Research Article
BibTex RIS Cite

Intracellular Angiotensin-II Measurement in Streptozotocin-Induced Rat Vascular Smooth Muscle Cells and Its Relationship with Angiotensin-II Receptors

Year 2026, Issue: Advanced Online Publication, 1 - 15
https://doi.org/10.18621/eurj.1760073

Abstract

Objectives: Angiotensin II (Ang-II) is vital constituent of renin angiotensin aldosterone system and increases in some cardiovascular diseases such as diabetes. However, there are not enough studies related to intracellular and extracellular Ang-II levels and its interaction with Ang-II type 1 and 2 receptors (ATR1, ATR2) in vascular smooth muscle cells (VSMCs). We aimed to investigate healthy and diabetic rat model of VSMCs (H-VSMCs, D-VSMCs) proliferation and Ang-II levels.

Methods: VSMCs were isolated from the aorta of healthy and diabetic Wistar rats. Diabetic model was achieved by intravenous administration of 45 mg/kg streptozotocin. Firstly, different Ang-II (0-1000 μM) concentration was performed for dose study. Ang-II (0.1 μM), Ang-II type 1 receptor (ATR1) antagonist (Olmesartan, 1 μM) and Ang-II type 2 receptor (ATR2) antagonist (PD123,319, 1 μM) were practiced together, and thereafter cell proliferation was evaluated by MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) method. Intracellular and extracellular Ang-II levels were measured by ELISA kit.

Results: While H-VSMCs proliferation increased in Ang-II 0.1, 0.01, 0.001 and 0.0001 μM, D-VSMCs proliferation increased Ang-II 0.1 and 0.01 μM applications (P<0.05). Olmesartan 1 µM inhibited proliferation in H-VSMCs. Ang-II detected intracellular and extracellular groups of VSMCs, but no significant difference was found between H-VSMCs and D-VSMCs groups (P˃0.05).

Conclusions: Ang-II enhances proliferation of H-VSMCs and D-VSMCs. There is no relationship that could be established between intracellular and extracellular Ang-II levels, H-VSMCs and D-VSMCs proliferation and Ang-II receptors.

Ethical Statement

The present study was approved by Çukurova University Animal Experiments Local Ethics Committee (Decision No: 2016/11-1 and date: 22.12.2016, Adana, Türkiye). All experimental procedures were carried out accordance with the U.K. Animals (Scientific Procedures) Act, 1986 and associated guidelines, EU Directive 2010/63/EU for animal experiments, or the National Institutes of Health guide for the care and use of Laboratory animals (NIH Publications No. 8023, revised 1978).

Supporting Institution

This study was funded by the Çukurova University with a scientific research project (Adana, Türkiye)

Project Number

CÜBAP-TTU No. 2017-8071

References

  • 1. Brown SD, Klimi E, Bakker WAM, Beqqali A, Baker AH. Non-coding RNAs to treat vascular smooth muscle cell dysfunction. Br J Pharmacol. 2025;182(2):246-280. doi: 10.1111/bph.16409.
  • 2. Lee J, Hong SW, Kim MJ, et al. Glucagon-Like Peptide Receptor Agonist Inhibits Angiotensin II-Induced Proliferation and Migration in Vascular Smooth Muscle Cells and Ameliorates Phosphate-Induced Vascular Smooth Muscle Cells Calcification. Diabetes Metab J. 2024;48(1):83-96. doi: 10.4093/dmj.2022.0363.
  • 3. Chi J, Meng L, Pan S, et al. Primary Culture of Rat Aortic Vascular Smooth Muscle Cells: A New Method. Med Sci Monit. 2017;23:4014-4020. doi: 10.12659/msm.902816.
  • 4. Sun Y, Xu H, Xu X, et al. A novel method to obtain rat aortic media for primary culture of rat aortic smooth muscle cells. In Vitro Cell Dev Biol Anim. 2021;57(7):726-734. doi: 10.1007/s11626-021-00615-0.
  • 5. Cao G, Xuan X, Hu J, Zhang R, Jin H, Dong H. How vascular smooth muscle cell phenotype switching contributes to vascular disease. Cell Commun Signal. 2022;20(1):180. doi: 10.1186/s12964-022-00993-2.
  • 6. Grootaert MOJ, Bennett MR. Vascular smooth muscle cells in atherosclerosis: time for a re-assessment. Cardiovasc Res. 2021;117(11):2326-2339. doi: 10.1093/cvr/cvab046.
  • 7. Dong LH, Lv P, Han M. Roles of SM22α in cellular plasticity and vascular diseases. Cardiovasc Hematol Disord Drug Targets. 2012;12(2):119-125. doi: 10.2174/1871529x11202020119.
  • 8. Zhang F, Guo X, Xia Y, Mao L. An update on the phenotypic switching of vascular smooth muscle cells in the pathogenesis of atherosclerosis. Cell Mol Life Sci. 2021;79(1):6. doi: 10.1007/s00018-021-04079-z.
  • 9. Mehta PK, Griendling KK. Angiotensin II cell signaling: physiological and pathological effects in the cardiovascular system. Am J Physiol Cell Physiol. 2007;292(1):C82-97. doi: 10.1152/ajpcell.00287.2006.
  • 10. Fyhrquist F, Saijonmaa O. Renin-angiotensin system revisited. J Intern Med. 2008;264(3):224-236. doi: 10.1111/j.1365-2796.2008.01981.x.
  • 11. Chai W, Danser AH. Is angiotensin II made inside or outside of the cell? Curr Hypertens Rep. 2005;7(2):124-127. doi: 10.1007/s11906-005-0086-0.
  • 12. Touyz RM, Schiffrin EL. Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol Rev. 2000;52(4):639-672.
  • 13. Martyniak A, Tomasik PJ. A New Perspective on the Renin-Angiotensin System. Diagnostics (Basel). 2022;13(1):16. doi: 10.3390/diagnostics13010016.
  • 14. Simões E Silva AC, Lanza K, Palmeira VA, Costa LB, Flynn JT. 2020 update on the renin-angiotensin-aldosterone system in pediatric kidney disease and its interactions with coronavirus. Pediatr Nephrol. 2021;36(6):1407-1426. doi: 10.1007/s00467-020-04759-1.
  • 15. Paul M, Poyan Mehr A, Kreutz R. Physiology of local renin-angiotensin systems. Physiol Rev. 2006;86(3):747-803. doi: 10.1152/physrev.00036.2005.
  • 16. De Mello WC. Intracellular angiotensin II as a regulator of muscle tone in vascular resistance vessels. Pathophysiological implications. Peptides. 2016;78:87-90. doi: 10.1016/j.peptides.2016.02.006.
  • 17. Forrester SJ, Booz GW, Sigmund CD, et al. Angiotensin II Signal Transduction: An Update on Mechanisms of Physiology and Pathophysiology. Physiol Rev. 2018;98(3):1627-1738. doi: 10.1152/physrev.00038.2017.
  • 18. Ma J, Li Y, Yang X, et al. Signaling pathways in vascular function and hypertension: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther. 2023;8(1):168. doi: 10.1038/s41392-023-01430-7.
  • 19. Griendling KK, Ushio-Fukai M. Reactive oxygen species as mediators of angiotensin II signaling. Regul Pept. 2000;91(1-3):21-27. doi: 10.1016/s0167-0115(00)00136-1.
  • 20. Touyz RM, Berry C. Recent advances in angiotensin II signaling. Braz J Med Biol Res. 2002;35(9):1001-1015. doi: 10.1590/s0100-879x2002000900001.
  • 21. Weiss D, Sorescu D, Taylor WR. Angiotensin II and atherosclerosis. Am J Cardiol. 2001;87(8A):25C-32C. doi: 10.1016/s0002-9149(01)01539-9.
  • 22. Kumar R, Singh VP, Baker KM. The intracellular renin-angiotensin system: a new paradigm. Trends Endocrinol Metab. 2007;18(5):208-214. doi: 10.1016/j.tem.2007.05.001.
  • 23. Schmidt-Ott KM, Kagiyama S, Phillips MI. The multiple actions of angiotensin II in atherosclerosis. Regul Pept. 2000;93(1-3):65-77. doi: 10.1016/s0167-0115(00)00178-6.
  • 24. Burnier M. Angiotensin II type 1 receptor blockers. Circulation. 2001;103(6):904-92. doi: 10.1161/01.cir.103.6.904.
  • 25. Natarajan R, Scott S, Bai W, Yerneni KK, Nadler J. Angiotensin II signaling in vascular smooth muscle cells under high glucose conditions. Hypertension. 1999;33(1 Pt 2):378-384. doi: 10.1161/01.hyp.33.1.378.
  • 26. Ziaja M, Urbanek KA, Kowalska K, Piastowska-Ciesielska AW. Angiotensin II and Angiotensin Receptors 1 and 2-Multifunctional System in Cells Biology, What Do We Know? Cells. 2021;10(2):381. doi: 10.3390/cells10020381.
  • 27. Todd ME, Laye CG, Osborne DN. The dimensional characteristics of smooth muscle in rat blood vessels. A computer-assisted analysis. Circ Res. 1983;53(3):319-331. doi: 10.1161/01.res.53.3.319.
  • 28. Xu S, Fu J, Chen J, et al. Development of an optimized protocol for primary culture of smooth muscle cells from rat thoracic aortas. Cytotechnology. 2009;61(1-2):65-72. doi: 10.1007/s10616-009-9236-6.
  • 29. Waterborg JH, Matthews HR. The Lowry method for protein quantitation. Methods Mol Biol. 1994;32:1-4. doi: 10.1385/0-89603-268-X:1.
  • 30. Villar-Cheda B, Costa-Besada MA, Valenzuela R, Perez-Costas E, Melendez-Ferro M, Labandeira-Garcia JL. The intracellular angiotensin system buffers deleterious effects of the extracellular paracrine system. Cell Death Dis. 2017;8(9):e3044. doi: 10.1038/cddis.2017.439.
  • 31. Wang K, Deng X, Shen Z, et al. High glucose promotes vascular smooth muscle cell proliferation by upregulating proto-oncogene serine/threonine-protein kinase Pim-1 expression. Oncotarget. 2017;8(51):88320-88331. doi: 10.18632/oncotarget.19368.
  • 32. Berk BC, Vekshtein V, Gordon HM, Tsuda T. Angiotensin II-stimulated protein synthesis in cultured vascular smooth muscle cells. Hypertension. 1989;13(4):305-314. doi: 10.1161/01.hyp.13.4.305.
  • 33. Tamarat R, Silvestre JS, Durie M, Levy BI. Angiotensin II angiogenic effect in vivo involves vascular endothelial growth factor- and inflammation-related pathways. Lab Invest. 2002;82(6):747-756. doi: 10.1097/01.lab.0000017372.76297.eb.
  • 34. Tambelline N, Oliveira K, Olchanheski Junior LR, et al. The effect of losartan on angiotensin II-induced cell proliferation in a rat aorta smooth muscle cell line. Braz Arch Biol Technol. 2012;55(2):263-268. doi: 10.1590/S1516-89132012000200012.
  • 35. Lombardi D, Gordon KL, Polinsky P, Suga S, Schwartz SM, Johnson RJ. Salt-sensitive hypertension develops after short-term exposure to Angiotensin II. Hypertension. 1999;33(4):1013-1019. doi: 10.1161/01.hyp.33.4.1013.
  • 36. Igarashi M, Hirata A, Nozaki H, Kadomoto-Antsuki Y, Tominaga M. Role of angiotensin II type-1 and type-2 receptors on vascular smooth muscle cell growth and glucose metabolism in diabetic rats. Diabetes Res Clin Pract. 2007;75(3):267-277. doi: 10.1016/j.diabres.2006.06.032.
  • 37. Kyotani Y, Zhao J, Tomita S, et al. Olmesartan inhibits angiotensin II-Induced migration of vascular smooth muscle cells through Src and mitogen-activated protein kinase pathways. J Pharmacol Sci. 2010;113(2):161-8. doi: 10.1254/jphs.09332fp.
  • 38. Wilson DP, Saward L, Zahradka P, Cheung PK. Angiotensin II receptor antagonists prevent neointimal proliferation in a porcine coronary artery organ culture model. Cardiovasc Res. 1999;42(3):761-772. doi: 10.1016/s0008-6363(98)00340-x.
  • 39. Catt KJ, Cain MC. Measurement of angiotensin II in blood. Lancet. 1967;2(7524):1005-1007. doi: 10.1016/s0140-6736(67)90285-1.
  • 40. Boyd GW, Landon J, Peart WS. Radioimmunoassay for determining plasms-levels of angiotensin II in man. Lancet. 1967;2(7524):1002-1005. doi: 10.1016/s0140-6736(67)90284-x.
  • 41. Gocke DJ, Sherwood LM, Oppenhoff I, Gerten J, Laragh JH. Measurement of plasma angiotensin II and correlation with renin activity. J Clin Endocrinol Metab. 1968;28(11):1675-1678. doi: 10.1210/jcem-28-11-1675.
  • 42. Catt KJ, Cain MD, Zimmet PZ, Cran E. Blood angiotensin II levels of normal and hypertensive subjects. Br Med J. 1969;1(5647):819-821. doi: 10.1136/bmj.1.5647.819.
  • 43. Campbell DJ, Lawrence AC, Towrie A, Kladis A, Valentijn AJ. Differential regulation of angiotensin peptide levels in plasma and kidney of the rat. Hypertension. 1991;18(6):763-773. doi: 10.1161/01.hyp.18.6.763.
There are 43 citations in total.

Details

Primary Language English
Subjects Cell Development, Proliferation and Death, Cell Physiology
Journal Section Research Article
Authors

Zehra Çiçek 0000-0003-3205-5463

Kübra Akıllıoğlu 0000-0003-4896-8822

Zehra Gül Yaşar 0000-0001-6660-2643

Ayşe Doğan 0000-0002-6508-5266

Project Number CÜBAP-TTU No. 2017-8071
Submission Date August 7, 2025
Acceptance Date October 6, 2025
Early Pub Date October 21, 2025
Published in Issue Year 2026 Issue: Advanced Online Publication

Cite

AMA Çiçek Z, Akıllıoğlu K, Yaşar ZG, Doğan A. Intracellular Angiotensin-II Measurement in Streptozotocin-Induced Rat Vascular Smooth Muscle Cells and Its Relationship with Angiotensin-II Receptors. Eur Res J. October 2025;(Advanced Online Publication):1-15. doi:10.18621/eurj.1760073


e-ISSN: 2149-3189

35482          

The European Research Journal, hosted by Turkish JournalPark ACADEMIC, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

by-nc-nd.png

2026