Araştırma Makalesi
BibTex RIS Kaynak Göster

Silis Dumanı İkameli Çimentoların Priz Sürelerinin ANFIS ile Tahmini

Yıl 2024, Cilt: 5 Sayı: 1, 45 - 52, 30.06.2024
https://doi.org/10.53608/estudambilisim.1460831

Öz

Bu çalışma, silis dumanı ikameli çimento hamurlarının priz sürelerinin ANFIS ile tahmin edilmesi amacıyla gerçekleştirilmiştir. Çalışmanın ilk bölümünde, Portland çimentosuna %0, %2.5, %5, %7.5 ve %10 oranlarında silis dumanı ikame edilerek elde edilmiş çimento hamurlarının priz başlama ve priz sonu süreleri tespit edilmiştir. İkinci bölümde, deneysel sonuçlarla Üçgen ve Gauss üyelik fonksiyonlarıyla iki model oluşturularak priz başlama ve priz sonu süreleri tahmin edilmiştir. Üçüncü bölümdeyse tahmin sonuçlarının güvenilirliği belirtebilmek için R2, MAPE ve RMSE istatiksel yöntemlerinden yararlanılmıştır. Sonuç olarak R2, MAPE ve RMSE değerleri priz başlama ve priz sonu sürelerine göre sırasıyla; Üçgen üyelik fonksiyonu için 0.9882-0.9778, 0.015156-0.018960 ve 3.8027-5.8689, Gauss üyelik fonksiyonu için ise 0.9882-0.9778, 0.015226-0.018956 ve 3.8006-5.8689 olarak tespit edilmiştir. Bu sonuçlara göre hem priz başlama ve hem de priz sonu sürelerinin Üçgen ve Gauss üyelik fonksiyonlarıyla oluşturulan modellerle “çok iyi” veya “yüksek doğruluk derecesinde” tahmin edilebileceği ifade edilebilir.

Etik Beyan

Yazarlar bu çalışmanın özgün olduğunu, etik görev ve sorumluluklara uyduklarını beyan eder.

Destekleyen Kurum

Düzce Üniversitesi Bilimsel Araştırma Projesi Komisyon Başkanlığı

Proje Numarası

2024.06.05.1461

Teşekkür

Yazarlar, çimento deneyleri ve analizlerinin yapılmasında katkıda bulunan Ankara “LİMAK ANKA” Çimento Fabrikası çalışanlarına ve yöneticilerini ile Finansal destekleri için Düzce Üniversitesi Bilimsel Araştırma Projesi Komisyon Başkanlığına (Proje kod numarası: 2024.06.05.1461) teşekkürlerini sunarlar.

Kaynakça

  • Okoji, A. I., Anozie, A. N., & Omoleye, J. A. (2022). Evaluating the thermodynamic efficiency of the cement grate clinker cooler process using artificial neural networks and ANFIS. Ain Shams Engineering Journal, 13(5), 101704. 101704, https://doi.org/10.1016/j.asej.2022.101704
  • Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 117455. https://doi.org/10.1016/j.conbuildmat.2019.117455
  • Dong, E., Yu, R., Fan, D., Chen, Z., & Ma, X. (2022). Absorption-desorption process of internal curing water in ultra-high performance concrete (UHPC) incorporating pumice: From relaxation theory to dynamic migration model. Cement and Concrete Composites, 133, 104659. https://doi.org/10.1016/j.cemconcomp.2022.104659
  • Lehner, P., & Hrabová, K. (2023). Evaluation of degradation and mechanical parameters and sustainability indicators of zeolite concretes. Construction and Building Materials, 371, 130791. https://doi.org/10.1016/j.conbuildmat.2023.130791
  • Kurtay, M., Gerengi, H., Kocak, Y., Chidiebere, M. A., & Yildiz, M. (2020). The potency of zeolite and diatomite on the corrosive destruction of reinforcing steel in 1 M HNO3 environment. Construction and Building Materials, 236, 117572. https://doi.org/10.1016/j.conbuildmat.2019.117572
  • Kocak, Y. (2017). The effects of super plasticizer and trass on the cement hydration. Pamukkale University Journal of Engineering Sciences, 23(3), 184-192. https://dx.doi.org/10.5505/pajes.2016.80008
  • Venkitasamy, V., Santhanam, M., Rao, B. P. C., Balakrishnan, S., & Kumar, A. (2024). Mechanical and durability properties of structural grade heavy weight concrete with fly ash and slag. Cement and Concrete Composites, 145, 105362. https://doi.org/10.1016/j.cemconcomp.2023.105362
  • Mardmomen, S., & Chen, H. L. R. (2023). Modeling the thermal and mechanical properties of early age concrete containing ground granulated blast furnace slag. Construction and Building Materials, 401, 132902. https://doi.org/10.1016/j.conbuildmat.2023.132902
  • Kocak, Y. (2020). Effects of metakaolin on the hydration development of Portland–composite cement. Journal of building engineering, 31, 101419. https://doi.org/10.1016/j.jobe.2020.101419
  • Das, S. K., Behera, N., Patro, S. K., Mustakim, S. M., Suda, Y., & Leklou, N. (2024). Effectiveness of rice husk ash-derived alkali activator in fresh, mechanical, and microstructure properties of geopolymer mortar at ambient temperature curing. Journal of Sustainable Cement-Based Materials, 13(2), 213-221. https://doi.org/10.1080/21650373.2023.2262465
  • Khan, M. I., & Siddique, R. (2011). Utilization of silica fume in concrete: Review of durability properties. Resources, Conservation and Recycling, 57, 30-35.
  • Jain, B., & Sancheti, G. (2023). Influence of silica fume and iron dust on mechanical properties of concrete. Construction and Building Materials, 409, 133910. https://doi.org/10.1016/j.conbuildmat.2023.133910
  • Song, H. W., Pack, S. W., Nam, S. H., Jang, J. C., & Saraswathy, V. (2010). Estimation of the permeability of silica fume cement concrete. Construction and Building Materials, 24(3), 315-321. https://doi.org/10.1016/j.conbuildmat.2009.08.033
  • TS EN 197-1. Çimento- Bölüm 1: Genel Çimentolar Bileşim, Özellikler ve Uygunluk Kriterleri. Türk Standartları, Ankara, 2012.
  • Güvenç, U., & Koçak, B. (2022). Pomza ve Diatomitin Portland Çimentosunun Basınç Dayanımına Etkilerinin ANFIS ile Tahmini. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 3(1), 18-25. https://doi.org/10.53608/estudambilisim.1051136
  • Ozcan, G., Kocak, Y., & Gulbandilar, E. (2018). Compressive strength estimation of concrete containing zeolite and diatomite: an expert system implementation. Computers and Concrete, An International Journal, 21(1), 21-30.
  • Koçak, B., Şahin, Y. İ., & Koçak, Y. (2023). Portland Çimentosunun Eğilme Dayanımına Yüksek Fırın Cürufu Etkisinin Bulanık Mantık ve ANFIS ile Tahmini. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 4(1), 17-24. https://doi.org/10.53608/estudambilisim.1227733
  • Gülbandılar, E., Koçak, B., Özdemir, İ., & Koçak, Y. (2023). Portland Çimentosu Priz Sürelerine Pirinç Kabuğu Külü Etkisinin ANFIS ile Tahmini. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 4(2), 34-42. https://doi.org/10.53608/estudambilisim.1298231
  • Golafshani, E. M., Behnood, A., & Arashpour, M. (2020). Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer. Construction and Building Materials, 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266
  • Vakhshouri, B., & Nejadi, S. (2018). Prediction of compressive strength of self-compacting concrete by ANFIS models. Neurocomputing, 280, 13-22. https://doi.org/10.1016/j.neucom.2017.09.099
  • Li, J., Yan, G., Abbud, L. H., Alkhalifah, T., Alturise, F., Khadimallah, M. A., & Marzouki, R. (2023). Predicting the shear strength of concrete beam through ANFIS-GA–PSO hybrid modeling. Advances in Engineering Software, 181, 103475. https://doi.org/10.1016/j.advengsoft.2023.103475
  • Ly, H. B., Pham, B. T., Dao, D. V., Le, V. M., Le, L. M., & Le, T. T. (2019). Improvement of ANFIS model for prediction of compressive strength of manufactured sand concrete. Applied Sciences, 9(18), 3841. https://doi.org/10.3390/app9183841
  • Keshavarz, Z., & Torkian, H. (2018). Application of ANN and ANFIS models in determining compressive strength of concrete. Journal of Soft Computing in Civil Engineering, 2(1), 62-70. https://doi.org/10.22115/SCCE.2018.51114
  • Nafees, A., Javed, M. F., Khan, S., Nazir, K., Farooq, F., Aslam, F., ... & Vatin, N. I. (2021). Predictive modeling of mechanical properties of silica fume-based green concrete using artificial intelligence approaches: MLPNN, ANFIS, and GEP. Materials, 14(24), 7531. https://doi.org/10.3390/ma14247531
  • TS EN 196-3. Çimento deney metotları- Bölüm 3: Priz süresi ve hacim genleşme tayini. Türk Standartları, Ankara, 2010.
  • Kocak, B., Pınarcı, İ., Güvenç, U., & Kocak, Y. (2023). Prediction of compressive strengths of pumice-and diatomite-containing cement mortars with artificial intelligence-based applications. Construction and Building Materials, 385, 131516. https://doi.org/10.1016/j.conbuildmat.2023.131516
  • Gkountakou, F., & Papadopoulos, B. (2020). The use of fuzzy linear regression and ANFIS methods to predict the compressive strength of cement. Symmetry 12: 1295. https://doi.org/10.3390/sym12081295
  • Armaghani, D. J., & Asteris, P. G. (2021). A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. Neural Computing and Applications, 33(9), 4501-4532. https://doi.org/10.1007/s00521-020-05244-4
  • Temel R. (2017). Uçak Kara Kutusundan Alınan Veriler Kullanılarak Hücum Açısı Ve Mach Sayısının YSA Ve ANFIS İle Tahmini. Yüksek Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Kayseri.
  • Aali, K. A., Parsinejad, M., & Rahmani, B. (2009). Estimation of Saturation Percentage of Soil Using Multiple Regression, YSA, and ANFIS Techniques. Computing and Information Science, 2(3), 127-136.
  • Jang, J. S. (1996, September). Input selection for ANFIS learning. In Proceedings of IEEE 5th International Fuzzy Systems (Vol. 2, pp. 1493-1499). IEEE.
  • Bhavani Chowdary, T., & Ranga Rao, V. (2021). Design and Analysis of Lightweight Alkali-Activated Slag and Fly Ash Geopolymer Mortars using ANFIS-SSO. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1-14. https://doi.org/10.1007/s40996-021-00702-y
  • Gulbandilar, E., & Kocak, Y. (2013). Prediction of the effects of fly ash and silica fume on the setting time of Portland cement with fuzzy logic. Neural Computing and Applications, 22, 1485-1491. https://doi.org/10.1007/s00521-012-1049-4
  • Kocak, Y., Gulbandilar, E., & Alpaslan, L. (2015). Prediction the effects of blast furnace slag and waste tire rubber powder on the setting time of Portland cement with fuzzy logic. Materials and Methods Technology, 9, 298-307
  • Güvenç, U., Koçak, B., & Koçak, Y. (2021). Portland Kompoze Çimentosunun Priz Süresine Metakaolin Etkisinin Bulanık Mantıkla Tahmini. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 2(2), 29-34.
  • Özgan, E., & Yıldız, K. (2009). Krom Magnezit Tuğla Tozunun Portland Çimentosunun Priz Başlama Ve Bitiş Sürelerine Etkisinin Bulanık Mantıkla Tahmini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 24(2), 257-264.

Prediction of the Effect of Silica Fume on Portland Cement Setting Times by ANFIS

Yıl 2024, Cilt: 5 Sayı: 1, 45 - 52, 30.06.2024
https://doi.org/10.53608/estudambilisim.1460831

Öz

This study was carried out to predict the setting times of silica fume substituted cement pastes using ANFIS. In the first part of the study, the initial and final setting time of cement pastes obtained by substituting silica fume into Portland cement at 0%, 2.5%, 5%, 7.5% and 10% were determined. In the second part, two models with Triangular and Gaussian membership functions were created with the experimental results and the initial and final setting time were predicted. In the third part, R2, MAPE and RMSE statistical methods were utilized to indicate the reliability of the prediction results. As a presentation, R2, MAPE and RMSE values were determined as 0.9882-0.9778, 0.015156-0.018960 and 3.8027-5.8689 for Triangular membership function and 0.9882-0.9778, 0.015226-0.018956 and 3.8006-5.8689 for Gaussian membership function, respectively. According to these results, it can be stated that both initial setting time and final setting time can be predicted "very well" or "with a high degree of accuracy" with the models constructed with Triangle and Gaussian membership functions.

Proje Numarası

2024.06.05.1461

Kaynakça

  • Okoji, A. I., Anozie, A. N., & Omoleye, J. A. (2022). Evaluating the thermodynamic efficiency of the cement grate clinker cooler process using artificial neural networks and ANFIS. Ain Shams Engineering Journal, 13(5), 101704. 101704, https://doi.org/10.1016/j.asej.2022.101704
  • Singh, N. B., & Middendorf, B. (2020). Geopolymers as an alternative to Portland cement: An overview. Construction and Building Materials, 237, 117455. https://doi.org/10.1016/j.conbuildmat.2019.117455
  • Dong, E., Yu, R., Fan, D., Chen, Z., & Ma, X. (2022). Absorption-desorption process of internal curing water in ultra-high performance concrete (UHPC) incorporating pumice: From relaxation theory to dynamic migration model. Cement and Concrete Composites, 133, 104659. https://doi.org/10.1016/j.cemconcomp.2022.104659
  • Lehner, P., & Hrabová, K. (2023). Evaluation of degradation and mechanical parameters and sustainability indicators of zeolite concretes. Construction and Building Materials, 371, 130791. https://doi.org/10.1016/j.conbuildmat.2023.130791
  • Kurtay, M., Gerengi, H., Kocak, Y., Chidiebere, M. A., & Yildiz, M. (2020). The potency of zeolite and diatomite on the corrosive destruction of reinforcing steel in 1 M HNO3 environment. Construction and Building Materials, 236, 117572. https://doi.org/10.1016/j.conbuildmat.2019.117572
  • Kocak, Y. (2017). The effects of super plasticizer and trass on the cement hydration. Pamukkale University Journal of Engineering Sciences, 23(3), 184-192. https://dx.doi.org/10.5505/pajes.2016.80008
  • Venkitasamy, V., Santhanam, M., Rao, B. P. C., Balakrishnan, S., & Kumar, A. (2024). Mechanical and durability properties of structural grade heavy weight concrete with fly ash and slag. Cement and Concrete Composites, 145, 105362. https://doi.org/10.1016/j.cemconcomp.2023.105362
  • Mardmomen, S., & Chen, H. L. R. (2023). Modeling the thermal and mechanical properties of early age concrete containing ground granulated blast furnace slag. Construction and Building Materials, 401, 132902. https://doi.org/10.1016/j.conbuildmat.2023.132902
  • Kocak, Y. (2020). Effects of metakaolin on the hydration development of Portland–composite cement. Journal of building engineering, 31, 101419. https://doi.org/10.1016/j.jobe.2020.101419
  • Das, S. K., Behera, N., Patro, S. K., Mustakim, S. M., Suda, Y., & Leklou, N. (2024). Effectiveness of rice husk ash-derived alkali activator in fresh, mechanical, and microstructure properties of geopolymer mortar at ambient temperature curing. Journal of Sustainable Cement-Based Materials, 13(2), 213-221. https://doi.org/10.1080/21650373.2023.2262465
  • Khan, M. I., & Siddique, R. (2011). Utilization of silica fume in concrete: Review of durability properties. Resources, Conservation and Recycling, 57, 30-35.
  • Jain, B., & Sancheti, G. (2023). Influence of silica fume and iron dust on mechanical properties of concrete. Construction and Building Materials, 409, 133910. https://doi.org/10.1016/j.conbuildmat.2023.133910
  • Song, H. W., Pack, S. W., Nam, S. H., Jang, J. C., & Saraswathy, V. (2010). Estimation of the permeability of silica fume cement concrete. Construction and Building Materials, 24(3), 315-321. https://doi.org/10.1016/j.conbuildmat.2009.08.033
  • TS EN 197-1. Çimento- Bölüm 1: Genel Çimentolar Bileşim, Özellikler ve Uygunluk Kriterleri. Türk Standartları, Ankara, 2012.
  • Güvenç, U., & Koçak, B. (2022). Pomza ve Diatomitin Portland Çimentosunun Basınç Dayanımına Etkilerinin ANFIS ile Tahmini. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 3(1), 18-25. https://doi.org/10.53608/estudambilisim.1051136
  • Ozcan, G., Kocak, Y., & Gulbandilar, E. (2018). Compressive strength estimation of concrete containing zeolite and diatomite: an expert system implementation. Computers and Concrete, An International Journal, 21(1), 21-30.
  • Koçak, B., Şahin, Y. İ., & Koçak, Y. (2023). Portland Çimentosunun Eğilme Dayanımına Yüksek Fırın Cürufu Etkisinin Bulanık Mantık ve ANFIS ile Tahmini. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 4(1), 17-24. https://doi.org/10.53608/estudambilisim.1227733
  • Gülbandılar, E., Koçak, B., Özdemir, İ., & Koçak, Y. (2023). Portland Çimentosu Priz Sürelerine Pirinç Kabuğu Külü Etkisinin ANFIS ile Tahmini. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 4(2), 34-42. https://doi.org/10.53608/estudambilisim.1298231
  • Golafshani, E. M., Behnood, A., & Arashpour, M. (2020). Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer. Construction and Building Materials, 232, 117266. https://doi.org/10.1016/j.conbuildmat.2019.117266
  • Vakhshouri, B., & Nejadi, S. (2018). Prediction of compressive strength of self-compacting concrete by ANFIS models. Neurocomputing, 280, 13-22. https://doi.org/10.1016/j.neucom.2017.09.099
  • Li, J., Yan, G., Abbud, L. H., Alkhalifah, T., Alturise, F., Khadimallah, M. A., & Marzouki, R. (2023). Predicting the shear strength of concrete beam through ANFIS-GA–PSO hybrid modeling. Advances in Engineering Software, 181, 103475. https://doi.org/10.1016/j.advengsoft.2023.103475
  • Ly, H. B., Pham, B. T., Dao, D. V., Le, V. M., Le, L. M., & Le, T. T. (2019). Improvement of ANFIS model for prediction of compressive strength of manufactured sand concrete. Applied Sciences, 9(18), 3841. https://doi.org/10.3390/app9183841
  • Keshavarz, Z., & Torkian, H. (2018). Application of ANN and ANFIS models in determining compressive strength of concrete. Journal of Soft Computing in Civil Engineering, 2(1), 62-70. https://doi.org/10.22115/SCCE.2018.51114
  • Nafees, A., Javed, M. F., Khan, S., Nazir, K., Farooq, F., Aslam, F., ... & Vatin, N. I. (2021). Predictive modeling of mechanical properties of silica fume-based green concrete using artificial intelligence approaches: MLPNN, ANFIS, and GEP. Materials, 14(24), 7531. https://doi.org/10.3390/ma14247531
  • TS EN 196-3. Çimento deney metotları- Bölüm 3: Priz süresi ve hacim genleşme tayini. Türk Standartları, Ankara, 2010.
  • Kocak, B., Pınarcı, İ., Güvenç, U., & Kocak, Y. (2023). Prediction of compressive strengths of pumice-and diatomite-containing cement mortars with artificial intelligence-based applications. Construction and Building Materials, 385, 131516. https://doi.org/10.1016/j.conbuildmat.2023.131516
  • Gkountakou, F., & Papadopoulos, B. (2020). The use of fuzzy linear regression and ANFIS methods to predict the compressive strength of cement. Symmetry 12: 1295. https://doi.org/10.3390/sym12081295
  • Armaghani, D. J., & Asteris, P. G. (2021). A comparative study of ANN and ANFIS models for the prediction of cement-based mortar materials compressive strength. Neural Computing and Applications, 33(9), 4501-4532. https://doi.org/10.1007/s00521-020-05244-4
  • Temel R. (2017). Uçak Kara Kutusundan Alınan Veriler Kullanılarak Hücum Açısı Ve Mach Sayısının YSA Ve ANFIS İle Tahmini. Yüksek Lisans Tezi, Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Kayseri.
  • Aali, K. A., Parsinejad, M., & Rahmani, B. (2009). Estimation of Saturation Percentage of Soil Using Multiple Regression, YSA, and ANFIS Techniques. Computing and Information Science, 2(3), 127-136.
  • Jang, J. S. (1996, September). Input selection for ANFIS learning. In Proceedings of IEEE 5th International Fuzzy Systems (Vol. 2, pp. 1493-1499). IEEE.
  • Bhavani Chowdary, T., & Ranga Rao, V. (2021). Design and Analysis of Lightweight Alkali-Activated Slag and Fly Ash Geopolymer Mortars using ANFIS-SSO. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1-14. https://doi.org/10.1007/s40996-021-00702-y
  • Gulbandilar, E., & Kocak, Y. (2013). Prediction of the effects of fly ash and silica fume on the setting time of Portland cement with fuzzy logic. Neural Computing and Applications, 22, 1485-1491. https://doi.org/10.1007/s00521-012-1049-4
  • Kocak, Y., Gulbandilar, E., & Alpaslan, L. (2015). Prediction the effects of blast furnace slag and waste tire rubber powder on the setting time of Portland cement with fuzzy logic. Materials and Methods Technology, 9, 298-307
  • Güvenç, U., Koçak, B., & Koçak, Y. (2021). Portland Kompoze Çimentosunun Priz Süresine Metakaolin Etkisinin Bulanık Mantıkla Tahmini. Eskişehir Türk Dünyası Uygulama ve Araştırma Merkezi Bilişim Dergisi, 2(2), 29-34.
  • Özgan, E., & Yıldız, K. (2009). Krom Magnezit Tuğla Tozunun Portland Çimentosunun Priz Başlama Ve Bitiş Sürelerine Etkisinin Bulanık Mantıkla Tahmini. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 24(2), 257-264.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Modelleme ve Simülasyon
Bölüm Araştırma Makaleleri
Yazarlar

Yasemin Erdem 0009-0007-2805-0631

Yılmaz Koçak 0000-0002-5281-5450

Proje Numarası 2024.06.05.1461
Erken Görünüm Tarihi 20 Nisan 2024
Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 29 Mart 2024
Kabul Tarihi 18 Nisan 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 1

Kaynak Göster

IEEE Y. Erdem ve Y. Koçak, “Silis Dumanı İkameli Çimentoların Priz Sürelerinin ANFIS ile Tahmini”, ESTUDAM Bilişim, c. 5, sy. 1, ss. 45–52, 2024, doi: 10.53608/estudambilisim.1460831.

Dergimiz Index Copernicus, ASOS Indeks, Google Scholar ve ROAD indeks tarafından indekslenmektedir.