Research Article
BibTex RIS Cite
Year 2019, Volume: 20 Issue: 2, 133 - 142, 01.06.2019
https://doi.org/10.18038/aubtda.376154

Abstract

References

  • [1] Sen-Gupta S,Maiti N, Chadha R, Kapoor S.Probing of different conformations of piperazine using Raman Spectroscopy. Chem Phys 2014; 436-437: 55–62.
  • [2] Alver Ö, Parlak C, Şenyel M. NMR spectroscopic study and DFT calculations of vibrational analyses, GIAO NMR shieldings and 1JCH, 1JCC spin-spin coupling constants of 1,7-diaminoheptane. Bull Chem Soc Ethiop 2009; 23: 85-96.
  • [3] Alver Ö, Parlak C, Şenyel M. NMR spectroscopic study and DFT calculations of GIAO NMR shieldings and 1JCH spin-spin coupling constants of 1,9-diaminononane. Bull Chem Soc Ethiop 2009; 23: 437-438.
  • [4] Li Y. S, Jalilian M. R, Durig J. R. Microwave spectrum of indene. J Mol Struct 1979; 51: 171-174.
  • [5] Scott A. P, Radom L. Harmonic Vibrational Frequencies:  An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J Phys Chem 1996; 100(41): 16502-16513.
  • [6] Parlak C, Alver Ö. 1-(2-Nitrophenyl)Piperazine: NMR, Raman, FTIR and DFT Studies. Anadolu Univ J of Sci and Technology – A – Appl Sci and Eng 2016; 17 (3): 521-529.
  • [7] Snehalatha M, Ravikumar C, Joe H. I, Sekar N, Jayakumar V. S. Spectroscopic analysis and DFT calculations of a food additive Carmoisine. Spectrochim Acta A Mol Biomol Spectrosc 2009; 72(3): 654-662.
  • [8] Abraham J. P, Joe I. H, George V, Nielsen O. F, Jayakumar V. S. Vibrational spectroscopic studies on the natural product. Spectrochim Acta A Mol Biomol Spectrosc 2003; 59: 193-199.
  • [9] M.J. Frisch, et al., Gaussian 09, Revision A. 1, Gaussian, Inc, Wallingford, CT, 2009.
  • [10] Rauhut G, Pulay P. Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields. J Phys Chem 1995; 99(10): 3093–3100.
  • [11] Baker J, Jarzecki A. A, Pulay P. Direct Scaling of Primitive Valence Force Constants:  An Alternative Approach to Scaled Quantum Mechanical Force Fields. J Phys Chem A 1998; 102(8): 1412–1424.
  • [12] Ditchfield R, Self-consistent perturbation theory of diamagnetism. Mol Phys 1974; 27: 789-807.
  • [13] Prabavathi N, Nilufer A, Krishnakumar V. FT-IR, FT-Raman and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 1-(m-(trifluoromethyl)phenyl)piperazine. Spectrochim Acta A Mol Biomol Spectrosc 2014; 121: 483–493.
  • [14] Bellamy L. J. The Infrared Spectra of Complex Molecules, vol. 2, Chapman and Hall, London, 1980.
  • [15] Colthup N. B, Daly L. H, Wiberley S. E. Introduction to infrared and Raman spectroscopy. New York: Academic Press, 1964.
  • [16] Murali M. K, Balachandran V. FT-IR, FT-Raman, DFT structure, vibrational frequency analysis and Mulliken charges of 2-chlorophenylisothiocyanate. Indian J Pure Appl Phys 2012; 50: 19-25.
  • [17] Mahalakshmi G, Balachandran V. NBO, HOMO, LUMO analysis and vibrational spectra (FTIR and FT Raman) of 1-Amino 4-methylpiperazine using ab initio HF and DFT methods. Spectrochim Acta A Mol Biomol Spectrosc 2015; 135: 321–334.
  • [18] Krishnakumar V, Seshadri S. Scaled quantum chemical calculations and FT-IR, FT-Raman spectral analysis of 2-methyl piperazine. Spectrochim Acta A Mol Biomol Spectrosc 2007; 68(3): 833-838.
  • [19] Prabavathi N, Senthil Nayaki N, Krishnakumar V. Spectroscopic Investigation (FT-IR, FT-Raman, NMR and UV-Vis), Conformational Stability, NBO and Thermodynamic Analysis of 1-(2-Methoxyphenyl) Piperazine and 1-(2-Chlorophenyl) Piperazine by DFT Approach. Pharm Anal Acta 2015; 6-7: 1-20.
  • [20] Alver Ö, Parlak C, Şenyel M. FT-IR and NMR investigation of 1-phenylpiperazine: A combined experimental and theoretical study. Spectrochim Acta A Mol Biomol Spectrosc 2007;67(3-4): 793-801.
  • [21] Subashini K, Periandy S. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NLO) investigation and molecular docking study of 1-(4-Methylbenzyl) piperazine. J Mol Struct 2017; 1134: 157-170.
  • [22] Wojciechowski P. M, Michalska D. Theoretical Raman and infrared spectra, and vibrational assignment for para-halogenoanilines: DFT study. Spectrochim Acta A Mol Biomol Spectrosc 2007; 68(3): 948-955.
  • [23] Aschaffenburg D. J, Moog R. S. Probing Hydrogen Bonding Environments: Solvatochromic Effects on the CN Vibration of Benzonitrile. J Phys Chem B 2009; 113: 12736–12743.

1-(4-CHLOROPHENYL) PIPERAZINE: FT-IR, RAMAN, NMR AND THEORETICAL STUDIES

Year 2019, Volume: 20 Issue: 2, 133 - 142, 01.06.2019
https://doi.org/10.18038/aubtda.376154

Abstract

This paper were investigated spectroscopic studies of 1-(4-Chlorophenyl) piperazine (14CPP) with nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR) and Raman techniques. The conformational analysis, vibrational spectra, vibrational assignments and nuclear magnetic shielding tensors of title molecule were examined by the density functional theory (DFT), using the Becke-3-Lee-Yang-Parr (B3LYP) functional and the 6-311++G(d,p) basis sets. Moreover, energy gap values (HOMO-LUMO) of title molecule was performed using TD-DFT/B3LYP/6-311++G(d,p) method. There is a good agreement between the experimentally obtained data and theoretically obtained data.

References

  • [1] Sen-Gupta S,Maiti N, Chadha R, Kapoor S.Probing of different conformations of piperazine using Raman Spectroscopy. Chem Phys 2014; 436-437: 55–62.
  • [2] Alver Ö, Parlak C, Şenyel M. NMR spectroscopic study and DFT calculations of vibrational analyses, GIAO NMR shieldings and 1JCH, 1JCC spin-spin coupling constants of 1,7-diaminoheptane. Bull Chem Soc Ethiop 2009; 23: 85-96.
  • [3] Alver Ö, Parlak C, Şenyel M. NMR spectroscopic study and DFT calculations of GIAO NMR shieldings and 1JCH spin-spin coupling constants of 1,9-diaminononane. Bull Chem Soc Ethiop 2009; 23: 437-438.
  • [4] Li Y. S, Jalilian M. R, Durig J. R. Microwave spectrum of indene. J Mol Struct 1979; 51: 171-174.
  • [5] Scott A. P, Radom L. Harmonic Vibrational Frequencies:  An Evaluation of Hartree−Fock, Møller−Plesset, Quadratic Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors. J Phys Chem 1996; 100(41): 16502-16513.
  • [6] Parlak C, Alver Ö. 1-(2-Nitrophenyl)Piperazine: NMR, Raman, FTIR and DFT Studies. Anadolu Univ J of Sci and Technology – A – Appl Sci and Eng 2016; 17 (3): 521-529.
  • [7] Snehalatha M, Ravikumar C, Joe H. I, Sekar N, Jayakumar V. S. Spectroscopic analysis and DFT calculations of a food additive Carmoisine. Spectrochim Acta A Mol Biomol Spectrosc 2009; 72(3): 654-662.
  • [8] Abraham J. P, Joe I. H, George V, Nielsen O. F, Jayakumar V. S. Vibrational spectroscopic studies on the natural product. Spectrochim Acta A Mol Biomol Spectrosc 2003; 59: 193-199.
  • [9] M.J. Frisch, et al., Gaussian 09, Revision A. 1, Gaussian, Inc, Wallingford, CT, 2009.
  • [10] Rauhut G, Pulay P. Transferable Scaling Factors for Density Functional Derived Vibrational Force Fields. J Phys Chem 1995; 99(10): 3093–3100.
  • [11] Baker J, Jarzecki A. A, Pulay P. Direct Scaling of Primitive Valence Force Constants:  An Alternative Approach to Scaled Quantum Mechanical Force Fields. J Phys Chem A 1998; 102(8): 1412–1424.
  • [12] Ditchfield R, Self-consistent perturbation theory of diamagnetism. Mol Phys 1974; 27: 789-807.
  • [13] Prabavathi N, Nilufer A, Krishnakumar V. FT-IR, FT-Raman and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 1-(m-(trifluoromethyl)phenyl)piperazine. Spectrochim Acta A Mol Biomol Spectrosc 2014; 121: 483–493.
  • [14] Bellamy L. J. The Infrared Spectra of Complex Molecules, vol. 2, Chapman and Hall, London, 1980.
  • [15] Colthup N. B, Daly L. H, Wiberley S. E. Introduction to infrared and Raman spectroscopy. New York: Academic Press, 1964.
  • [16] Murali M. K, Balachandran V. FT-IR, FT-Raman, DFT structure, vibrational frequency analysis and Mulliken charges of 2-chlorophenylisothiocyanate. Indian J Pure Appl Phys 2012; 50: 19-25.
  • [17] Mahalakshmi G, Balachandran V. NBO, HOMO, LUMO analysis and vibrational spectra (FTIR and FT Raman) of 1-Amino 4-methylpiperazine using ab initio HF and DFT methods. Spectrochim Acta A Mol Biomol Spectrosc 2015; 135: 321–334.
  • [18] Krishnakumar V, Seshadri S. Scaled quantum chemical calculations and FT-IR, FT-Raman spectral analysis of 2-methyl piperazine. Spectrochim Acta A Mol Biomol Spectrosc 2007; 68(3): 833-838.
  • [19] Prabavathi N, Senthil Nayaki N, Krishnakumar V. Spectroscopic Investigation (FT-IR, FT-Raman, NMR and UV-Vis), Conformational Stability, NBO and Thermodynamic Analysis of 1-(2-Methoxyphenyl) Piperazine and 1-(2-Chlorophenyl) Piperazine by DFT Approach. Pharm Anal Acta 2015; 6-7: 1-20.
  • [20] Alver Ö, Parlak C, Şenyel M. FT-IR and NMR investigation of 1-phenylpiperazine: A combined experimental and theoretical study. Spectrochim Acta A Mol Biomol Spectrosc 2007;67(3-4): 793-801.
  • [21] Subashini K, Periandy S. Spectroscopic (FT-IR, FT-Raman, UV, NMR, NLO) investigation and molecular docking study of 1-(4-Methylbenzyl) piperazine. J Mol Struct 2017; 1134: 157-170.
  • [22] Wojciechowski P. M, Michalska D. Theoretical Raman and infrared spectra, and vibrational assignment for para-halogenoanilines: DFT study. Spectrochim Acta A Mol Biomol Spectrosc 2007; 68(3): 948-955.
  • [23] Aschaffenburg D. J, Moog R. S. Probing Hydrogen Bonding Environments: Solvatochromic Effects on the CN Vibration of Benzonitrile. J Phys Chem B 2009; 113: 12736–12743.
There are 23 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Gokhan Dikmen 0000-0003-0304-3527

Publication Date June 1, 2019
Published in Issue Year 2019 Volume: 20 Issue: 2

Cite

AMA Dikmen G. 1-(4-CHLOROPHENYL) PIPERAZINE: FT-IR, RAMAN, NMR AND THEORETICAL STUDIES. Estuscience - Se. June 2019;20(2):133-142. doi:10.18038/aubtda.376154