 Sayı: 4, 880 - 892, 31.12.2018
https://doi.org/10.18038/aubtda.377127

Öz

Fluorides despite been the most widely studied host matrices for many upconversion nanoparticles are usually hygroscopic and are of limited use. Hence, explorations of new upconversion host materials that will be more efficient in practical application are still active areas of research. In this study, applicability of Ga2O3 as a host matrix for upconversion luminescence was investigated under near infrared (980 nm) excitation. XRD and FT-IR analysis indicate that changes in the calcination temperature and dopant ion concentration lead to crystal phase transformation of nanoparticles from β-Ga2O3 to cubic Yb3Ga5O12 garnet. Resulting changes in crystal field and sites symmetries alter the behaviour of upconversion. Accordingly, tunable green, red and infrared luminescences were observed.

Kaynakça

  • REFERENCES
  • [1] Liu Z, Mei B, Song J, & Yi G. Influence of Yb Concentration on the Optical Properties of CaF2 Transparent Ceramics Codoped with Er and Yb. J Am Ceram Soc 2015; 98(12): 3905-3910.
  • [2] Wu S, ... & Shen J. Polypeptide-Functionalized NaYF4: Yb3+, Er3+ Nanoparticles: Red-Emission Biomarkers for High Quality Bioimaging Using a 915 nm Laser. ACS Appl Mater Interfaces 2014; 6(20): 18329-18336.
  • [3] Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004; 104(1): 139-174.
  • [4] Kapoor R, Friend CS, Biswas A, & Prasad PN. Highly efficient infrared-to-visible energy upconversion in Er3+: Y2O3. Opt. Lett. 2000; 25(5): 338-340.
  • [5] Dymshits OS, Loiko PA, Skoptsov NA, Malyarevich AM, Yumashev KV Zhilin AA ... & Bogdanov K. Structure and upconversion luminescence of transparent glass-ceramics containing (Er, Yb)2(Ti, Zr)2O7 nanocrystals. J Non Cryst Solids 2015; 409: 54-62.
  • [6] Lu S, Yang Q, Zhang B, & Zhang H. Upconversion and infrared luminescences in Er 3+/Yb3+ codoped Y2O3 and (Y0.9La0.1)2O3 transparent ceramics. Opt Mater 2011; 33(5): 746-749.
  • [7] Dwivedi Y, Mishra K, & Rai S. B. Synthesis of bright multicolor down and upconversion emitting Y2Te4O11: Er; Yb nanocrystals. J. Alloys Compd. 2013; 572: 90-96.
  • [8] Shi L, Shen Q, & Qiu Z. Concentration-dependent upconversion emission in Er-doped and Er/Yb-codoped LiTaO3 polycrystals. J Lumin. 2014; 148: 94-97.
  • [9] Zhang J, Wang S, Rong T, & Chen L. Upconversion luminescence in Er3+ doped and Yb3+/Er3+ codoped yttria nanocrystalline powders. J Am Ceram Soc 2004; 87(6): 1072-1075.
  • [10] Li H, Song S, Wang W, & Chen K. In vitro photodynamic therapy based on magnetic-luminescent Gd2O3: Yb, Er nanoparticles with bright three-photon up-conversion fluorescence under near-infrared light. Dalton Trans. 2015; 44(36): 16081-16090.
  • [11] Li X, Wang R, Zhang F, & Zhao D. Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. Nano Lett 2014; 14(6): 3634-3639.
  • [12] Zhou J, Liu Q, Feng W, Sun Y, & Li F. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2014; 115(1): 395-465.
  • [13] Wei X, Wang W, & Chen K. ZnO: Er, Yb, Gd particles designed for magnetic-fluorescent imaging and near-infrared light triggered photodynamic therapy. J. Phys. Chem. C 2013; 117(45): 23716-23729. [14] Miyata T, Nakatani T & Minami T. Gallium oxide as host material for multicolor emitting phosphors. J Lumin 2000; 87: 1183-1185.
  • [15] Fleischer M. Höllbauer L. Born E. & Meixner H. Evidence for a Phase Transition of β‐Gallium Oxide at Very Low Oxygen Pressures. J Am Ceram Soc 1997; 80(8): 2121-2125.
  • [16] Nogales E. García J. A. Méndez B. Piqueras J. Lorenz K. & Alves E. Visible and infrared luminescence study of Er doped β-Ga2O3 and Er3Ga5O12. J Phys D Appl Phys. 2008; 41(6): 065406.
  • [17] Biljan T. Gajović A. & Meić Z. Visible and NIR luminescence of nanocrystalline β-Ga2O3:Er3+ prepared by solution combustion synthesis. J Lumin, 2008: 128(3); 377-382.
  • [18] Taş AC Majewski P. J. & Aldinger F. Synthesis of gallium oxide hydroxide crystals in aqueous solutions with or without urea and their calcination behavior. J Am Ceram Soc 2002; 85(6): 1421-1429.
  • [19] Wejrzanowski T. Pielaszek R. Opalińska A. Matysiak H. Łojkowski W. & Kurzydłowski K. J. Quantitative methods for nanopowders characterization. Appl. Surf. Sci. 2006; 253(1): 204-208.
  • [20] Pielaszek R. Analytical expression for diffraction line profile for polydispersive powders. In Applied Crystallography in Proceedings of the XIX Conference, 2004: Singapore. World Scientific, USA: pp. 43-50.
  • [21] S He H. Orlando R. Blanco M. A. Pandey R. Amzallag E. Baraille I. & Rérat M. (2006). First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Physical Review B 2006; 74(19); 195123.
  • [22] Dulda A. Morphology Controlled Synthesis of α-GaO(OH) Nanoparticles: Thermal Conversion to Ga2O3 and Photocatalytic Properties. Adv. Mater. Sci. Eng. 2016; 2016: 1-9.
  • [23] McDevitt N. T. Infrared lattice spectra of rare-earth aluminum, gallium, and iron garnets. JOSA 1969; 59(9): 1240-1244.
  • [24] Papagelis K. Arvanitidis J. Vinga E. Christofilos D. Kourouklis G. A. Kimura H. & Ves S. Vibrational properties of (Gd1−xYx)3Ga5O12 solid solutions. J. Appl. Phys. 2010; 107(11): 113504.
  • [25] Vetrone F. Boyer J. C. Capobianco J. A. Speghini A. & Bettinelli M. (2004). Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+,Yb3+ nanocrystals. J. Appl. Phys. 2004; 96: 661-667
  • [26] Sun Y. Chen Y. Tian L. Yu Y. Kong X. Zhao J. & Zhang H. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals. Nanotechnology 2007; 18(27): 275609.
  • [27] Snoeks E. Kik P. G. & Polman A. Concentration quenching in erbium implanted alkali silicate glasses. Opt Mater 1996; 5(3): 159-167.
  • [28] Sun H. Hu L. Wen L. Duan Z. Zhang J. & Jiang Z. Effect of chloride ions' introduction on structural, thermal stability, and spectroscopic properties in Yb3+ Er3+- codoped germanate-bismuth-lead glasses. JOSA B 2005; 22(12): 2601-2609.
  • [29] Chen SY, Ting CC, & Li CH. Fluorescence enhancement and structural development of sol–gel derived Er3+-doped SiO2 by yttrium codoping. J Mater Chem 2002; 12(4): 1118-1123.
  • [30] Zong L. Xu P. Ding Y. Zhao K. Wang Z. Yan X. ... & Xing X. Y2O3: Yb3+/Er3+ Hollow Spheres with Controlled Inner Structures and Enhanced Upconverted Photoluminescence. Small 2015; 11(23): 2768-2773.
Yıl 2018, Cilt: 19 Sayı: 4, 880 - 892, 31.12.2018
https://doi.org/10.18038/aubtda.377127

Öz

Kaynakça

  • REFERENCES
  • [1] Liu Z, Mei B, Song J, & Yi G. Influence of Yb Concentration on the Optical Properties of CaF2 Transparent Ceramics Codoped with Er and Yb. J Am Ceram Soc 2015; 98(12): 3905-3910.
  • [2] Wu S, ... & Shen J. Polypeptide-Functionalized NaYF4: Yb3+, Er3+ Nanoparticles: Red-Emission Biomarkers for High Quality Bioimaging Using a 915 nm Laser. ACS Appl Mater Interfaces 2014; 6(20): 18329-18336.
  • [3] Auzel F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004; 104(1): 139-174.
  • [4] Kapoor R, Friend CS, Biswas A, & Prasad PN. Highly efficient infrared-to-visible energy upconversion in Er3+: Y2O3. Opt. Lett. 2000; 25(5): 338-340.
  • [5] Dymshits OS, Loiko PA, Skoptsov NA, Malyarevich AM, Yumashev KV Zhilin AA ... & Bogdanov K. Structure and upconversion luminescence of transparent glass-ceramics containing (Er, Yb)2(Ti, Zr)2O7 nanocrystals. J Non Cryst Solids 2015; 409: 54-62.
  • [6] Lu S, Yang Q, Zhang B, & Zhang H. Upconversion and infrared luminescences in Er 3+/Yb3+ codoped Y2O3 and (Y0.9La0.1)2O3 transparent ceramics. Opt Mater 2011; 33(5): 746-749.
  • [7] Dwivedi Y, Mishra K, & Rai S. B. Synthesis of bright multicolor down and upconversion emitting Y2Te4O11: Er; Yb nanocrystals. J. Alloys Compd. 2013; 572: 90-96.
  • [8] Shi L, Shen Q, & Qiu Z. Concentration-dependent upconversion emission in Er-doped and Er/Yb-codoped LiTaO3 polycrystals. J Lumin. 2014; 148: 94-97.
  • [9] Zhang J, Wang S, Rong T, & Chen L. Upconversion luminescence in Er3+ doped and Yb3+/Er3+ codoped yttria nanocrystalline powders. J Am Ceram Soc 2004; 87(6): 1072-1075.
  • [10] Li H, Song S, Wang W, & Chen K. In vitro photodynamic therapy based on magnetic-luminescent Gd2O3: Yb, Er nanoparticles with bright three-photon up-conversion fluorescence under near-infrared light. Dalton Trans. 2015; 44(36): 16081-16090.
  • [11] Li X, Wang R, Zhang F, & Zhao D. Engineering homogeneous doping in single nanoparticle to enhance upconversion efficiency. Nano Lett 2014; 14(6): 3634-3639.
  • [12] Zhou J, Liu Q, Feng W, Sun Y, & Li F. Upconversion luminescent materials: Advances and applications. Chem. Rev. 2014; 115(1): 395-465.
  • [13] Wei X, Wang W, & Chen K. ZnO: Er, Yb, Gd particles designed for magnetic-fluorescent imaging and near-infrared light triggered photodynamic therapy. J. Phys. Chem. C 2013; 117(45): 23716-23729. [14] Miyata T, Nakatani T & Minami T. Gallium oxide as host material for multicolor emitting phosphors. J Lumin 2000; 87: 1183-1185.
  • [15] Fleischer M. Höllbauer L. Born E. & Meixner H. Evidence for a Phase Transition of β‐Gallium Oxide at Very Low Oxygen Pressures. J Am Ceram Soc 1997; 80(8): 2121-2125.
  • [16] Nogales E. García J. A. Méndez B. Piqueras J. Lorenz K. & Alves E. Visible and infrared luminescence study of Er doped β-Ga2O3 and Er3Ga5O12. J Phys D Appl Phys. 2008; 41(6): 065406.
  • [17] Biljan T. Gajović A. & Meić Z. Visible and NIR luminescence of nanocrystalline β-Ga2O3:Er3+ prepared by solution combustion synthesis. J Lumin, 2008: 128(3); 377-382.
  • [18] Taş AC Majewski P. J. & Aldinger F. Synthesis of gallium oxide hydroxide crystals in aqueous solutions with or without urea and their calcination behavior. J Am Ceram Soc 2002; 85(6): 1421-1429.
  • [19] Wejrzanowski T. Pielaszek R. Opalińska A. Matysiak H. Łojkowski W. & Kurzydłowski K. J. Quantitative methods for nanopowders characterization. Appl. Surf. Sci. 2006; 253(1): 204-208.
  • [20] Pielaszek R. Analytical expression for diffraction line profile for polydispersive powders. In Applied Crystallography in Proceedings of the XIX Conference, 2004: Singapore. World Scientific, USA: pp. 43-50.
  • [21] S He H. Orlando R. Blanco M. A. Pandey R. Amzallag E. Baraille I. & Rérat M. (2006). First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Physical Review B 2006; 74(19); 195123.
  • [22] Dulda A. Morphology Controlled Synthesis of α-GaO(OH) Nanoparticles: Thermal Conversion to Ga2O3 and Photocatalytic Properties. Adv. Mater. Sci. Eng. 2016; 2016: 1-9.
  • [23] McDevitt N. T. Infrared lattice spectra of rare-earth aluminum, gallium, and iron garnets. JOSA 1969; 59(9): 1240-1244.
  • [24] Papagelis K. Arvanitidis J. Vinga E. Christofilos D. Kourouklis G. A. Kimura H. & Ves S. Vibrational properties of (Gd1−xYx)3Ga5O12 solid solutions. J. Appl. Phys. 2010; 107(11): 113504.
  • [25] Vetrone F. Boyer J. C. Capobianco J. A. Speghini A. & Bettinelli M. (2004). Significance of Yb3+ concentration on the upconversion mechanisms in codoped Y2O3:Er3+,Yb3+ nanocrystals. J. Appl. Phys. 2004; 96: 661-667
  • [26] Sun Y. Chen Y. Tian L. Yu Y. Kong X. Zhao J. & Zhang H. Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb,Er nanocrystals. Nanotechnology 2007; 18(27): 275609.
  • [27] Snoeks E. Kik P. G. & Polman A. Concentration quenching in erbium implanted alkali silicate glasses. Opt Mater 1996; 5(3): 159-167.
  • [28] Sun H. Hu L. Wen L. Duan Z. Zhang J. & Jiang Z. Effect of chloride ions' introduction on structural, thermal stability, and spectroscopic properties in Yb3+ Er3+- codoped germanate-bismuth-lead glasses. JOSA B 2005; 22(12): 2601-2609.
  • [29] Chen SY, Ting CC, & Li CH. Fluorescence enhancement and structural development of sol–gel derived Er3+-doped SiO2 by yttrium codoping. J Mater Chem 2002; 12(4): 1118-1123.
  • [30] Zong L. Xu P. Ding Y. Zhao K. Wang Z. Yan X. ... & Xing X. Y2O3: Yb3+/Er3+ Hollow Spheres with Controlled Inner Structures and Enhanced Upconverted Photoluminescence. Small 2015; 11(23): 2768-2773.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ayşe Dulda Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 19 Sayı: 4

Kaynak Göster

AMA Dulda A. Upconversion luminescence properties of Ga2O3: Yb3+, Er3+ nanoparticles: Effects of calcination temperature and dopant concentration. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering. Aralık 2018;19(4):880-892. doi:10.18038/aubtda.377127