Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 21 Sayı: 1, 1 - 20, 31.03.2020
https://doi.org/10.18038/estubtda.531047

Öz

Kaynakça

  • [1] Huang Y, Boyle K. Antennas. John Wiley and Sons, Ltd 2008.
  • [2] Dempsey RC. United States Patent. United States Patent 1996; 5 563 616: 1–5.
  • [3] Imbriale WA, Gao S, Boccia L. Space antenna handbook. John Wiley & Sons, Ltd Registered 2012: 1–768. [4] Kouya O. Development of an antenna material based on rubber that has flexibility and high impact resistance. NTN Technical Review 2008; 76: 58–63.
  • [5] Sebastian MT, Jantunen H. Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: A review. International Journal of Applied Ceramic Technology 2010; 7: 415–34.
  • [6] Lak M. Walpita B, William M. Pleban M, Helmut Eckhardt M. Liquid Crystalline Polymer Composites Having High Delectric Constant. United States Patent 1999; 5 962 122.
  • [7] Hansen RC, Burke M. Antennas with magneto-dielectrics. Microwave and Optical Technology Letters 2000; 26: 75–8.
  • [8] Karilainen AO, Ikonen PMT, Simovski CR et al. Experimental studies of antenna miniaturization Using Magneto-Dielectric and Dielectric Materials. IET Microwaves, Antennas & Propagation 2011; 5: 495–502.
  • [9] Keith R.Carver, James W. Mink. Microstrip antenna technology. IEEE Transactions on Antennas and Propagation 1981; AP-29.
  • [10] Dejean G, Bairavasubramanian R, Thompson D, Ponchak GE, Tentzeris MM, Papapolymerou J. Liquid Crystal Polymer ( LCP ): A new organic material for the development of multilayer. IEEE Antennas and Wireless Propagation Letters 2005; 4: 22–6.
  • [11] Thompson DC, Member S, Tantot O et al. Characterization of liquid crystal polymer ( LCP ) Material and Transmission Lines on LCP Substrates From 30 to 110 GHz. IEEE Transactions on Microwave Theory and Techniques 2004; 52: 1343–52.
  • [12] Zweben C. Advances in composite materials for thermal management in electronic packaging. JOM 1998: 47–51.
  • [13] Nisa VS, Rajesh S, Murali KP, Priyadarsini V, Potty SN, Ratheesh R. Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications. Composites Science and Technology 2008; 68: 106–12.
  • [14] Diakoulaki D, Mavrotas G, Papayannakis L. Determining objective weights in multiple criteria problems: The critic method. Computers and Operations Research 1995; 22: 763–70.
  • [15] Gigović L, Pamuĉar D, Bajić Z, Milićević M. The combination of expert judgment and GIS-MAIRCA analysis for the selection of sites for ammunition depots. Sustainability 2016; 8: doi:10.3390/su8040372.
  • [16] Li-juan D, Ai-Ling M. Discuss on water-saving irrigation schemes optimization based on TOPSIS model and CRITIC weights method. Water Sciences and Engineering Technology 2010; 2: 10–2.
  • [17] Ping X. Application of CRITIC Method in Medical Quality Assessment. Value Engineering 2011; 1: 2009–10.
  • [18] Kazan H, Özdemir Ö. Financial performance assessment of large conglomerates via Topsis And Critic Methods. International Journal of Management and Sustainability 2014; 3: 203–24.
  • [19] Çetinyokuş T, Özdil L. İş Zekasi Yazılımı alternatiflerinin çok kriterli karar verme yöntemi ile değerlendirilmesi. Yönetim Bilişim Sistemleri Dergisi 2015; 1: 48–61.
  • [20] Kılıç O, Çerçioğlu H. TCDD İltisak hatları projelerinin değerlendirilmesinde uzlaşık çok ölçütlü karar verme yöntemleri uygulaması. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 2016; 31: 211–20.
  • [21] Orakçı E, Özdemir A. Telafi edici çok kriterli karar verme yöntemleri ile Türkiye ve AB ülkelerinin insani gelişmişlik düzeylerinin belirlenmesi. Afyon Kocatepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 2017; 19: 61–74.
  • [22] Ünlü U, Yalçın N, Yağlı İ. Kurumsal yöneti̇m ve fi̇rma performansi: Topsis yöntemi̇ ile Bist 30 fi̇rmaları üzeri̇ne bi̇r uygulama. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 2017; 19: 63–81.
  • [23] Pamučar D, Mihajlović M, Obradović R, Atanasković P. Novel approach to group multi-criteria decision making based on interval rough numbers: Hybrid dematel-anp-maırca model. expert systems with applications 2017; 88: 58–80.
  • [24] Badi I, Ballem M. Supplier Selection using Rough bwm-maırca model: A case study in Pharmaceutical Supplying in Libya. Decision Making: Applications in Management and Engineering 2018; 1: 16–33.
  • [25] Chatterjee K, Pamucar D, Zavadskas EK. Evaluating the performance of suppliers based on using the R’AMATEL-MAIRCA method for green supply chain implementation in electronics industry. Journal of Cleaner Production 2018; 184: 101–29.
  • [26] ULUTAŞ A. Critic ve Evamix Yöntemleri̇ ile Bi̇r İşletm içi̇n Di̇züstü Bi̇lgi̇sayar Seçi̇mi̇. Journal of International Social Research 2018; 11: 881–7.
  • [27] Elrashidi A, Elleithy K, Bajwa H. The performance of a cylindrical microstrip printed antenna for tm 10 mode as a function of temperature for different substrates. International Journal of Next-Generation Networks (IJNGN) 2011; 3: 1–18.
  • [28] Frederickson MD, Thaler B, Editor T. Properties of low dielectric constant laminates properties of low dielectric constant laminates. A publication of the National Electronics Manufacturing Center of Excellence 2010: 1–12.
  • [29] Kuo DH, Chang CC, Su TY, Wang WK, Lin BY. Dielectric properties of three ceramic/epoxy composites. Materials Chemistry and Physics 2004; 85: 201–6.
  • [30] Sanjana ZN, Raghava RS, Marchetti JR. Thermal Expansion Coefficients of Leadless Chip Carrier Compatible Printed Wiring Boards. Polymers in Electronics ACS Symposium Series; American Chemical Society 1984; 30: 379–96.
  • [31] Chin WS, Lee DG. Binary mixture rule for predicting the dielectric properties of unidirectional E-glass/epoxy composite. Composite Structures 2006; 74: 153–62.
  • [32] Standard Test method for coefficient of linear thermal expansion of plastics between −30°C and 30°C with a vitreous silica dilatometer. ASTM D 696 - 98.
  • [33] Wu CC, Chen YC, Yang CF, Su CC, Diao CC. The dielectric properties of epoxy/AlN composites. Journal of the European Ceramic Society 2007; 27: 3839–42.
  • [34] Yung KC, Wu J, Yue TM, Xie CS. Size effect of AlN on the performance of printed circuit board (PCB) material-brominated epoxy resin. Journal of Composite Materials 2006; 40: 567–81.
  • [35] Murali KP, Rajesh S, Prakash O, Kulkarni AR, Ratheesh R. Comparison of alumina and magnesia filled PTFE composites for microwave substrate applications. Materials Chemistry and Physics 2009; 113: 290–5.
  • [36] Holliday L, Robinson J. Review: The thermal expansion of composites based on polymers. Journal of Materials Science 1973; 8: 301–11.
  • [37] Chu XX, Wu ZX, Huang RJ, Zhou Y, Li LF. Mechanical and thermal expansion properties of glass fibers reinforced PEEK composites at cryogenic temperatures. Cryogenics 2010; 50: 84–8.
  • [38] Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochimica Acta 2005; 430: 155–65.
  • [39] Singh L, Ludovice PJ, Henderson CL. Influence of molecular weight and film thickness on the glass transition temperature and coefficient of thermal expansion of supported ultrathin polymer films. Thin Solid Films 2004; 449: 231–41.
  • [40] Ligny D de, Richet P. High-temperature heat capacity and thermal expansion of SrTiO3 and SrZrO3 perovskites. Phys. Rev. B 1996; 53: 3013.
  • [41] Sengupta LC, Sengupta S. Breakthrough advances in low loss, tunable dielectric materials. Materials Research Innovations 1999; 2: 278–82.
  • [42] Creamer AS, Ract AS. Properties of Barium-Strontium Titanate Dielectrics. Journal of The American Ceramic Society 1946; 30: 114–24.
  • [43] Kwestroo W, Paping HAM. The Systems BaO-SrO-TiO2, BaO-CaO-TiO2, and SrO-CaO-Ti02. Journal of The American Ceramic Society 1959; 42: 292–9.
  • [44] Saxena SK, Dubrovinsky LS. Thermal Expansion of Periclase (MgO) and Tungsten (W) to Melting Temperatures. Physics and Chemistry of Minerals 1997; 24: 547–50.
  • [45] Jayaraj K, Noll TE, Singh D. RF characterization of a low cost multichip packaging technology\nfor monolithic microwave and millimeter wave integrated circuits. 1995: 443–6.
  • [46] Sengupta LC, Stowell S, Ngo E, Oday ME, Lancto R. Barium strontium titanate and nonferroelectric oxide ceramic composites for use in phased array antennas. Integrated Ferroelectrics 1995; 8: 77–88.
  • [47] Sarmah D, Deka JR, Bhattacharyya S, Bhattacharyya NS. Study of LDPE/TiO2 and PS/TiO2 Composites as Potential Substrates for Microstrip Patch Antennas. Journal of Electronic Materials 2010; 39: 2359–65.
  • [48] Das-gupta DK, Doughty K. Poylmer-Ceramic composite materials with high dielectric constants. Thin Solid Films 1988; 158: 93–105.
  • [49] Kochetov R, Andritsch T, Lafont U, Morshuis PHF, Picken SJ, Smit JJ. Preparation and dielectric properties of epoxy - BN and epoxy - AlN nanocomposites. EEE Electrical Insulation Conference 2009: 397–400.
  • [50] Ma Y, Ma QS, Suo J, Chen ZH. Low-temperature fabrication and characterization of porous SiC ceramics using silicone resin as binder. Ceramics International 2008; 34: 253–5.
  • [51] Penn SJ, Alford NM, Templeton A et al. Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina. Journal of the American Ceramic Society 2005; 80: 1885–8.
  • [52] Alford NMN, Penn SJ. Sintered alumina with low dielectric loss. Journal of Applied Physics 1996; 80: 5895–8.
  • [53] Lee HG, Kim HG. Ceramic particle size dependence of dielectric and piezoelectric properties of piezoelectric ceramic-polymer composites. Journal of Applied Physics 1990; 67: 2024–8.
  • [54] Ullah MH, Islam MT, Mandeep JS, Misran N. A new double L-shaped multiband patch antenna on a polymer resin material substrate. Applied Physics A 2013; 110: 199–205.

MATERIAL SELECTION FOR MICROSTRIP ANTENNA USING CRITIC-MIACRA INTEGRATION AS A PRACTICAL APPROACH

Yıl 2020, Cilt: 21 Sayı: 1, 1 - 20, 31.03.2020
https://doi.org/10.18038/estubtda.531047

Öz

Selection of
suitable material is a critical step in design of microstrip antenna.
Dielectric constant, thermal expansion coefficient, conductivity, mechanical
properties, weight are leading material properties to select the proper
material. Besides these factors, environmental factors, cost and size are among
prominent design criteria. In this study to analyze material selection
situation for microstrip antenna manufacturing a multi criteria decision making
(MCDM) structure is proposed. In this context, CRITIC-MAIRCA integration which
are the one of the MCDM approaches are performed to determine the best material
for microstrip antenna. Dielectric constant, loss tangent and thermal expansion
coefficient criteria are considered to select the best among eighteen different
materials. The impact of each criterion on selection process is computed via
using CRITIC. To rank alternative considering the weights of criteria, MAIRCA
was utilized. As a result, BaSrTi2O6 (bulk form) is
determined as the best material for microstrip antenna manufacturing. This
study provides an initial insight related to the suitable material in a
practical manner. 

Kaynakça

  • [1] Huang Y, Boyle K. Antennas. John Wiley and Sons, Ltd 2008.
  • [2] Dempsey RC. United States Patent. United States Patent 1996; 5 563 616: 1–5.
  • [3] Imbriale WA, Gao S, Boccia L. Space antenna handbook. John Wiley & Sons, Ltd Registered 2012: 1–768. [4] Kouya O. Development of an antenna material based on rubber that has flexibility and high impact resistance. NTN Technical Review 2008; 76: 58–63.
  • [5] Sebastian MT, Jantunen H. Polymer-ceramic composites of 0-3 connectivity for circuits in electronics: A review. International Journal of Applied Ceramic Technology 2010; 7: 415–34.
  • [6] Lak M. Walpita B, William M. Pleban M, Helmut Eckhardt M. Liquid Crystalline Polymer Composites Having High Delectric Constant. United States Patent 1999; 5 962 122.
  • [7] Hansen RC, Burke M. Antennas with magneto-dielectrics. Microwave and Optical Technology Letters 2000; 26: 75–8.
  • [8] Karilainen AO, Ikonen PMT, Simovski CR et al. Experimental studies of antenna miniaturization Using Magneto-Dielectric and Dielectric Materials. IET Microwaves, Antennas & Propagation 2011; 5: 495–502.
  • [9] Keith R.Carver, James W. Mink. Microstrip antenna technology. IEEE Transactions on Antennas and Propagation 1981; AP-29.
  • [10] Dejean G, Bairavasubramanian R, Thompson D, Ponchak GE, Tentzeris MM, Papapolymerou J. Liquid Crystal Polymer ( LCP ): A new organic material for the development of multilayer. IEEE Antennas and Wireless Propagation Letters 2005; 4: 22–6.
  • [11] Thompson DC, Member S, Tantot O et al. Characterization of liquid crystal polymer ( LCP ) Material and Transmission Lines on LCP Substrates From 30 to 110 GHz. IEEE Transactions on Microwave Theory and Techniques 2004; 52: 1343–52.
  • [12] Zweben C. Advances in composite materials for thermal management in electronic packaging. JOM 1998: 47–51.
  • [13] Nisa VS, Rajesh S, Murali KP, Priyadarsini V, Potty SN, Ratheesh R. Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications. Composites Science and Technology 2008; 68: 106–12.
  • [14] Diakoulaki D, Mavrotas G, Papayannakis L. Determining objective weights in multiple criteria problems: The critic method. Computers and Operations Research 1995; 22: 763–70.
  • [15] Gigović L, Pamuĉar D, Bajić Z, Milićević M. The combination of expert judgment and GIS-MAIRCA analysis for the selection of sites for ammunition depots. Sustainability 2016; 8: doi:10.3390/su8040372.
  • [16] Li-juan D, Ai-Ling M. Discuss on water-saving irrigation schemes optimization based on TOPSIS model and CRITIC weights method. Water Sciences and Engineering Technology 2010; 2: 10–2.
  • [17] Ping X. Application of CRITIC Method in Medical Quality Assessment. Value Engineering 2011; 1: 2009–10.
  • [18] Kazan H, Özdemir Ö. Financial performance assessment of large conglomerates via Topsis And Critic Methods. International Journal of Management and Sustainability 2014; 3: 203–24.
  • [19] Çetinyokuş T, Özdil L. İş Zekasi Yazılımı alternatiflerinin çok kriterli karar verme yöntemi ile değerlendirilmesi. Yönetim Bilişim Sistemleri Dergisi 2015; 1: 48–61.
  • [20] Kılıç O, Çerçioğlu H. TCDD İltisak hatları projelerinin değerlendirilmesinde uzlaşık çok ölçütlü karar verme yöntemleri uygulaması. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi 2016; 31: 211–20.
  • [21] Orakçı E, Özdemir A. Telafi edici çok kriterli karar verme yöntemleri ile Türkiye ve AB ülkelerinin insani gelişmişlik düzeylerinin belirlenmesi. Afyon Kocatepe Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 2017; 19: 61–74.
  • [22] Ünlü U, Yalçın N, Yağlı İ. Kurumsal yöneti̇m ve fi̇rma performansi: Topsis yöntemi̇ ile Bist 30 fi̇rmaları üzeri̇ne bi̇r uygulama. Dokuz Eylül Üniversitesi Sosyal Bilimler Enstitüsü Dergisi 2017; 19: 63–81.
  • [23] Pamučar D, Mihajlović M, Obradović R, Atanasković P. Novel approach to group multi-criteria decision making based on interval rough numbers: Hybrid dematel-anp-maırca model. expert systems with applications 2017; 88: 58–80.
  • [24] Badi I, Ballem M. Supplier Selection using Rough bwm-maırca model: A case study in Pharmaceutical Supplying in Libya. Decision Making: Applications in Management and Engineering 2018; 1: 16–33.
  • [25] Chatterjee K, Pamucar D, Zavadskas EK. Evaluating the performance of suppliers based on using the R’AMATEL-MAIRCA method for green supply chain implementation in electronics industry. Journal of Cleaner Production 2018; 184: 101–29.
  • [26] ULUTAŞ A. Critic ve Evamix Yöntemleri̇ ile Bi̇r İşletm içi̇n Di̇züstü Bi̇lgi̇sayar Seçi̇mi̇. Journal of International Social Research 2018; 11: 881–7.
  • [27] Elrashidi A, Elleithy K, Bajwa H. The performance of a cylindrical microstrip printed antenna for tm 10 mode as a function of temperature for different substrates. International Journal of Next-Generation Networks (IJNGN) 2011; 3: 1–18.
  • [28] Frederickson MD, Thaler B, Editor T. Properties of low dielectric constant laminates properties of low dielectric constant laminates. A publication of the National Electronics Manufacturing Center of Excellence 2010: 1–12.
  • [29] Kuo DH, Chang CC, Su TY, Wang WK, Lin BY. Dielectric properties of three ceramic/epoxy composites. Materials Chemistry and Physics 2004; 85: 201–6.
  • [30] Sanjana ZN, Raghava RS, Marchetti JR. Thermal Expansion Coefficients of Leadless Chip Carrier Compatible Printed Wiring Boards. Polymers in Electronics ACS Symposium Series; American Chemical Society 1984; 30: 379–96.
  • [31] Chin WS, Lee DG. Binary mixture rule for predicting the dielectric properties of unidirectional E-glass/epoxy composite. Composite Structures 2006; 74: 153–62.
  • [32] Standard Test method for coefficient of linear thermal expansion of plastics between −30°C and 30°C with a vitreous silica dilatometer. ASTM D 696 - 98.
  • [33] Wu CC, Chen YC, Yang CF, Su CC, Diao CC. The dielectric properties of epoxy/AlN composites. Journal of the European Ceramic Society 2007; 27: 3839–42.
  • [34] Yung KC, Wu J, Yue TM, Xie CS. Size effect of AlN on the performance of printed circuit board (PCB) material-brominated epoxy resin. Journal of Composite Materials 2006; 40: 567–81.
  • [35] Murali KP, Rajesh S, Prakash O, Kulkarni AR, Ratheesh R. Comparison of alumina and magnesia filled PTFE composites for microwave substrate applications. Materials Chemistry and Physics 2009; 113: 290–5.
  • [36] Holliday L, Robinson J. Review: The thermal expansion of composites based on polymers. Journal of Materials Science 1973; 8: 301–11.
  • [37] Chu XX, Wu ZX, Huang RJ, Zhou Y, Li LF. Mechanical and thermal expansion properties of glass fibers reinforced PEEK composites at cryogenic temperatures. Cryogenics 2010; 50: 84–8.
  • [38] Sim LC, Ramanan SR, Ismail H, Seetharamu KN, Goh TJ. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochimica Acta 2005; 430: 155–65.
  • [39] Singh L, Ludovice PJ, Henderson CL. Influence of molecular weight and film thickness on the glass transition temperature and coefficient of thermal expansion of supported ultrathin polymer films. Thin Solid Films 2004; 449: 231–41.
  • [40] Ligny D de, Richet P. High-temperature heat capacity and thermal expansion of SrTiO3 and SrZrO3 perovskites. Phys. Rev. B 1996; 53: 3013.
  • [41] Sengupta LC, Sengupta S. Breakthrough advances in low loss, tunable dielectric materials. Materials Research Innovations 1999; 2: 278–82.
  • [42] Creamer AS, Ract AS. Properties of Barium-Strontium Titanate Dielectrics. Journal of The American Ceramic Society 1946; 30: 114–24.
  • [43] Kwestroo W, Paping HAM. The Systems BaO-SrO-TiO2, BaO-CaO-TiO2, and SrO-CaO-Ti02. Journal of The American Ceramic Society 1959; 42: 292–9.
  • [44] Saxena SK, Dubrovinsky LS. Thermal Expansion of Periclase (MgO) and Tungsten (W) to Melting Temperatures. Physics and Chemistry of Minerals 1997; 24: 547–50.
  • [45] Jayaraj K, Noll TE, Singh D. RF characterization of a low cost multichip packaging technology\nfor monolithic microwave and millimeter wave integrated circuits. 1995: 443–6.
  • [46] Sengupta LC, Stowell S, Ngo E, Oday ME, Lancto R. Barium strontium titanate and nonferroelectric oxide ceramic composites for use in phased array antennas. Integrated Ferroelectrics 1995; 8: 77–88.
  • [47] Sarmah D, Deka JR, Bhattacharyya S, Bhattacharyya NS. Study of LDPE/TiO2 and PS/TiO2 Composites as Potential Substrates for Microstrip Patch Antennas. Journal of Electronic Materials 2010; 39: 2359–65.
  • [48] Das-gupta DK, Doughty K. Poylmer-Ceramic composite materials with high dielectric constants. Thin Solid Films 1988; 158: 93–105.
  • [49] Kochetov R, Andritsch T, Lafont U, Morshuis PHF, Picken SJ, Smit JJ. Preparation and dielectric properties of epoxy - BN and epoxy - AlN nanocomposites. EEE Electrical Insulation Conference 2009: 397–400.
  • [50] Ma Y, Ma QS, Suo J, Chen ZH. Low-temperature fabrication and characterization of porous SiC ceramics using silicone resin as binder. Ceramics International 2008; 34: 253–5.
  • [51] Penn SJ, Alford NM, Templeton A et al. Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina. Journal of the American Ceramic Society 2005; 80: 1885–8.
  • [52] Alford NMN, Penn SJ. Sintered alumina with low dielectric loss. Journal of Applied Physics 1996; 80: 5895–8.
  • [53] Lee HG, Kim HG. Ceramic particle size dependence of dielectric and piezoelectric properties of piezoelectric ceramic-polymer composites. Journal of Applied Physics 1990; 67: 2024–8.
  • [54] Ullah MH, Islam MT, Mandeep JS, Misran N. A new double L-shaped multiband patch antenna on a polymer resin material substrate. Applied Physics A 2013; 110: 199–205.
Toplam 53 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ebru Saraloğlu Güler 0000-0002-3732-1268

Gülin Feryal Can 0000-0002-7275-2012

Yayımlanma Tarihi 31 Mart 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 21 Sayı: 1

Kaynak Göster

AMA Saraloğlu Güler E, Can GF. MATERIAL SELECTION FOR MICROSTRIP ANTENNA USING CRITIC-MIACRA INTEGRATION AS A PRACTICAL APPROACH. Eskişehir Technical University Journal of Science and Technology A - Applied Sciences and Engineering. Mart 2020;21(1):1-20. doi:10.18038/estubtda.531047