Araştırma Makalesi
BibTex RIS Kaynak Göster

VISION BASED CONTROL OF GANTRY CRANE SYSTEM

Yıl 2018, Cilt: 19 Sayı: 4, 1023 - 1032, 31.12.2018
https://doi.org/10.18038/aubtda.420980

Öz

Kaynakça

  • [1] Tuan LA. Design of Sliding Mode Controller for the 2D Motion of an Overhead Crane with Varying Cable Length. J Autom Control Eng 2016;4:181–8. doi:10.18178/joace.4.3.181-188.[2] Wahyudi, Jalani J, Muhida R, Salami MJE. Control strategy for automatic gantry crane systems: A practical and intelligent approach. Int J Adv Robot Syst 2007;4:447–56. doi:10.5772/5669.[3] Wu Z, Xia X. Optimal motion planning for overhead cranes. IET Control Theory Appl 2014;8:1833–42. doi:10.1049/iet-cta.2014.0069.[4] O’Connor W, Habibi H. Gantry crane control of a double-pendulum, distributed-mass load, using mechanical wave concepts. Mech Sci 2013;4:251–61. doi:10.5194/ms-4-251-2013.[5] Ramli L, Mohamed Z, Abdullahi AM, Jaafar HI, Lazim IM. Control strategies for crane systems: A comprehensive review. Mech Syst Signal Process 2017;95:1–23. doi:10.1016/j.ymssp.2017.03.015.[6] Barva P, Horáček P. Control Methods for Gantry Crane. IFAC Proc Vol 2000;33:225–30. doi:10.1016/S1474-6670(17)37867-9.[7] Rehiara AB. Application of LabView Vision and Fuzzy Control for Controling A Gantry Crane Application of LabView Vision and Fuzzy Control for Controling A Gantry Crane. J Inf Commun Technol 2014.[8] Stürzer D, Arnold A, Kugi A. Closed-loop stability analysis of a gantry crane with heavy chain and payload. Int J Control 2017;7179:1–13. doi:10.1080/00207179.2017.1335439.[9] Santhi LR, M LB. Position Control and Anti-Swing Control of Overhead Crane Using LQR. Int J Sci Eng Res 2015;3:26–30.[10] Ospina-Henao PA, López-Suspes F. Dynamic analysis and control PID path of a model type gantry crane. J Phys Conf Ser 2017;850:12004. doi:10.1088/1742-6596/850/1/012004.[11] Yurchenko D, Alevras P. Stability, control and reliability of a ship crane payload motion. Probabilistic Eng Mech 2014;38:173–9. doi:10.1016/j.probengmech.2014.10.003.[12] Vaughan J, Karajgikar A, Singhose W. A study of crane operator performance comparing PD-control and input shaping. 2011 Am. Control Conf., 2011, p. 545–50.[13] Khan S, Abdulazeez SF, Adetunji LW, Alam AZ, Salami MJE, Hameed SA, et al. Design and Implementation of an Optimal Fuzzy Logic Controller Using Genetic Algorithm. J Comput Sci 2008;4:799–806. doi:10.3844/jcssp.2008.799.806.[14] Gao B, Zhu Z, Zhao J, Huang B. A Wireless Swing Angle Measurement Scheme Using Attitude Heading Reference System Sensing Units Based on Microelectromechanical Devices. Sensors 2014;14:22595–612. doi:10.3390/s141222595.[15] Jaafar HI, Latif NA, Kassim AM, Abidin AFZ, Hussien SYS, Aras MSM. Motion control of nonlinear gantry crane system via priority-based fitness scheme in firefly algorithm. AIP Conf. Proc., vol. 1660, 2015, p. 70031. doi:10.1063/1.4915749.[16] Du WZ, Xie Z, Lu F, Cao Y. Gantry Crane Dynamic Modeling and Motion Control. Appl Mech Mater 2013;419:649–53. doi:10.4028/www.scientific.net/AMM.419.649.[17] Sorensen KL, Singhose W, Dickerson S. A controller enabling precise positioning and sway reduction in bridge and gantry cranes. Control Eng Pract 2007;15:825–37. doi:10.1016/j.conengprac.2006.03.005.[18] Bruins S. Comparison of Different Control Algorithms for a Gantry Crane System. Intell Control Autom 2010;1:68–81. doi:10.4236/ica.2010.12008.[19] Hyla P, Szpytko J. Crane Payload Position Measurement Vision-Based System Dedicated for Anti-sway Solutions, 2014, p. 404–13. doi:10.1007/978-3-662-45317-9_43.[20] Bagheri A, Basiri S. Design of a vision system as a coordinate measurement sensor in a 2D gantry crane control system. Proc. 2009 5th Int. Colloq. Signal Process. Its Appl. CSPA 2009, 2009, p. 115–7. doi:10.1109/CSPA.2009.5069199.[21] Hekman KA, Singhose WE. A feedback control system for suppressing crane oscillations with on-off motors. Int J Control Autom Syst 2007;5:223–33.[22] Hyla P, Szpytko J. THE APPLICATION OF IMAGE ANALYSIS METHODS IN SELECTED ISSUE SOLUTION DEDICATED FOR OVERHEAD TRAVELLING CRANE. J KONES Powertrain Transp 2014;21:97–104. doi:10.5604/12314005.1133879.[23] Lee L, Huang C, Ku S, Chang C. Vision based controller design with the application to a 3D overhead crane system. 2013 Int. Conf. Syst. Sci. Eng., IEEE; 2013, p. 129–33. doi:10.1109/ICSSE.2013.6614646.

VISION BASED CONTROL OF GANTRY CRANE SYSTEM

Yıl 2018, Cilt: 19 Sayı: 4, 1023 - 1032, 31.12.2018
https://doi.org/10.18038/aubtda.420980

Öz

Heavy materials handling requires a sophisticated tool for efficient and optimum operations. In recent times, gantry cranes are considered as a dependable choice in terms of handling capacity, effectiveness, timeliness and safety. However, positioning of a trolley to the desired set point as fast as possible within minimum time without overshoot and payload induced oscillation have remained obstacles in crane dynamic control. Several control algorithms have been proposed, tested and implemented based on classical control. Recently, vision control has been introduced in the field of mechatronics as a bridging gap with little or no impact. In this paper, a vision based software control model is proposed such that webcam serves as a capturing sensor and the National Instrument LabVIEW is used as a programming tool for both image processing and crane control. Subsequently, the results of the proposed algorithm are experimentally validated by step increase in the trolley position. According to the results analysis, it is evident that the webcam performance is at an optimum level when compared with the installed sensor in positioning the trolley and minimizing the payload oscillation.

Kaynakça

  • [1] Tuan LA. Design of Sliding Mode Controller for the 2D Motion of an Overhead Crane with Varying Cable Length. J Autom Control Eng 2016;4:181–8. doi:10.18178/joace.4.3.181-188.[2] Wahyudi, Jalani J, Muhida R, Salami MJE. Control strategy for automatic gantry crane systems: A practical and intelligent approach. Int J Adv Robot Syst 2007;4:447–56. doi:10.5772/5669.[3] Wu Z, Xia X. Optimal motion planning for overhead cranes. IET Control Theory Appl 2014;8:1833–42. doi:10.1049/iet-cta.2014.0069.[4] O’Connor W, Habibi H. Gantry crane control of a double-pendulum, distributed-mass load, using mechanical wave concepts. Mech Sci 2013;4:251–61. doi:10.5194/ms-4-251-2013.[5] Ramli L, Mohamed Z, Abdullahi AM, Jaafar HI, Lazim IM. Control strategies for crane systems: A comprehensive review. Mech Syst Signal Process 2017;95:1–23. doi:10.1016/j.ymssp.2017.03.015.[6] Barva P, Horáček P. Control Methods for Gantry Crane. IFAC Proc Vol 2000;33:225–30. doi:10.1016/S1474-6670(17)37867-9.[7] Rehiara AB. Application of LabView Vision and Fuzzy Control for Controling A Gantry Crane Application of LabView Vision and Fuzzy Control for Controling A Gantry Crane. J Inf Commun Technol 2014.[8] Stürzer D, Arnold A, Kugi A. Closed-loop stability analysis of a gantry crane with heavy chain and payload. Int J Control 2017;7179:1–13. doi:10.1080/00207179.2017.1335439.[9] Santhi LR, M LB. Position Control and Anti-Swing Control of Overhead Crane Using LQR. Int J Sci Eng Res 2015;3:26–30.[10] Ospina-Henao PA, López-Suspes F. Dynamic analysis and control PID path of a model type gantry crane. J Phys Conf Ser 2017;850:12004. doi:10.1088/1742-6596/850/1/012004.[11] Yurchenko D, Alevras P. Stability, control and reliability of a ship crane payload motion. Probabilistic Eng Mech 2014;38:173–9. doi:10.1016/j.probengmech.2014.10.003.[12] Vaughan J, Karajgikar A, Singhose W. A study of crane operator performance comparing PD-control and input shaping. 2011 Am. Control Conf., 2011, p. 545–50.[13] Khan S, Abdulazeez SF, Adetunji LW, Alam AZ, Salami MJE, Hameed SA, et al. Design and Implementation of an Optimal Fuzzy Logic Controller Using Genetic Algorithm. J Comput Sci 2008;4:799–806. doi:10.3844/jcssp.2008.799.806.[14] Gao B, Zhu Z, Zhao J, Huang B. A Wireless Swing Angle Measurement Scheme Using Attitude Heading Reference System Sensing Units Based on Microelectromechanical Devices. Sensors 2014;14:22595–612. doi:10.3390/s141222595.[15] Jaafar HI, Latif NA, Kassim AM, Abidin AFZ, Hussien SYS, Aras MSM. Motion control of nonlinear gantry crane system via priority-based fitness scheme in firefly algorithm. AIP Conf. Proc., vol. 1660, 2015, p. 70031. doi:10.1063/1.4915749.[16] Du WZ, Xie Z, Lu F, Cao Y. Gantry Crane Dynamic Modeling and Motion Control. Appl Mech Mater 2013;419:649–53. doi:10.4028/www.scientific.net/AMM.419.649.[17] Sorensen KL, Singhose W, Dickerson S. A controller enabling precise positioning and sway reduction in bridge and gantry cranes. Control Eng Pract 2007;15:825–37. doi:10.1016/j.conengprac.2006.03.005.[18] Bruins S. Comparison of Different Control Algorithms for a Gantry Crane System. Intell Control Autom 2010;1:68–81. doi:10.4236/ica.2010.12008.[19] Hyla P, Szpytko J. Crane Payload Position Measurement Vision-Based System Dedicated for Anti-sway Solutions, 2014, p. 404–13. doi:10.1007/978-3-662-45317-9_43.[20] Bagheri A, Basiri S. Design of a vision system as a coordinate measurement sensor in a 2D gantry crane control system. Proc. 2009 5th Int. Colloq. Signal Process. Its Appl. CSPA 2009, 2009, p. 115–7. doi:10.1109/CSPA.2009.5069199.[21] Hekman KA, Singhose WE. A feedback control system for suppressing crane oscillations with on-off motors. Int J Control Autom Syst 2007;5:223–33.[22] Hyla P, Szpytko J. THE APPLICATION OF IMAGE ANALYSIS METHODS IN SELECTED ISSUE SOLUTION DEDICATED FOR OVERHEAD TRAVELLING CRANE. J KONES Powertrain Transp 2014;21:97–104. doi:10.5604/12314005.1133879.[23] Lee L, Huang C, Ku S, Chang C. Vision based controller design with the application to a 3D overhead crane system. 2013 Int. Conf. Syst. Sci. Eng., IEEE; 2013, p. 129–33. doi:10.1109/ICSSE.2013.6614646.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ayodeji Okubanjo Bu kişi benim

Oluwadamilola Oyetola Bu kişi benim

Oludaisi Adekomaya Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 19 Sayı: 4

Kaynak Göster

AMA Okubanjo A, Oyetola O, Adekomaya O. VISION BASED CONTROL OF GANTRY CRANE SYSTEM. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering. Aralık 2018;19(4):1023-1032. doi:10.18038/aubtda.420980