Research Article
BibTex RIS Cite

Jüvenil miyoklonik epilepside potansiyel biyobelirteç olarak miR-1179'un değerlendirilmesi

Year 2022, , 1 - 5, 18.03.2022
https://doi.org/10.26650/experimed.2021.1033564

Abstract

Amaç: Juvenil miyoklonik epilepsi (JME), çocukluk çağı epilepsilerinin en yaygın tiplerinden biridir ve tüm epilepsilerin %5-10'unu oluşturur. Birçok hastalıkta olduğu gibi epilepside de mikroRNA'ların (miRNA'lar) değişen ekspresyon seviyeleri bildirilmiştir. Bilindiği gibi, miRNA'lar gen ekspresyonunu post-transkripsiyonel olarak düzenlerler ve klinik örneklerdeki stabiliteleri sayesinde tanısal biyobelirteç potansiyeline sahiptirler. Burada, JME hastalarında miR-1179 ifade düzeyini belirlemeyi ve miR-1179'un tanısal biyobelirteç potansiyelini değerlendirmeyi amaçladık.
Gereç ve Yöntem: Bu çalışmaya, 20 hasta ve 20 sağlıklı kontrol dahil edilmiş ve katılımcıların periferik kan örneklerinden total RNA ekstrakte edilmiştir. miR-1179'un rölatif ekspresyon seviyesini hesaplamak için qRT-PZR gerçekleştirilmiştir. Ek olarak, JME'de miR-1179'un tanısal değerini değerlendirmek için ROC eğrileri oluşturulmuştur.
Bulgular: JME tanılı hastalarda sağlıklı kontrollere kıyasla miR-1179’un ifade seviyesi istatistiksel olarak anlamlı bir şekilde artmıştır (p<0,0001). ROC analizi miR-1179'un 0,89 AUC değeri ile iyi bir tanısal biyobelirteç olduğunu ortaya koymuştur.
Sonuç: miR-1179, JME tanısında dikkate değer bir biyobelirteç olarak değerlendirilebilir. miR-1179 ve CALM1 arasındaki etkileşim fonksiyonel çalışmalarla güçlendirilmelidir. Daha büyük kohortlarla yapılacak ileri araştırmalar JME'nin etiyopatogenezini aydınlatmaya yardımcı olacaktır.

References

  • 1. Moshe SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: new advances. Lancet 2015; 385(9971): 884-98. [CrossRef] google scholar
  • 2. Pitkanen A, Loscher W, Vezzani A, Becker AJ, Simonato M, Lukasiuk K, et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol 2016; 15(8): 843-56. [CrossRef] google scholar
  • 3. Pietrafusa N, La Neve A, de Palma L, Boero G, Luisi C, Vigevano F, et al. Juvenile myoclonic epilepsy: Long-term prognosis and risk factors. Brain Dev 2021; 43(6): 688-97. [CrossRef] google scholar
  • 4. Amrutkar C, Riel-Romero RM. Juvenile Myoclonic Epilepsy. 2021 Aug 11. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. google scholar
  • 5. Vishnoi A, Rani S. MiRNA Biogenesis and Regulation of Diseases: An Overview. Methods Mol Biol 2017; 1509: 1-10. [CrossRef] google scholar
  • 6. Hydbring P, Badalian-Very G. Clinical applications of microRNAs. F1000Res 2013; 2: 136. [CrossRef] google scholar
  • 7. Süsgün S, Karacan İ, Yücesan E. Optimization of One Step Reverse Transcription Quantitative PCR Method for miRNA Expression Analyses. Experimed 2021; 11(2): 113-9. [CrossRef] google scholar
  • 8. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cre-toiu D, et al. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020; 9(2). [CrossRef] google scholar
  • 9. Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, et al. miR-TarBase 2020: updates to the experimentally validated microR-NA-target interaction database. Nucleic Acids Res 2020; 48(D1): D148-D54. [CrossRef] google scholar
  • 10. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein net-works, and functional characterization of user-uploaded gene/mea-surement sets. Nucleic Acids Res 2021; 49(D1): D605-D12. [CrossRef] google scholar
  • 11. Dziadkowiak E, Chojdak-Lukasiewicz J, Olejniczak P, Paradowski B. Regulation of microRNA Expression in Sleep Disorders in Patients with Epilepsy. Int J Mol Sci 2021; 22(14). [CrossRef] google scholar
  • 12. Riedel G, Rudrich U, Fekete-Drimusz N, Manns MP, Vondran FW, Bock M. An extended DeltaCT-method facilitating normalisation with multiple reference genes suited for quantitative RT-PCR anal-yses of human hepatocyte-like cells. PLoS One 2014; 9(3): e93031. [CrossRef] google scholar
  • 13. Martins-Ferreira R, Chaves J, Carvalho C, Bettencourt A, Chorao R, Freitas J, et al. Circulating microRNAs as potential biomarkers for genetic generalized epilepsies: a three microRNA panel. Eur J Neurol 2020; 27(4): 660-6. [CrossRef] google scholar
  • 14. Krauskopf J, Verheijen M, Kleinjans JC, de Kok TM, Caiment F. De-velopment and regulatory application of microRNA biomarkers. Biomark Med 2015; 9(11): 1137-51. [CrossRef] google scholar
  • 15. Ma Y. The Challenge of microRNA as a Biomarker of Epilepsy. Curr Neuropharmacol 2018; 16(1): 37-42. [CrossRef] google scholar
  • 16. An N, Zhao W, Liu Y, Yang X, Chen P. Elevated serum miR-106b and miR-146a in patients with focal and generalized epilepsy. Epilepsy Res 2016; 127: 311-6. [CrossRef] google scholar
  • 17. Hsu MJ, Chang YC, Hsueh HM. Biomarker selection for medical diagnosis using the partial area under the ROC curve. BMC Res Notes 2014; 7:25. [CrossRef] google scholar
  • 18. Jensen HH, Brohus M, Nyegaard M, Overgaard MT. Human Calm-odulin Mutations. Front Mol Neurosci 2018; 11: 396. [CrossRef] google scholar
  • 19. Mori MX, Vander Kooi CW, Leahy DJ, Yue DT. Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: high-res-olution mechanistic implications for channel regulation by Ca2+. Structure 2008; 16(4): 607-20. [CrossRef] google scholar
  • 20. Chioza B, Wilkie H, Nashef L, Blower J, McCormick D, Sham P, et al. Association between the alpha(1a) calcium channel gene CAC-NA1A and idiopathic generalized epilepsy. Neurology 2001; 56(9): 1245-6. [CrossRef] google scholar

Assessment of miR-1179 As a Potential Biomarker in Juvenile Myoclonic Epilepsy

Year 2022, , 1 - 5, 18.03.2022
https://doi.org/10.26650/experimed.2021.1033564

Abstract

Objective: Juvenile myoclonic epilepsy (JME) is one of the most common childhood types of epilepsy and comprises 5-10% of all epilepsies. Altered expression levels of microRNAs (miRNAs) have been reported in epilepsy as in many diseases. As is known, miRNAs regulate gene expression post-transcriptionally and have potential as diagnostic biomarkers due to their stability in clinical samples. Herein, this study aimed to evaluate miR-1179 levels of JME patients and assess the potential of miR-1179 as a diagnostic biomarker.

Material and Method: Twenty patients and 20 healthy controls were recruited in this study and total RNA was extracted from peripheral blood samples of participants. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to calculate the relative expression level of miR-1179. Additionally, receiver operating characteristic (ROC) curve was conducted to evaluate the diagnostic value of miR-1179 in JME.

Results: Expression levels of miR-1179 were statistically significantly increased in patients with JME compared to healthy controls (p<0.0001). ROC analysis revealed that miR-1179 is a well diagnostic biomarker with an area under the curve (AUC) of 0.89.

Conclusion: miR-1179 may be considered a remarkable biomarker in the diagnosis of JME. The interaction between miR-1179 and its target Calmodulin 1 (CALM1) should be reinforced through functional studies. Further research in larger cohorts will help to enlighten the etiopathogenesis of JME.

References

  • 1. Moshe SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: new advances. Lancet 2015; 385(9971): 884-98. [CrossRef] google scholar
  • 2. Pitkanen A, Loscher W, Vezzani A, Becker AJ, Simonato M, Lukasiuk K, et al. Advances in the development of biomarkers for epilepsy. Lancet Neurol 2016; 15(8): 843-56. [CrossRef] google scholar
  • 3. Pietrafusa N, La Neve A, de Palma L, Boero G, Luisi C, Vigevano F, et al. Juvenile myoclonic epilepsy: Long-term prognosis and risk factors. Brain Dev 2021; 43(6): 688-97. [CrossRef] google scholar
  • 4. Amrutkar C, Riel-Romero RM. Juvenile Myoclonic Epilepsy. 2021 Aug 11. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022. google scholar
  • 5. Vishnoi A, Rani S. MiRNA Biogenesis and Regulation of Diseases: An Overview. Methods Mol Biol 2017; 1509: 1-10. [CrossRef] google scholar
  • 6. Hydbring P, Badalian-Very G. Clinical applications of microRNAs. F1000Res 2013; 2: 136. [CrossRef] google scholar
  • 7. Süsgün S, Karacan İ, Yücesan E. Optimization of One Step Reverse Transcription Quantitative PCR Method for miRNA Expression Analyses. Experimed 2021; 11(2): 113-9. [CrossRef] google scholar
  • 8. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cre-toiu D, et al. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells 2020; 9(2). [CrossRef] google scholar
  • 9. Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, et al. miR-TarBase 2020: updates to the experimentally validated microR-NA-target interaction database. Nucleic Acids Res 2020; 48(D1): D148-D54. [CrossRef] google scholar
  • 10. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The STRING database in 2021: customizable protein-protein net-works, and functional characterization of user-uploaded gene/mea-surement sets. Nucleic Acids Res 2021; 49(D1): D605-D12. [CrossRef] google scholar
  • 11. Dziadkowiak E, Chojdak-Lukasiewicz J, Olejniczak P, Paradowski B. Regulation of microRNA Expression in Sleep Disorders in Patients with Epilepsy. Int J Mol Sci 2021; 22(14). [CrossRef] google scholar
  • 12. Riedel G, Rudrich U, Fekete-Drimusz N, Manns MP, Vondran FW, Bock M. An extended DeltaCT-method facilitating normalisation with multiple reference genes suited for quantitative RT-PCR anal-yses of human hepatocyte-like cells. PLoS One 2014; 9(3): e93031. [CrossRef] google scholar
  • 13. Martins-Ferreira R, Chaves J, Carvalho C, Bettencourt A, Chorao R, Freitas J, et al. Circulating microRNAs as potential biomarkers for genetic generalized epilepsies: a three microRNA panel. Eur J Neurol 2020; 27(4): 660-6. [CrossRef] google scholar
  • 14. Krauskopf J, Verheijen M, Kleinjans JC, de Kok TM, Caiment F. De-velopment and regulatory application of microRNA biomarkers. Biomark Med 2015; 9(11): 1137-51. [CrossRef] google scholar
  • 15. Ma Y. The Challenge of microRNA as a Biomarker of Epilepsy. Curr Neuropharmacol 2018; 16(1): 37-42. [CrossRef] google scholar
  • 16. An N, Zhao W, Liu Y, Yang X, Chen P. Elevated serum miR-106b and miR-146a in patients with focal and generalized epilepsy. Epilepsy Res 2016; 127: 311-6. [CrossRef] google scholar
  • 17. Hsu MJ, Chang YC, Hsueh HM. Biomarker selection for medical diagnosis using the partial area under the ROC curve. BMC Res Notes 2014; 7:25. [CrossRef] google scholar
  • 18. Jensen HH, Brohus M, Nyegaard M, Overgaard MT. Human Calm-odulin Mutations. Front Mol Neurosci 2018; 11: 396. [CrossRef] google scholar
  • 19. Mori MX, Vander Kooi CW, Leahy DJ, Yue DT. Crystal structure of the CaV2 IQ domain in complex with Ca2+/calmodulin: high-res-olution mechanistic implications for channel regulation by Ca2+. Structure 2008; 16(4): 607-20. [CrossRef] google scholar
  • 20. Chioza B, Wilkie H, Nashef L, Blower J, McCormick D, Sham P, et al. Association between the alpha(1a) calcium channel gene CAC-NA1A and idiopathic generalized epilepsy. Neurology 2001; 56(9): 1245-6. [CrossRef] google scholar
There are 20 citations in total.

Details

Primary Language English
Subjects Clinical Sciences
Journal Section Research Article
Authors

Seda Süsgün 0000-0001-9689-3111

Ceyhun Toruntay This is me 0000-0002-4743-0257

Alişan Bayrakoğlu This is me 0000-0001-9620-2237

Ferda Uslu This is me 0000-0002-2124-5037

Emrah Yücesan 0000-0003-4512-8764

Publication Date March 18, 2022
Submission Date December 7, 2021
Published in Issue Year 2022

Cite

Vancouver Süsgün S, Toruntay C, Bayrakoğlu A, Uslu F, Yücesan E. Assessment of miR-1179 As a Potential Biomarker in Juvenile Myoclonic Epilepsy. Experimed. 2022;12(1):1-5.