Araştırma Makalesi
BibTex RIS Kaynak Göster

Yenilebilir Mikro Boyutlu Kompozit Kaplama Uygulamalarının Albion Çilek Meyvelerinin Soğukta Muhafazasına Etkisi

Yıl 2024, Cilt: 7 Sayı: 2, 101 - 110, 31.12.2024
https://doi.org/10.55257/ethabd.1561278

Öz

Çilek meyvelerinin hasattan sonraki en büyük sorunlardan biri derim sonrası ömürlerinin kısa oluşudur. Bu gerçekten hareketle planlanan bu çalışmada, kitosan mikropartikülü (KMP) ve selenyum mikropartikülü (SeMP) ile kekik esansiyel yağı (Yağ) kombinasyonlarından oluşturulan yeni nesil aktif gıda koruyucu kaplama ajanlarının Albion çilek çeşidine ait meyvelerin derim sonrası kalitesi üzerine etkileri araştırılmıştır. Meyveler yenilebilir kolloid solüsyonla kaplandıktan sonra 4 oC’de tutulmuş ve 0, 5, 10, 15 ve 20. günlerde kalite parametrelerine yönelik analizler yapılmıştır. Çalışma sonucunda kolloid solüsyonla kaplama uygulamalarından KMP+SeMP uygulaması ve bunu takiben KMP+SeMP+Yağ uygulamasının ağırlık kaybı, solunum ve çürüme oranlarını azalttığı, renk değerleri (L*, chroma ve hue), meyve eti sertliği, suda çözünür kuru madde (SÇKM) miktarı, titre edilebilir asit (TEA) ve C vitamini içerikleri ile toplam fenolik, antosiyanin ve antioksidan kapasitesini korumada en etkili uygulamalar olduğu tespit edilmiştir. Bu sonuçlar KMP+SeMP ve KMP+SeMP+Yağ uygulamalarını çilek meyvelerinin kalitesinin korunmasında ve derim sonrası raf ömrünün uzatılmasında kullanılabilecek yenilebilir kaplamalar olabileceğini göstermektedir. Çalışma sonuçları derim sonrası çabuk bozulan ürünlerde ve raf ömrünün uzatılmasında yeni teknoloji ile üretilen mikro boyutlu kompozit kaplama ajan/ajanlarının elde edilme sürecine katkı sağlayacaktır. Ayrıca bu sonuçlar gelecekte bu ve benzer konularda yapılması olası çalışmalara ışık tutma amacıyla kullanılabileceği söylenebilir.

Destekleyen Kurum

Erciyes Üniversitesi

Proje Numarası

FBA-2023-12370

Kaynakça

  • Abdulraheem, M.I., Moshood, A.Y., 2021. Effects of nanoparticles on improvement in quality and shelf life of fruits and vegetables. Plant Biol Crop Res., 4(2): 1042.
  • Amal, S.A., El-Mogy, M.M., Aboul-Anean, H.E., Alsanius, B.W., 2010. Improving strawberry fruit storability by edible coating as a carrier of thymol or calcium chloride. Journal of Horticultural Science & Ornamental Plants, 2(3): 88-97.
  • Arabpoor, B., Yousefi, S., Weisany, W., Ghasemlou, M., 2021. Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocolloids, 111: 106394.
  • Barikloo, H., Ahmadi, E., 2018. Shelf life extension of strawberry by temperatures conditioning, chitosan coating, modified atmosphere, and clay and silica nanocomposite packaging. Scientia Horticulturae, 240: 496-508.
  • Bourtoom, T., 2008. Edible films and coatings: characteristics and properties. International Food Research Journal, 15(3): 237-248.
  • Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T., 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1): 25-30.
  • Butler, B.L., Vergano, P.J., Testin, R.F., Bunn, J.M., Wiles, J.L., 1996. Mechanical and barrier properties of edible chitosan films as affected by composition and storage. Journal of Food Science, 61(5): 953-956.
  • Cid-López, M.L., Soriano-Melgar, L.D.A.A., García-González, A., Cortéz-Mazatán, G., Mendoza-Mendoza, E., Rivera-Cabrera, F., Peralta-Rodríguez, R.D., 2021. The benefits of adding calcium oxide nanoparticles to biocompatible polymeric coatings during cucumber fruits postharvest storage. Scientia Horticulturae, 287: 110285.
  • Candir, E., Ozdemir, A.E., Aksoy, M.C., 2018. Effects of chitosan coating and modified atmosphere packaging on postharvest quality and bioactive compounds of pomegranate fruit cv.‘Hicaznar’. Scientia Horticulturae, 235: 235-243.
  • Çınar, S., Sabır, F.K., 2021. Kirazda hasat sonrası kitosan ve aloe vera uygulamalarının soğukta muhafaza süresince kalite özelliklerine etkisi. Alatarım, 20(2): 114-122
  • Dorazilová, J., Muchová, J., Šmerková, K., Diviš, P., Kopel, P., Kociová, S., Veselý, R., Pavlináková, V., Adam, V., Vojtová, L., 2020. Synergistic effect of chitosan and selenium nanoparticles on biodegradation and antibacterial properties of collagenous scaffolds designed for infected burn wounds. Nanomaterials, 10(10): 1971.
  • Dulta, K., Koçarsoy-Ağçeli, G., Chauhan, P., Chauhan, P.K., 2021. Biogenic production and characterization of CuO nanoparticles by Carica papaya leaves and its biocom patibility applications. Journal of Inorganic and Organometallic Polymers and Materials, 31(4): 1846-1857.
  • Dulta, K., Koşarsoy Ağçeli, G., Thakur, A., Singh, S., Chauhan, P., Chauhan, P.K., 2022a. Development of alginate-chitosan based coating enriched with ZnO nanoparticles for increasing the shelf life of orange fruits (Citrus sinensis L.). Journal of Polymers and the Environment, 30(8): 3293-3306.
  • Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, P. K., Ighalo, J.O., 2022b. Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustainable Environment Research, 32: 1-15.
  • Duran, M., Aday, M.S., Zorba, N.N.D., Temizkan, R., Büyükcan, M.B., Caner, C., 2016. Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’to extend shelf life of fresh strawberry. Food and Bioproducts Processing, 98: 354-363.
  • Emamifar, A., Mohammadizadeh, M., 2015. Preparation and application of LDPE/ZnO nanocomposites for extending shelf life of fresh strawberries. Food Technology and Biotechnology, 53(4): 488-495.
  • Fernandez-Leon, M.F., Fernandez-Leon, A.M., Lozano, M., Ayuso, M.C., Amodio, M.L., Colelli, G., González-Gómez, D., 2013. Retention of quality and functional values of broccoli ‘Parthenon’stored in modified atmosphere packaging. Food Control, 31(2): 302-313.
  • Feyzioglu, G.C., Tornuk, F., 2016. Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT - Food Science and Technology, 70: 104-110.
  • Frias, J.M., Oliveira, J.C., 2001. Kinetic models of ascorbic acid thermal degradation during hot air drying of maltodextrin solutions. Journal of Food Engineering, 47(4): 255-262.
  • García-Alonso, M., Rimbach, G., Rivas-Gonzalo, J.C., de Pascual-Teresa, S., 2004. Antioxidant and cellular activities of anthocyanins and their corresponding vitisins a studies in platelets, monocytes, and human endothelial cells. Journal of Agricultural and Food Chemistry, 52(11): 3378-3384.
  • Giusti, M.M., Rodriguez-Saona, L.E., Wrolstad, R.E., 1999. Spectral characteristics, molar absorptivity and color of pelargonidin derivatives. Journal of Agricultural and Food Chemistry, 47(11): 4631-7.
  • Gol, N. B., Patel, P. R., & Rao, T. R. (2013). Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology, 85, 185-195.
  • González-Saucedo, A., Barrera-Necha, L.L., Ventura-Aguilar, R.I., Correa-Pacheco, Z.N., Bautista-Baños, S., Hernández-López, M., 2019. Extension of the postharvest quality of bell pepper by applying nanostructured coatings of chitosan with Byrsonima crassifolia extract (L.) Kunth. Postharvest Biology and Technology, 149: 74-82.
  • Hernandez-Munoz, P., Almenar, E., Del Valle, V., Velez, D., Gavara, R., 2008. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria× ananassa) quality during refrigerated storage. Food Chemistry, 110(2): 428-435.
  • Ilk, S., Sağlam, N., Özgen, M., Korkusuz, F., 2017. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. International Journal of Biological Macromolecules, 94: 653-662.
  • Indumathi, M.P., Sarojini, K.S., Rajarajeswari, G.R., 2019. Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. International Journal of Biological Macromolecules, 132: 1112-1120.
  • Jafarzadeh, S., Alias, A.K., Ariffin, F., Mahmud, S., 2018. Physico-mechanical and microstructural properties of semolina flour films as influenced by different sorbitol/glycerol concentrations. International Journal of Food Properties, 21(1): 983-995.
  • Jafarzadeh, S., Nafchi, A.M., Salehabadi, A., Oladzad-Abbasabadi, N., Jafari, S.M., 2021. Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Advances in Colloid and Interface Science, 291: 102405.
  • John, A., Črešnar, K.P., Bikiaris, D.N., Zemljič, L.F., 2023. Colloidal solutions as advanced coatings for active packaging development: focus on PLA systems. Polymers, 15(2): 273.
  • Keawchaoon, L., Yoksan, R., 2011. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids and surfaces B: Biointerfaces, 84(1): 163-171.
  • Kontogeorgis, G.M., Holster, A., Kottaki, N., Tsochantaris, E., Topsøe, F., Poulsen, J., Bache, M., Liang, X., Blom, N.S., Kronholm, J.,2022. Water structure, properties and some applications – A Review. Chemical Thermodynamics and Thermal Analysis, 6: 100053.
  • Koraqi, H., Petkoska, A.T., Khalid, W., Sehrish, A., Ambreen, S., Lorenzo, J.M., 2023. Optimisation of the extraction conditions of antioxidant phenolic compounds from strawberry fruits (Fragaria x ananassa Duch.) using response surface methodology. Food Analytical Methods, 16(6), 1030-1042.
  • Kou, X., He, Y., Li, Y., Chen, X., Feng, Y., Xue, Z., 2019. Effect of abscisic acid (ABA) and chitosan/nano-silica/sodium alginate composite film on the color development and quality of postharvest Chinese winter jujube (Zizyphus jujuba Mill. cv. Dongzao). Food Chemistry, 270: 385-394.
  • Li, S., Jiang, S., Jia, W., Guo, T., Wang, F., Li, J., Yao, Z., 2024. Natural antimicrobials from plants: recent advances and future prospects. Food Chemistry, 432: 137231.
  • Mareedu, T., Poiba, V., Vangalapati, M., 2021. Green synthesis of iron nanoparticles by green tea and black tea leaves extract. Materials Today: Proceedings, 42: 1498-1501.
  • McGuire, R.G., 1992. Reporting of objective color measurements. HortScience, 27(12): 1254-1255.
  • Melo, N.F.C.B., de MendonçaSoares, B.L., Diniz, K.M., Leal, C.F., Canto, D., Flores, M.A., Stamford, T.C.M., 2018. Effects of fungal chitosan nanoparticles as eco-friendly edible coatings on the quality of postharvest table grapes. Postharvest Biology and Technology, 139: 56-66.
  • Metin, D., 2022. Hasat Sonrası Kekik Yağı ve Kitosan Uygulamalarının ‘0900 Ziraat’ Kiraz Çeşidinde Muhafaza Süresince Meyve Kalitesine Etkileri. Yüksek Lisans Tezi, Selçuk Üniversitesi, 64 s.
  • Mith, H., Dure, R., Delcenserie, V., Zhiri, A., Daube, G., Clinquart, A., 2014. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Science and Nutrition, 2(4): 403-416.
  • Mullen, W., McGinn, J., Lean, M.E., MacLean, M.R., Gardner, P., Duthie, G.G., Crozier, A., 2002. Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50(18): 5191-5196.
  • Moustafa, H., Youssef, A.M., Darwish, N.A., Abou-Kandil, A.I., 2019. Eco-friendly polymer composites for green packaging: Future vision and challenges. Composites Part B: Engineering, 172: 16-25.
  • Mueller, A.S., Mueller, K., Wolf, N.M., Pallauf, J., 2009. Selenium and diabetes: an enigma?. Free Radical Research, 43(11): 1029-1059.
  • Nguyen, V.T., Nguyen, D.H., Nguyen, H.V., 2020. Combination effects of calcium chloride and nano-chitosan on the postharvest quality of strawberry (Fragaria x ananassa Duch.). Postharvest Biology and Technology, 162: 111103.
  • No, H.K., Meyers, S.P., Prinyawiwatkul, W., Xu, Z., 2007. Applications of chitosan for improvement of quality and shelf life of foods: a review. Journal of food science, 72(5): R87-R100.
  • Nunes, M.C.N., Brecht, J.K., Morais, A.M.M.B., Sargent, S.A., 1998. Controlling temperature and water loss to maintain ascorbic acid levels in strawberries during postharvest handling. Journal of Food Science, 63(6): 1033-1036.
  • Özdemir, E.A., Dündar, Ö., 2006. The effects of fungicide and hot water treatments on the internal quality parameters of Valencia oranges. Asian Journal of Plant Sciences, 5(1): 142-146.
  • Öztürk, B. (2020). Raf ömrü süresince karayemiş meyvesinin (Prunus laurocerasus L.) kalite özellikleri üzerine modifiye atmosfer paket ve aloe vera uygulamalarının etkisi. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 6(3): 399-406.
  • Perdones, Á., Escriche, I., Chiralt, A., Vargas, M., 2016. Effect of chitosan–lemon essential oil coatings on volatile profile of strawberries during storage. Food Chemistry, 197: 979-986.
  • Pham, T.T., Nguyen, L.L.P., Dam, M.S., Baranyai, L., 2023. Application of edible coating in extension of fruit shelf life. AgriEngineering, 5(1): 520-536.
  • Pinto, E., Pina-Vaz, C., Salgueiro, L., Goncalves, M.J., Costa-de Oliveira, S., Cavaleiro, C., Palmeira, A., Rodrigues, A., Martinez-de-Oliveira, J., 2006. Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. Journal of Medical Microbiology, 55: 1367-1373.
  • Rivera-Pastrana, D.M., Béjar, A.A.G., Martínez-Téllez, M.A., Rivera-Domínguez, M., González-Aguilar, G.A., 2007. Postharvest biochemical effects of UV-C irradiation on fruit and vegetables. Revista Fitotecnia Mexicana, 30(4): 361-372.
  • Roman, M., Jitaru, P., Barbante, C., 2014. Selenium biochemistry and its role for human health. Metallomics, 6(1): 25-54.
  • Sangsuwan, J., Pongsapakworawat, T., Bangmo, P., Sutthasupa, S., 2016. Effect of chitosan beads incorporated with lavender or red thyme essential oils in inhibiting Botrytis cinerea and their application in strawberry packaging system. LWT, 74: 14-20.
  • Singleton, V.L., Rossi, J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3): 144-158.
  • Sogvar, O.B., Saba, M.K., Emamifar, A., Hallaj, R., 2016. Influence of nano-ZnO on microbial growth, bioactive content and postharvest quality of strawberries during storage. Innovative Food Science & Emerging Technologies, 35: 168-176.
  • Song, H., Yuan, W., Jin, P., Wang, W., Wang, X., Yang, L., Zhang, Y., 2016. Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biology and Technology, 119: 41-48.
  • Valero, D., Diaz-Mula, H.M., Zapata, P.J., Castillo, S., Guillen, F., Martinez-Romero, D., Serrano, M., 2011.
  • Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry. Journal of Agricultural and Food Chemistry, 59(10): 5483-5489.
  • Valizadeh, M., Behnamian, M., Dezhsetan, S., Karimirad, R., 2021. Controlled release of turmeric oil from chitosan nanoparticles extends shelf life of Agaricus bisporus and preserves its postharvest quality. Food Bioscience, 44: 101401.
  • Vargas, M., Albors, A., Chiralt, A., González-Martínez, C., 2006. Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 41(2): 164-171.
  • Velickova, E., Winkelhausen, E., Kuzmanova, S., Alves, V.D., Moldão-Martins, M., 2013. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT-Food Science and Technology, 52(2): 80-92.
  • Wadhwani, S.A., Shedbalkar, U.U., Singh, R., Chopade, B.A., 2016. Biogenic selenium nanoparticles: current status and future prospects. Applied Microbiology and Biotechnology, 100: 2555-2566.
  • Wang, W., Yu, Z., Alsammarraie, F.K., Kong, F., Lin, M., Mustapha, A., 2020a. Properties and antimicrobial activity of polyvinyl alcohol-modified bacterial nanocellulose packaging films incorporated with silver nanoparticles. Food Hydrocolloids, 100: 105411.
  • Wang, L., Shao, S., Madebo, M.P., Hou, Y., Zheng, Y., Jin, P., 2020b. Effect of nano-SiO2 packing on postharvest quality and antioxidant capacity of loquat fruit under ambient temperature storage. Food chemistry, 315: 126295.
  • Xing, Y., Yang, H., Guo, X., Bi, X., Liu, X., Xu, Q., Zheng, Y.I., 2020. Effect of chitosan/Nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits. Scientia Horticulturae, 263: 109135.
  • Yaman, M., Yılmaz, K., 2022. The effects of different chemicals on runner yield and quality of 'Kabarla' strawberry young plants grown in Cappadocia region. Erwerbs-Obstbau, 64: 85-90.
  • Yang, J.W., Kim, H.I., 2023. An overview of recent advances in greenhouse strawberry cultivation using deep learning techniques: A review for strawberry practitioners. Agronomy, 14(1): 34.

Effect of Edible Nanocomposite Coating Applications on Cold Storage of Albion Strawberry Fruits

Yıl 2024, Cilt: 7 Sayı: 2, 101 - 110, 31.12.2024
https://doi.org/10.55257/ethabd.1561278

Öz

One of the biggest problems of strawberry fruits after harvest is their short life. In this study, the effects of the new generation active food preservative coating agents formed from combinations of micro sized chitosan (CH) and selenium (Se), and thyme essential oil (Oil) on the quality of Albion strawberry fruits after harvest were investigated. After the fruits were coated with edible colloid solution, they were kept at 4 oC and quality parameter analyses were performed on days 0, 5, 10, 15 and 20. As a result of the study, it was determined that the application of CH+Se and the subsequent application of CH+Se+Oil from colloid solution coatings reduced weight loss, respiration and decay rates. Also, it was determined that these applications were the most effective applications in preserving color values (L*, chroma and hue), fruit flesh firmness, total soluble solid (TSS) amount, acidity and vitamin C contents and total phenolics, anthocyanin and antioxidant capacity. These results show that CH+Se and CH+Se+Oil applications can be used as edible coatings to preserve the quality of strawberry fruits and extend their shelf life after harvest. The results of the study will contribute to the process of obtaining micro sized composite coating agent/agents produced with new technology in extending the shelf life. In addition, it can be said that these results can be used to guide possible future studies on similar topics.

Proje Numarası

FBA-2023-12370

Kaynakça

  • Abdulraheem, M.I., Moshood, A.Y., 2021. Effects of nanoparticles on improvement in quality and shelf life of fruits and vegetables. Plant Biol Crop Res., 4(2): 1042.
  • Amal, S.A., El-Mogy, M.M., Aboul-Anean, H.E., Alsanius, B.W., 2010. Improving strawberry fruit storability by edible coating as a carrier of thymol or calcium chloride. Journal of Horticultural Science & Ornamental Plants, 2(3): 88-97.
  • Arabpoor, B., Yousefi, S., Weisany, W., Ghasemlou, M., 2021. Multifunctional coating composed of Eryngium campestre L. essential oil encapsulated in nano-chitosan to prolong the shelf-life of fresh cherry fruits. Food Hydrocolloids, 111: 106394.
  • Barikloo, H., Ahmadi, E., 2018. Shelf life extension of strawberry by temperatures conditioning, chitosan coating, modified atmosphere, and clay and silica nanocomposite packaging. Scientia Horticulturae, 240: 496-508.
  • Bourtoom, T., 2008. Edible films and coatings: characteristics and properties. International Food Research Journal, 15(3): 237-248.
  • Brand-Williams, W., Cuvelier, M.E., Berset, C.L.W.T., 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1): 25-30.
  • Butler, B.L., Vergano, P.J., Testin, R.F., Bunn, J.M., Wiles, J.L., 1996. Mechanical and barrier properties of edible chitosan films as affected by composition and storage. Journal of Food Science, 61(5): 953-956.
  • Cid-López, M.L., Soriano-Melgar, L.D.A.A., García-González, A., Cortéz-Mazatán, G., Mendoza-Mendoza, E., Rivera-Cabrera, F., Peralta-Rodríguez, R.D., 2021. The benefits of adding calcium oxide nanoparticles to biocompatible polymeric coatings during cucumber fruits postharvest storage. Scientia Horticulturae, 287: 110285.
  • Candir, E., Ozdemir, A.E., Aksoy, M.C., 2018. Effects of chitosan coating and modified atmosphere packaging on postharvest quality and bioactive compounds of pomegranate fruit cv.‘Hicaznar’. Scientia Horticulturae, 235: 235-243.
  • Çınar, S., Sabır, F.K., 2021. Kirazda hasat sonrası kitosan ve aloe vera uygulamalarının soğukta muhafaza süresince kalite özelliklerine etkisi. Alatarım, 20(2): 114-122
  • Dorazilová, J., Muchová, J., Šmerková, K., Diviš, P., Kopel, P., Kociová, S., Veselý, R., Pavlináková, V., Adam, V., Vojtová, L., 2020. Synergistic effect of chitosan and selenium nanoparticles on biodegradation and antibacterial properties of collagenous scaffolds designed for infected burn wounds. Nanomaterials, 10(10): 1971.
  • Dulta, K., Koçarsoy-Ağçeli, G., Chauhan, P., Chauhan, P.K., 2021. Biogenic production and characterization of CuO nanoparticles by Carica papaya leaves and its biocom patibility applications. Journal of Inorganic and Organometallic Polymers and Materials, 31(4): 1846-1857.
  • Dulta, K., Koşarsoy Ağçeli, G., Thakur, A., Singh, S., Chauhan, P., Chauhan, P.K., 2022a. Development of alginate-chitosan based coating enriched with ZnO nanoparticles for increasing the shelf life of orange fruits (Citrus sinensis L.). Journal of Polymers and the Environment, 30(8): 3293-3306.
  • Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, P. K., Ighalo, J.O., 2022b. Multifunctional CuO nanoparticles with enhanced photocatalytic dye degradation and antibacterial activity. Sustainable Environment Research, 32: 1-15.
  • Duran, M., Aday, M.S., Zorba, N.N.D., Temizkan, R., Büyükcan, M.B., Caner, C., 2016. Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’to extend shelf life of fresh strawberry. Food and Bioproducts Processing, 98: 354-363.
  • Emamifar, A., Mohammadizadeh, M., 2015. Preparation and application of LDPE/ZnO nanocomposites for extending shelf life of fresh strawberries. Food Technology and Biotechnology, 53(4): 488-495.
  • Fernandez-Leon, M.F., Fernandez-Leon, A.M., Lozano, M., Ayuso, M.C., Amodio, M.L., Colelli, G., González-Gómez, D., 2013. Retention of quality and functional values of broccoli ‘Parthenon’stored in modified atmosphere packaging. Food Control, 31(2): 302-313.
  • Feyzioglu, G.C., Tornuk, F., 2016. Development of chitosan nanoparticles loaded with summer savory (Satureja hortensis L.) essential oil for antimicrobial and antioxidant delivery applications. LWT - Food Science and Technology, 70: 104-110.
  • Frias, J.M., Oliveira, J.C., 2001. Kinetic models of ascorbic acid thermal degradation during hot air drying of maltodextrin solutions. Journal of Food Engineering, 47(4): 255-262.
  • García-Alonso, M., Rimbach, G., Rivas-Gonzalo, J.C., de Pascual-Teresa, S., 2004. Antioxidant and cellular activities of anthocyanins and their corresponding vitisins a studies in platelets, monocytes, and human endothelial cells. Journal of Agricultural and Food Chemistry, 52(11): 3378-3384.
  • Giusti, M.M., Rodriguez-Saona, L.E., Wrolstad, R.E., 1999. Spectral characteristics, molar absorptivity and color of pelargonidin derivatives. Journal of Agricultural and Food Chemistry, 47(11): 4631-7.
  • Gol, N. B., Patel, P. R., & Rao, T. R. (2013). Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biology and Technology, 85, 185-195.
  • González-Saucedo, A., Barrera-Necha, L.L., Ventura-Aguilar, R.I., Correa-Pacheco, Z.N., Bautista-Baños, S., Hernández-López, M., 2019. Extension of the postharvest quality of bell pepper by applying nanostructured coatings of chitosan with Byrsonima crassifolia extract (L.) Kunth. Postharvest Biology and Technology, 149: 74-82.
  • Hernandez-Munoz, P., Almenar, E., Del Valle, V., Velez, D., Gavara, R., 2008. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria× ananassa) quality during refrigerated storage. Food Chemistry, 110(2): 428-435.
  • Ilk, S., Sağlam, N., Özgen, M., Korkusuz, F., 2017. Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. International Journal of Biological Macromolecules, 94: 653-662.
  • Indumathi, M.P., Sarojini, K.S., Rajarajeswari, G.R., 2019. Antimicrobial and biodegradable chitosan/cellulose acetate phthalate/ZnO nano composite films with optimal oxygen permeability and hydrophobicity for extending the shelf life of black grape fruits. International Journal of Biological Macromolecules, 132: 1112-1120.
  • Jafarzadeh, S., Alias, A.K., Ariffin, F., Mahmud, S., 2018. Physico-mechanical and microstructural properties of semolina flour films as influenced by different sorbitol/glycerol concentrations. International Journal of Food Properties, 21(1): 983-995.
  • Jafarzadeh, S., Nafchi, A.M., Salehabadi, A., Oladzad-Abbasabadi, N., Jafari, S.M., 2021. Application of bio-nanocomposite films and edible coatings for extending the shelf life of fresh fruits and vegetables. Advances in Colloid and Interface Science, 291: 102405.
  • John, A., Črešnar, K.P., Bikiaris, D.N., Zemljič, L.F., 2023. Colloidal solutions as advanced coatings for active packaging development: focus on PLA systems. Polymers, 15(2): 273.
  • Keawchaoon, L., Yoksan, R., 2011. Preparation, characterization and in vitro release study of carvacrol-loaded chitosan nanoparticles. Colloids and surfaces B: Biointerfaces, 84(1): 163-171.
  • Kontogeorgis, G.M., Holster, A., Kottaki, N., Tsochantaris, E., Topsøe, F., Poulsen, J., Bache, M., Liang, X., Blom, N.S., Kronholm, J.,2022. Water structure, properties and some applications – A Review. Chemical Thermodynamics and Thermal Analysis, 6: 100053.
  • Koraqi, H., Petkoska, A.T., Khalid, W., Sehrish, A., Ambreen, S., Lorenzo, J.M., 2023. Optimisation of the extraction conditions of antioxidant phenolic compounds from strawberry fruits (Fragaria x ananassa Duch.) using response surface methodology. Food Analytical Methods, 16(6), 1030-1042.
  • Kou, X., He, Y., Li, Y., Chen, X., Feng, Y., Xue, Z., 2019. Effect of abscisic acid (ABA) and chitosan/nano-silica/sodium alginate composite film on the color development and quality of postharvest Chinese winter jujube (Zizyphus jujuba Mill. cv. Dongzao). Food Chemistry, 270: 385-394.
  • Li, S., Jiang, S., Jia, W., Guo, T., Wang, F., Li, J., Yao, Z., 2024. Natural antimicrobials from plants: recent advances and future prospects. Food Chemistry, 432: 137231.
  • Mareedu, T., Poiba, V., Vangalapati, M., 2021. Green synthesis of iron nanoparticles by green tea and black tea leaves extract. Materials Today: Proceedings, 42: 1498-1501.
  • McGuire, R.G., 1992. Reporting of objective color measurements. HortScience, 27(12): 1254-1255.
  • Melo, N.F.C.B., de MendonçaSoares, B.L., Diniz, K.M., Leal, C.F., Canto, D., Flores, M.A., Stamford, T.C.M., 2018. Effects of fungal chitosan nanoparticles as eco-friendly edible coatings on the quality of postharvest table grapes. Postharvest Biology and Technology, 139: 56-66.
  • Metin, D., 2022. Hasat Sonrası Kekik Yağı ve Kitosan Uygulamalarının ‘0900 Ziraat’ Kiraz Çeşidinde Muhafaza Süresince Meyve Kalitesine Etkileri. Yüksek Lisans Tezi, Selçuk Üniversitesi, 64 s.
  • Mith, H., Dure, R., Delcenserie, V., Zhiri, A., Daube, G., Clinquart, A., 2014. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria. Food Science and Nutrition, 2(4): 403-416.
  • Mullen, W., McGinn, J., Lean, M.E., MacLean, M.R., Gardner, P., Duthie, G.G., Crozier, A., 2002. Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50(18): 5191-5196.
  • Moustafa, H., Youssef, A.M., Darwish, N.A., Abou-Kandil, A.I., 2019. Eco-friendly polymer composites for green packaging: Future vision and challenges. Composites Part B: Engineering, 172: 16-25.
  • Mueller, A.S., Mueller, K., Wolf, N.M., Pallauf, J., 2009. Selenium and diabetes: an enigma?. Free Radical Research, 43(11): 1029-1059.
  • Nguyen, V.T., Nguyen, D.H., Nguyen, H.V., 2020. Combination effects of calcium chloride and nano-chitosan on the postharvest quality of strawberry (Fragaria x ananassa Duch.). Postharvest Biology and Technology, 162: 111103.
  • No, H.K., Meyers, S.P., Prinyawiwatkul, W., Xu, Z., 2007. Applications of chitosan for improvement of quality and shelf life of foods: a review. Journal of food science, 72(5): R87-R100.
  • Nunes, M.C.N., Brecht, J.K., Morais, A.M.M.B., Sargent, S.A., 1998. Controlling temperature and water loss to maintain ascorbic acid levels in strawberries during postharvest handling. Journal of Food Science, 63(6): 1033-1036.
  • Özdemir, E.A., Dündar, Ö., 2006. The effects of fungicide and hot water treatments on the internal quality parameters of Valencia oranges. Asian Journal of Plant Sciences, 5(1): 142-146.
  • Öztürk, B. (2020). Raf ömrü süresince karayemiş meyvesinin (Prunus laurocerasus L.) kalite özellikleri üzerine modifiye atmosfer paket ve aloe vera uygulamalarının etkisi. Uluslararası Tarım ve Yaban Hayatı Bilimleri Dergisi, 6(3): 399-406.
  • Perdones, Á., Escriche, I., Chiralt, A., Vargas, M., 2016. Effect of chitosan–lemon essential oil coatings on volatile profile of strawberries during storage. Food Chemistry, 197: 979-986.
  • Pham, T.T., Nguyen, L.L.P., Dam, M.S., Baranyai, L., 2023. Application of edible coating in extension of fruit shelf life. AgriEngineering, 5(1): 520-536.
  • Pinto, E., Pina-Vaz, C., Salgueiro, L., Goncalves, M.J., Costa-de Oliveira, S., Cavaleiro, C., Palmeira, A., Rodrigues, A., Martinez-de-Oliveira, J., 2006. Antifungal activity of the essential oil of Thymus pulegioides on Candida, Aspergillus and dermatophyte species. Journal of Medical Microbiology, 55: 1367-1373.
  • Rivera-Pastrana, D.M., Béjar, A.A.G., Martínez-Téllez, M.A., Rivera-Domínguez, M., González-Aguilar, G.A., 2007. Postharvest biochemical effects of UV-C irradiation on fruit and vegetables. Revista Fitotecnia Mexicana, 30(4): 361-372.
  • Roman, M., Jitaru, P., Barbante, C., 2014. Selenium biochemistry and its role for human health. Metallomics, 6(1): 25-54.
  • Sangsuwan, J., Pongsapakworawat, T., Bangmo, P., Sutthasupa, S., 2016. Effect of chitosan beads incorporated with lavender or red thyme essential oils in inhibiting Botrytis cinerea and their application in strawberry packaging system. LWT, 74: 14-20.
  • Singleton, V.L., Rossi, J.A., 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3): 144-158.
  • Sogvar, O.B., Saba, M.K., Emamifar, A., Hallaj, R., 2016. Influence of nano-ZnO on microbial growth, bioactive content and postharvest quality of strawberries during storage. Innovative Food Science & Emerging Technologies, 35: 168-176.
  • Song, H., Yuan, W., Jin, P., Wang, W., Wang, X., Yang, L., Zhang, Y., 2016. Effects of chitosan/nano-silica on postharvest quality and antioxidant capacity of loquat fruit during cold storage. Postharvest Biology and Technology, 119: 41-48.
  • Valero, D., Diaz-Mula, H.M., Zapata, P.J., Castillo, S., Guillen, F., Martinez-Romero, D., Serrano, M., 2011.
  • Postharvest treatments with salicylic acid, acetylsalicylic acid or oxalic acid delayed ripening and enhanced bioactive compounds and antioxidant capacity in sweet cherry. Journal of Agricultural and Food Chemistry, 59(10): 5483-5489.
  • Valizadeh, M., Behnamian, M., Dezhsetan, S., Karimirad, R., 2021. Controlled release of turmeric oil from chitosan nanoparticles extends shelf life of Agaricus bisporus and preserves its postharvest quality. Food Bioscience, 44: 101401.
  • Vargas, M., Albors, A., Chiralt, A., González-Martínez, C., 2006. Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coatings. Postharvest Biology and Technology, 41(2): 164-171.
  • Velickova, E., Winkelhausen, E., Kuzmanova, S., Alves, V.D., Moldão-Martins, M., 2013. Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT-Food Science and Technology, 52(2): 80-92.
  • Wadhwani, S.A., Shedbalkar, U.U., Singh, R., Chopade, B.A., 2016. Biogenic selenium nanoparticles: current status and future prospects. Applied Microbiology and Biotechnology, 100: 2555-2566.
  • Wang, W., Yu, Z., Alsammarraie, F.K., Kong, F., Lin, M., Mustapha, A., 2020a. Properties and antimicrobial activity of polyvinyl alcohol-modified bacterial nanocellulose packaging films incorporated with silver nanoparticles. Food Hydrocolloids, 100: 105411.
  • Wang, L., Shao, S., Madebo, M.P., Hou, Y., Zheng, Y., Jin, P., 2020b. Effect of nano-SiO2 packing on postharvest quality and antioxidant capacity of loquat fruit under ambient temperature storage. Food chemistry, 315: 126295.
  • Xing, Y., Yang, H., Guo, X., Bi, X., Liu, X., Xu, Q., Zheng, Y.I., 2020. Effect of chitosan/Nano-TiO2 composite coatings on the postharvest quality and physicochemical characteristics of mango fruits. Scientia Horticulturae, 263: 109135.
  • Yaman, M., Yılmaz, K., 2022. The effects of different chemicals on runner yield and quality of 'Kabarla' strawberry young plants grown in Cappadocia region. Erwerbs-Obstbau, 64: 85-90.
  • Yang, J.W., Kim, H.I., 2023. An overview of recent advances in greenhouse strawberry cultivation using deep learning techniques: A review for strawberry practitioners. Agronomy, 14(1): 34.
Toplam 67 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Ziraat Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Ercan Yıldız 0000-0003-1445-2385

Fatih Hancı 0000-0002-2015-0351

Proje Numarası FBA-2023-12370
Erken Görünüm Tarihi 24 Ekim 2024
Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 4 Ekim 2024
Kabul Tarihi 21 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 7 Sayı: 2

Kaynak Göster

APA Yıldız, E., & Hancı, F. (2024). Yenilebilir Mikro Boyutlu Kompozit Kaplama Uygulamalarının Albion Çilek Meyvelerinin Soğukta Muhafazasına Etkisi. Erciyes Tarım Ve Hayvan Bilimleri Dergisi, 7(2), 101-110. https://doi.org/10.55257/ethabd.1561278