This comparative study experimentally investigates the effect of both the type and content of carbon based nanoparticles on the mechanical properties of epoxy composites. For this purpose, carbon nanotubes (CNTs), expanded graphite (EG), and carbon black (CB) were used as reinforcing nanoparticles at various concentrations within the epoxy polymer. The nanoparticles were dispersed by ultrasonication method. CNTs incorporated up to 0.4% by weight (wt.) while EG and CB nanoparticles were employed at 4%, 8%, 10%, and 12% concentrations by weight. Tensile tests of the nanocomposites were conducted according to ASTM D680 to determine the mechanical properties of nanocomposites including ultimate tensile strength and modulus. The results revealed that all types of nanoparticles have a strong reinforcing effect on the mechanical properties depending on their concentrations. When carbon nanotubes (CNTs) were used, the highest improvement in strength, by 84.7% at 0.1% wt., and in modulus, by 32.1% at 0.2% wt. content, was observed. EG nanoparticles exhibited improvement in both strength and modulus at all contents. The highest improvement in strength, by 109.6% at 4% wt., and in modulus, by 95.6% at 10% wt. concentration, was observed. In the case of carbon black (CB), improvement in strength was observed only at 4% wt. concentration, by 44.9%. On the other hand, enhancement in modulus was seen at all CB contents, with the greatest improvement at 10% wt., reaching 58.2%.
TUBITAK
122M232
The author would like to thank TUBITAK (The Scientific and Technological Research Council of Turkey) for the financial support via 1002 - Fast Support Program under grant number: 122M232.
This comparative study experimentally investigates the effect of both the type and content of carbon based nanoparticles on the mechanical properties of epoxy composites. For this purpose, carbon nanotubes (CNTs), expanded graphite (EG), and carbon black (CB) were used as reinforcing nanoparticles at various concentrations within the epoxy polymer. The nanoparticles were dispersed by ultrasonication method. CNTs incorporated up to 0.4% by weight (wt.) while EG and CB nanoparticles were employed at 4%, 8%, 10%, and 12% concentrations by weight. Tensile tests of the nanocomposites were conducted according to ASTM D680 to determine the mechanical properties of nanocomposites including ultimate tensile strength and modulus. The results revealed that all types of nanoparticles have a strong reinforcing effect on the mechanical properties depending on their concentrations. When carbon nanotubes (CNTs) were used, the highest improvement in strength, by 84.7% at 0.1% wt., and in modulus, by 32.1% at 0.2% wt. content, was observed. EG nanoparticles exhibited improvement in both strength and modulus at all contents. The highest improvement in strength, by 109.6% at 4% wt., and in modulus, by 95.6% at 10% wt. concentration, was observed. In the case of carbon black (CB), improvement in strength was observed only at 4% wt. concentration, by 44.9%. On the other hand, enhancement in modulus was seen at all CB contents, with the greatest improvement at 10% wt., reaching 58.2%.
122M232
Primary Language | English |
---|---|
Subjects | Composite and Hybrid Materials |
Journal Section | Articles |
Authors | |
Project Number | 122M232 |
Publication Date | June 28, 2024 |
Submission Date | October 26, 2023 |
Acceptance Date | May 30, 2024 |
Published in Issue | Year 2024 Volume: 25 Issue: 2 |