Review
BibTex RIS Cite

Sulforaphane in the Therapeutic Targeting of CNS Disorders: Current Evidence and Perspectives

Year 2025, Volume: 15 Issue: 3, 201 - 216, 31.12.2025
https://doi.org/10.26650/experimed.1721403

Abstract

Sulforaphane, an aliphatic isothiocyanate derived from food and medicinal plants, has gained prominence as a compound of considerable pharmaceutical significance due to its diverse bioactivities. Its high bioavailability and ability to cross the blood–brain barrier are key pharmacokinetic properties that underscore its therapeutic potential in central nervous system (CNS) disorders. A comprehensive and uptodate evaluation of the literature was conducted using databases such as PubMed, Scopus, and ScienceDirect to assess the neuroprotective effects of sulforaphane. Evidence indicates that sulforaphane exerts neuroprotective effects by regulating oxidative stress, neuroinflammation, mitochondrial dysfunction, and apoptosis. These benefits are mediated through the activation of various signaling pathways and the inhibition of proinflammatory mediators, including several cytokines. Its multi faceted mechanism of action underpins its therapeutic relevance in numerous neurological disorders, including Alzheimer’s disease, Parkinson’s disease, epilepsy, multiple sclerosis, and schizophrenia, as well as in neuropsychiatric conditions such as major depressive disorder. Sulforaphane is not available as an approved pharmaceu tical drug (FDA or EMA); however, it is widely marketed in dietary supplements (e.g., tablets and capsules), often in the form of broccoli sprout extracts or stabilized glucoraphanin combined with myrosinase. Further rigorous preclinical and clinical studies are necessary to validate its efficacy, determine optimal dosing regimens, and evaluate its longterm safety across various CNS pathologies. Collectively, the current evidence highlights sulforaphane as a promising, naturally derived, multi target therapeutic candidate for the prevention and treatment of diverse CNS diseases. Future clinical and translational studies are warranted to establish the therapeutic viability of sulforaphane in human CNS disorders.

References

  • 1. Wu N, Luo Z, Deng R, Zhang Z, Zhang J, Liu S, et al. Sulforaphane: An emerging star in neuroprotection and neurological disease prevention. Biochem Pharmacol 2025; 233: 116797.
  • 2. Yagishita Y, Fahey JW, Dinkova-Kostova AT, Kensler TW. Broccoli or sulforaphane: Is it the source or dose that matters? Molecules 2019; 24(19): 3593.
  • 3. Mahn A, Castillo A. Potential of sulforaphane as a natural immune system enhancer: A review. Molecules 2021; 26(3): 752.
  • 4. Santin-Marquez R, Alarcon-Aguilar A, Lopez-Diazguerrero NE, Chondrogianni N, Konigsberg M, Santin-Marquez R, et al. Sulforaphane - role in aging and neurodegeneration. GeroScience 2019; 41(5): 655-70.
  • 5. Silakari P, Yadav A, Arora A, Arora A, Gulsheen G, Kaur P, et al. Investigating holistic natural strategies for the management of Huntington's disease. International Conference on Recent Trends in Biomedical Sciences RTBS-2023. BIO Web Conf 2024; 86.
  • 6. Long Y, Li XQ, Deng J, Ye QB, Li D, Ma Y, et al. Modulating the polarization phenotype of microglia – a valuable strategy for central nervous system diseases. Ageing Res Rev 2024; 93: 102160.
  • 7. Sharma A, Malhotra M, Singh AP, Singh AP. Exploring neuroprotective botanical remedies in neurodegenerative conditions: A review. J Drug Deliv Ther 2024; 14(5): 137-40.
  • 8. Nicoletti A, Baschi R, Cicero CE, Iacono S, Re VL, Luca A, et al. Sex and gender differences in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis: A narrative review. Mech Ageing Dev 2023; 212: 111821.
  • 9. Ong C, Elbarbry F. A new validated HPLC method for the determination of sulforaphane: Application to study pharmacokinetics of sulforaphane in rats. Biomed Chromatogr 2016; 30(7): 1016-21.
  • 10. Gu HF, Mao XY, Du M. Metabolism, absorption, and anti-cancer effects of sulforaphane: An update. Crit Rev Food Sci Nutr 2022; 62(13): 3437-52.
  • 11. Atwell LL, Hsu A, Wong CP, Stevens JF, Bella D, Yu TW, et al. Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract. Mol Nutr Food Res 2015; 59(3): 424-33
  • 12. Ruhee RT, Suzuki K. The integrative role of sulforaphane in preventing inflammation, oxidative stress and fatigue: A review of a potential protective phytochemical. Antioxidants (Basel) 2020; 9(6): 521.
  • 13. Li C, Zhang L, Li X, Hu Q, Mao L, Shao Y, et al. Sulforaphane suppresses Aβ accumulation and tau hyperphosphorylation in vascular cognitive impairment (VCI). J Nutr Biochem 2025; 136: 109803.
  • 14. Warpsinski G, Smith MJ, Srivastava S, Keeley TP, Siow RCM, Fraser PA, et al. Nrf2- regulated redox signaling in brain endothelial cells adapted to physiological oxygen levels: Consequences for sulforaphane-mediated protection against hypoxia-reoxygenation. Redox Biol 2020; 37: 101708.
  • 15. Yu C, He Q, Zheng J, Li LY, Hou YH, Song FZ. Sulforaphane improves outcomes and slows cerebral ischemic/reperfusion injury via inhibition of NLRP3 inflammasome activation in rats. Int Immunopharmacol 2017; 45: 74-8.
  • 16. Khan WU, Salman M, Ali M, Majid H, Yar MS, Akhtar M, et al. Neuroprotective effects of sulforaphane in a rat model of Alzheimer's disease induced by Aβ(1– 42) peptides. Neurochem Int 2024; 179: 105839.
  • 17. Zhao F, Zhang J, Chang N. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer's disease. Eur J Pharmacol 2018; 824: 1-10.
  • 18. Zhang J, Zhang R, Zhan Z, Li X, Zhou F, Xing A, et al. Beneficial effects of sulforaphane treatment in Alzheimer's disease may be mediated through reduced HDAC1/3 and increased P75NTR expression. Front Aging Neurosci 2017; 9: 121.
  • 19. Zhao J, Moore AN, Clifton GL, Dash PK. Sulforaphane enhances aquaporin-4 expression and decreases cerebral edema following traumatic brain injury. J Neurosci Res 2005; 82(4): 499-506.
  • 20. Hong Y, Yan W, Chen S, Sun CR, Zhang JM, Hong Y, et al. The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol Sin 2010; 31(11): 1421-30.
  • 21. Morroni F, Tarozzi A, Sita G, Bolondi C, Moraga JMZ, Cantelli-Forti G, et al. Neuroprotective effect of sulforaphane in 6-hydroxydopamine-lesioned mouse model of Parkinson's disease. Neurotoxicology 2013; 36: 63-71.
  • 22. Zhou Q, Chen B, Wang X, Wu L, Yang Y, Cheng X, et al. Sulforaphane protects against rotenone-induced neurotoxicity in vivo: Involvement of the mTOR, Nrf2 and autophagy pathways. Sci Rep 2016; 6: 32206.
  • 23. Bao B, Zhang MQ, Chen ZY, Wu XB, Xia ZB, Chai JY, et al. Sulforaphane prevents PC12 cells from oxidative damage via the Nrf2 pathway. Mol Med Rep 2019; 19(6): 4890-6.
  • 24. Jazwa A, Rojo AI, Innamorato NG, Hesse M, Fernandez-Ruiz J, Cuadrado A. Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease-modifying therapy for experimental parkinsonism. Antioxid Redox Signal 2011; 14(12):
  • 25. Yu J, Guo M, Gong Y, Yang Y, Zhang J, Ren L. Protective effect of sulforaphane against depressive behavior in mice through glucocorticoid receptor antagonism. Food Biosci 2024; 61: 104705.
  • 26. Kamel AS, El-Sayed SS, Sayed NSE. Sulforaphane's role in redefining autophagic responses in depression associated with polycystic ovarian syndrome: Unveiling the SIRT1/AMPK/LKB1 pathway connection. Eur J Pharmacol 2024; 969: 176477.
  • 27. Wu S, Gao Q, Zhao P, Gao Y, Xi Y, Wang X, et al. Sulforaphane produces antidepressant- and anxiolytic-like effects in adult mice. Behav Brain Res 2016; 301: 55-62.
  • 28. Yao W, Zhang JC, Ishima T, Dong C, Yang C, Ren Q, et al. Role of Keap1-Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice. Sci Rep 2016; 6: 30659.
  • 29. Ferreira-Chamorro P, Redondo A, Riego G, Leanez S, Pol O. Sulforaphane inhibited the nociceptive responses, anxiety- and depressive-like behaviors associated with neuropathic pain and improved the anti-allodynic effects of morphine in mice. Front Pharmacol 2018; 9: 1332.
  • 30. Liu Y, Hettinger CL, Zhang D, Rezvani K, Wang X, Wang H. Sulforaphane enhances proteasomal and autophagic activities in mice and is a potential therapeutic reagent for Huntington's disease. J Neurochem 2025; 47(2): 104321.
  • 31. Jang M, Cho I-H. Sulforaphane ameliorates 3-nitropropionic acid-induced striatal toxicity by activating the Keap1-Nrf2-ARE pathway and inhibiting the MAPKs and NF-κB pathways. Mol Neurobiol 2016; 53(4): 2619-35.
  • 32. Sandouka S, Shekh-Ahmad T. Induction of the Nrf2 pathway by sulforaphane is neuroprotective in a rat temporal lobe epilepsy model. Antioxidants 2021; 10(11): 1702.
  • 33. Yoo IH, Kim MJ, Kim J, Sung JJ, Park ST, Ahn SW. The anti-inflammatory effect of sulforaphane in mice with experimental autoimmune encephalomyelitis. J Korean Med Sci 2019; 34(28): e197.
  • 34. Uddin MS, Mamun AA, Jakaria M, Thangapandiyan S, Ahmad J, Rahman MA, et al. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. Sci Total Environ 2020; 707: 135624.
  • 35. Matsuura A, Fujita Y, Iyo M, Hashimoto K. PM365 Effects of sulforaphane in the maternal immune activation model of schizophrenia. Int J Neuropsychopharmacol 2016; 19(Suppl 1): 33-4.
  • 36. Mas S, Gasso P, Trias G, Bernardo M, Lafuente A. Sulforaphane protects SK-N-SH cells against antipsychotic-induced oxidative stress. Fundam Clin Pharmacol 2012; 26(6): 712-21.
  • 37. Park HS, Hwang ES, Choi GY, Kim HB, Park KS, Sul JY, et al. Sulforaphane enhances long-term potentiation and ameliorates scopolamine-induced memory impairment. Physiol Behav 2021; 238: 113467.
  • 38. Lee S, Kim J, Seo SG, Choi BR, Han JS, Lee KW, et al. Sulforaphane alleviates scopolamine-induced memory impairment in mice. Pharmacol Res 2014; 85: 23-32.
  • 39. Gao J, Xiong B, Zhang B, Li S, Huang N, Zhan G, et al. Sulforaphane alleviates lipopolysaccharide-induced spatial learning and memory dysfunction in mice: The role of BDNF-mTOR signaling pathway. Neuroscience 2018; 388: 357-66.
  • 40. Li B, Cui W, Liu J, Li R, Liu Q, Xie XH, et al. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp Neurol 2013; 250: 239-49.
  • 41. Schachtele SJ, Hu S, Lokensgard JR. Modulation of experimental herpes encephalitis-associated neurotoxicity through sulforaphane treatment. PLoS One 2012; 7(4): e36216.
  • 42. Geisel J, Bruck J, Glocova I, Dengler K, Sinnberg T, Rothfuss O, et al. Sulforaphane protects from T cell-mediated autoimmune disease by inhibition of IL-23 and IL-12 in dendritic cells. J Immunol 2014; 192(8): 3530-9.
  • 43. Najjarsadeghi S, Nazemiyeh H, Vandghanooni S, Ghanbari H, Hamedeyazdan S. Antiproliferative, antioxidant and phytochemical analysis of Loranthus europaeus fruits. Vietnam J Chem 2024; 62(5): 590-9.
  • 44. Servi H, Barak TH, Sen A, Ertekin S, Turker H, Unal BT, et al. Chemical composition of endemic Hypericum bilgehan-bilgilii Baskose and Savran essential oil and its alpha-glucosidase antidiabetic, anti-inflammatory, cytotoxic and antioxidant potentials. Trakya Univ J Nat Sci 2025; 26(2):e1-8. doi: 10.23902/trkjnat.5767632345.
  • 45. Ruhee RT, Ma S, Suzuki K. Protective effects of sulforaphane on exercise- induced organ damage via inducing antioxidant defense responses. Antioxidants 2020; 9(2): 136.
  • 46. Zhang G, Wen F, Li Y, Sun P, Li Y, Hu Z, et al. Sulforaphane acts through the NFE2L2/AMPK signaling pathway to protect boar spermatozoa from cryoinjury by activating antioxidant defenses. Theriogenology 2024; 230: 330-40.
  • 47. Moradi N, Champsi S, Hood DA. Sulforaphane, urolithin A, and ZLN005 induce time-dependent alterations in antioxidant capacity, mitophagy, and mitochondrial biogenesis in muscle cells. Sports Med Health Sci 2024; 7(1): 16-27.
  • 48. Wang YT, Li S, Kan Y, Zhu Y, Li K, Liu HY, et al. Dietary sulforaphane modulates hepatic anti-oxidative genes via REV-ERB alpha and histone modifications in pigs. J Integr Agric 2025. doi:10.1016/j.jia.2025.02.019.
  • 49. Alansari WS. Sulforaphane (4-methylsulfnylbutyl isothiocyanate) mitigates gold nanoparticle-induced brain toxicity in male albino rats. J King Saud Univ Sci 2024; 36(7): 103257.
  • 50. Yunusoglu O, Ayaz I, Dovankaya EH. Pharmacological, medicinal and biological properties of flavonoids: A comprehensive review. J Res Pharm 2025; 29(2): 561-84.
  • 51. Sun Y, Koyama Y, Shimada S. Inflammation from peripheral organs to the brain: How does systemic inflammation cause neuroinflammation? Front Aging Neurosci 2022; 14: 903455.
  • 52. Ranaweera SS, Dissanayake CY, Natraj P, Lee YJ, Han C. Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob/ob mice. J Vet Sci 2020; 21(6): e91.
  • 53. Marshall SA, Young RB, Lewis JM, Rutten EL, Gould J, Barlow CK, et al. The broccoli-derived antioxidant sulforaphane changes the growth of gastrointestinal microbiota, allowing for the production of anti-inflammatory metabolites. J Funct Foods 2023; 107: 105645.
  • 54. An YW, Jhang KA, Woo SY, Kang JL, Chong YH. Sulforaphane exerts its anti-inflammatory effect against amyloid-beta peptide via STAT-1 Experimed, 15 (3): 201–216 fffill
  • dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages. Neurobiol Aging 2016; 38: 1-10.
  • 55. Kavsara GK, Ertugrul B, Bireller S, Cakmakoglu B. Zebrafish genetic models of Alzheimer's disease. In: Zebrafish models of neurodegenerative disorders. CRC Press 2025; 296-307.
  • 56. Yunusoglu O, Kalfa I, Demirel ME, Binzet MA, Sevinc UZ, Turel I, et al. A comprehensive review of the pharmacological, therapeutic, and toxicological properties of boric acid and other boron-containing compounds: Current landscape and future perspectives. Pharm Pharmacol 2025; 13(3): 202-38.
  • 57. Ozdemir HS, Yunusoglu O, Sagmanligil V, Yasar S, Colcimen N, Goceroglu R, et al. Investigation of the pharmacological, behavioral, and biochemical effects of boron in Parkinson-indicated rats. Cell Mol Biol 2022; 68(8): 13-21.
  • 58. Allahverdiyev O, Dzhafar S, Berkoz M, Yildirim M. Advances in current medication and new therapeutic approaches in epilepsy. Eastern J Med 2018; 23(1): 48-59.
  • 59. Aysel SB, Merve S, Gizem K, Muhammet BD, Oguz Y, Aytul M, et al. Treatment- resistant patients with focal epilepsy of unknown cause display reduced neurogranin levels: A preliminary study. Ideggyogy Sz 2025; 78(5-6): 163-8.
  • 60. Bozkurt S, Duzenli OF, Yucesan E. Identifying hub genes and miRNAs associated with mesial temporal lobe epilepsy. Experimed 2025; 15(2): 183-92.
  • 61. Akunal Turel C, Yunusoglu O. Oleanolic acid suppresses pentylenetetrazole- induced seizure in vivo. Int J Environ Health Res 2023; 33(5): 529-40.
  • 62. Mitra S, Natarajan R, Ziedonis D, Fan X. Antioxidant and anti-inflammatory nutrient status, supplementation, and mechanisms in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 78: 1-11.
  • 63. Shiina A, Kanahara N, Sasaki T, Oda Y, Hashimoto T, Hasegawa T, et al. An open study of sulforaphane-rich broccoli sprout extract in patients with schizophrenia. Clin Psychopharmacol Neurosci 2015; 13(1): 62-7.
  • 64. Chen H, Lu J, Zou T, Teng Z, Qin Y, Wu R, et al. Effects of sulforaphane on negative symptoms and cognitive impairments in chronic schizophrenia patients: A randomized double-blind trial. J Psychiatr Res 2025; 184: 464-72.
  • 65. Lee JH, Jeong JK, Park SY, Park SY. Sulforaphane-induced autophagy flux prevents prion protein-mediated neurotoxicity through AMPK pathway. Neuroscience 2014; 278: 31-9.
  • 66. Qin S, Yang C, Huang W, Du S, Mai H, Xiao J, et al. Sulforaphane attenuates microglia-mediated neuronal necroptosis through down-regulation of MAPK/ NF-kappaB signaling pathways in LPS-activated BV-2 microglia. Pharmacol Res 2018; 133: 218-35.
  • 67. Schepici G, Bramanti P, Mazzon E. Efficacy of sulforaphane in neurodegenerative diseases. Int J Mol Sci 2020; 21(22): 8637.
  • 68. Sharma S, Sharma R, Verma AK. Sulforaphane and gut-brain axis: An overview of its impact on intestinal inflammation, microbiota composition, and neurodegeneration. ACS Food Sci Technol 2025; 5(10): 3645-61.
  • 69. Yang Y, Zhang J, Yang C, Dong B, Fu Y, Wang Y, et al. Sulforaphane attenuates microglia-mediated neuronal damage by down-regulating the ROS/autophagy/NLRP3 signal axis in fibrillar Aβ-activated microglia. Brain Res 2023; 1801: 148206.
  • 70. Yang W, Liu Y, Xu QQ, Xian YF, Lin ZX. Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/Akt/GSK-3 beta pathway in experimental models of Alzheimer's disease. Oxid Med Cell Longev 2020; 2020(1): 4754
  • 71. Qu X, Neuhoff C, Cinar MU, Proll M, Tholen E, Tesfaye D, et al. Epigenetic modulation of TLR4 expression by sulforaphane increases anti-inflammatory capacity in porcine monocyte-derived dendritic cells. Biology 2021; 10(6): 490.
  • 72. Wang X, Chen X, Zhou W, Men H, Bao T, Sun Y, et al. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B 2022; 12(2): 708-22.
  • 73. Zhang YQ, Shi CX, Zhang DM, Zhang LY, Wang LW, Gong ZJ. Sulforaphane, an NRF2 agonist, alleviates ferroptosis in acute liver failure by regulating HDAC6 activity. J Integr Med 2023; 21(5): 464-73.
  • 74. Zheng Z, Xu J, Mao Y, Mei Z, Zhu J, Lan P, et al. Sulforaphane improves post- resuscitation myocardial dysfunction by inhibiting cardiomyocyte ferroptosis via the Nrf2/IRF1/GPX4 pathway. Biomed Pharmacother 2024; 179: 117408.
  • 75. Hu B, Cao P, Wang JH, Feng W, Zhang Y, Yang H, et al. Sulforaphane triggers Sirtuin 3-mediated ferroptosis in colorectal cancer cells via activating the adenosine 5’-monophosphate-activated protein kinase/mammalian target of rapamycin signaling pathway. Hum Exp Toxicol 2024; 43: 9603271241266106.
  • 76. Nishikawa T, Tsuno NH, Okaji Y, Shuno Y, Sasaki K, Hongo K, et al. Inhibition of autophagy potentiates sulforaphane-induced apoptosis in human colon cancer cells. Ann Surg Oncol 2010; 17(2): 592-602.
  • 77. Lu Z, Ren Y, Yang L, Jia A, Hu Y, Zhao Y, et al. Inhibiting autophagy enhances sulforaphane-induced apoptosis via targeting NRF2 in esophageal squamous cell carcinoma. Acta Pharm Sin B 2021; 11(5): 1246-60.
  • 78. Liu H, Smith AJ, Ball SS, Bao Y, Bowater RP, Wang N, et al. Sulforaphane promotes ER stress, autophagy, and cell death: Implications for cataract surgery. J Mol Med 2017; 95(5): 553-64.
  • 79. Cascajosa-Lira A, Prieto AI, Pichardo S, Jos A, Camean AM. Protective effects of sulforaphane against toxic substances and contaminants: A systematic review. Phytomedicine 2024; 130: 155731.
  • 80. Mangla B, Javed S, Sultan MH, Kumar P, Kohli K, Najmi A, et al. Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trials. Phytother Res 2021; 35(10): 5440-58.
  • 81. Socala K, Nieoczym D, Kowalczuk-Vasilev E, Wyska E, Wlaz P. Increased seizure susceptibility and other toxicity symptoms following acute sulforaphane treatment in mice. Toxicol Appl Pharmacol 2017; 326: 43-53.

Year 2025, Volume: 15 Issue: 3, 201 - 216, 31.12.2025
https://doi.org/10.26650/experimed.1721403

Abstract

References

  • 1. Wu N, Luo Z, Deng R, Zhang Z, Zhang J, Liu S, et al. Sulforaphane: An emerging star in neuroprotection and neurological disease prevention. Biochem Pharmacol 2025; 233: 116797.
  • 2. Yagishita Y, Fahey JW, Dinkova-Kostova AT, Kensler TW. Broccoli or sulforaphane: Is it the source or dose that matters? Molecules 2019; 24(19): 3593.
  • 3. Mahn A, Castillo A. Potential of sulforaphane as a natural immune system enhancer: A review. Molecules 2021; 26(3): 752.
  • 4. Santin-Marquez R, Alarcon-Aguilar A, Lopez-Diazguerrero NE, Chondrogianni N, Konigsberg M, Santin-Marquez R, et al. Sulforaphane - role in aging and neurodegeneration. GeroScience 2019; 41(5): 655-70.
  • 5. Silakari P, Yadav A, Arora A, Arora A, Gulsheen G, Kaur P, et al. Investigating holistic natural strategies for the management of Huntington's disease. International Conference on Recent Trends in Biomedical Sciences RTBS-2023. BIO Web Conf 2024; 86.
  • 6. Long Y, Li XQ, Deng J, Ye QB, Li D, Ma Y, et al. Modulating the polarization phenotype of microglia – a valuable strategy for central nervous system diseases. Ageing Res Rev 2024; 93: 102160.
  • 7. Sharma A, Malhotra M, Singh AP, Singh AP. Exploring neuroprotective botanical remedies in neurodegenerative conditions: A review. J Drug Deliv Ther 2024; 14(5): 137-40.
  • 8. Nicoletti A, Baschi R, Cicero CE, Iacono S, Re VL, Luca A, et al. Sex and gender differences in Alzheimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis: A narrative review. Mech Ageing Dev 2023; 212: 111821.
  • 9. Ong C, Elbarbry F. A new validated HPLC method for the determination of sulforaphane: Application to study pharmacokinetics of sulforaphane in rats. Biomed Chromatogr 2016; 30(7): 1016-21.
  • 10. Gu HF, Mao XY, Du M. Metabolism, absorption, and anti-cancer effects of sulforaphane: An update. Crit Rev Food Sci Nutr 2022; 62(13): 3437-52.
  • 11. Atwell LL, Hsu A, Wong CP, Stevens JF, Bella D, Yu TW, et al. Absorption and chemopreventive targets of sulforaphane in humans following consumption of broccoli sprouts or a myrosinase-treated broccoli sprout extract. Mol Nutr Food Res 2015; 59(3): 424-33
  • 12. Ruhee RT, Suzuki K. The integrative role of sulforaphane in preventing inflammation, oxidative stress and fatigue: A review of a potential protective phytochemical. Antioxidants (Basel) 2020; 9(6): 521.
  • 13. Li C, Zhang L, Li X, Hu Q, Mao L, Shao Y, et al. Sulforaphane suppresses Aβ accumulation and tau hyperphosphorylation in vascular cognitive impairment (VCI). J Nutr Biochem 2025; 136: 109803.
  • 14. Warpsinski G, Smith MJ, Srivastava S, Keeley TP, Siow RCM, Fraser PA, et al. Nrf2- regulated redox signaling in brain endothelial cells adapted to physiological oxygen levels: Consequences for sulforaphane-mediated protection against hypoxia-reoxygenation. Redox Biol 2020; 37: 101708.
  • 15. Yu C, He Q, Zheng J, Li LY, Hou YH, Song FZ. Sulforaphane improves outcomes and slows cerebral ischemic/reperfusion injury via inhibition of NLRP3 inflammasome activation in rats. Int Immunopharmacol 2017; 45: 74-8.
  • 16. Khan WU, Salman M, Ali M, Majid H, Yar MS, Akhtar M, et al. Neuroprotective effects of sulforaphane in a rat model of Alzheimer's disease induced by Aβ(1– 42) peptides. Neurochem Int 2024; 179: 105839.
  • 17. Zhao F, Zhang J, Chang N. Epigenetic modification of Nrf2 by sulforaphane increases the antioxidative and anti-inflammatory capacity in a cellular model of Alzheimer's disease. Eur J Pharmacol 2018; 824: 1-10.
  • 18. Zhang J, Zhang R, Zhan Z, Li X, Zhou F, Xing A, et al. Beneficial effects of sulforaphane treatment in Alzheimer's disease may be mediated through reduced HDAC1/3 and increased P75NTR expression. Front Aging Neurosci 2017; 9: 121.
  • 19. Zhao J, Moore AN, Clifton GL, Dash PK. Sulforaphane enhances aquaporin-4 expression and decreases cerebral edema following traumatic brain injury. J Neurosci Res 2005; 82(4): 499-506.
  • 20. Hong Y, Yan W, Chen S, Sun CR, Zhang JM, Hong Y, et al. The role of Nrf2 signaling in the regulation of antioxidants and detoxifying enzymes after traumatic brain injury in rats and mice. Acta Pharmacol Sin 2010; 31(11): 1421-30.
  • 21. Morroni F, Tarozzi A, Sita G, Bolondi C, Moraga JMZ, Cantelli-Forti G, et al. Neuroprotective effect of sulforaphane in 6-hydroxydopamine-lesioned mouse model of Parkinson's disease. Neurotoxicology 2013; 36: 63-71.
  • 22. Zhou Q, Chen B, Wang X, Wu L, Yang Y, Cheng X, et al. Sulforaphane protects against rotenone-induced neurotoxicity in vivo: Involvement of the mTOR, Nrf2 and autophagy pathways. Sci Rep 2016; 6: 32206.
  • 23. Bao B, Zhang MQ, Chen ZY, Wu XB, Xia ZB, Chai JY, et al. Sulforaphane prevents PC12 cells from oxidative damage via the Nrf2 pathway. Mol Med Rep 2019; 19(6): 4890-6.
  • 24. Jazwa A, Rojo AI, Innamorato NG, Hesse M, Fernandez-Ruiz J, Cuadrado A. Pharmacological targeting of the transcription factor Nrf2 at the basal ganglia provides disease-modifying therapy for experimental parkinsonism. Antioxid Redox Signal 2011; 14(12):
  • 25. Yu J, Guo M, Gong Y, Yang Y, Zhang J, Ren L. Protective effect of sulforaphane against depressive behavior in mice through glucocorticoid receptor antagonism. Food Biosci 2024; 61: 104705.
  • 26. Kamel AS, El-Sayed SS, Sayed NSE. Sulforaphane's role in redefining autophagic responses in depression associated with polycystic ovarian syndrome: Unveiling the SIRT1/AMPK/LKB1 pathway connection. Eur J Pharmacol 2024; 969: 176477.
  • 27. Wu S, Gao Q, Zhao P, Gao Y, Xi Y, Wang X, et al. Sulforaphane produces antidepressant- and anxiolytic-like effects in adult mice. Behav Brain Res 2016; 301: 55-62.
  • 28. Yao W, Zhang JC, Ishima T, Dong C, Yang C, Ren Q, et al. Role of Keap1-Nrf2 signaling in depression and dietary intake of glucoraphanin confers stress resilience in mice. Sci Rep 2016; 6: 30659.
  • 29. Ferreira-Chamorro P, Redondo A, Riego G, Leanez S, Pol O. Sulforaphane inhibited the nociceptive responses, anxiety- and depressive-like behaviors associated with neuropathic pain and improved the anti-allodynic effects of morphine in mice. Front Pharmacol 2018; 9: 1332.
  • 30. Liu Y, Hettinger CL, Zhang D, Rezvani K, Wang X, Wang H. Sulforaphane enhances proteasomal and autophagic activities in mice and is a potential therapeutic reagent for Huntington's disease. J Neurochem 2025; 47(2): 104321.
  • 31. Jang M, Cho I-H. Sulforaphane ameliorates 3-nitropropionic acid-induced striatal toxicity by activating the Keap1-Nrf2-ARE pathway and inhibiting the MAPKs and NF-κB pathways. Mol Neurobiol 2016; 53(4): 2619-35.
  • 32. Sandouka S, Shekh-Ahmad T. Induction of the Nrf2 pathway by sulforaphane is neuroprotective in a rat temporal lobe epilepsy model. Antioxidants 2021; 10(11): 1702.
  • 33. Yoo IH, Kim MJ, Kim J, Sung JJ, Park ST, Ahn SW. The anti-inflammatory effect of sulforaphane in mice with experimental autoimmune encephalomyelitis. J Korean Med Sci 2019; 34(28): e197.
  • 34. Uddin MS, Mamun AA, Jakaria M, Thangapandiyan S, Ahmad J, Rahman MA, et al. Emerging promise of sulforaphane-mediated Nrf2 signaling cascade against neurological disorders. Sci Total Environ 2020; 707: 135624.
  • 35. Matsuura A, Fujita Y, Iyo M, Hashimoto K. PM365 Effects of sulforaphane in the maternal immune activation model of schizophrenia. Int J Neuropsychopharmacol 2016; 19(Suppl 1): 33-4.
  • 36. Mas S, Gasso P, Trias G, Bernardo M, Lafuente A. Sulforaphane protects SK-N-SH cells against antipsychotic-induced oxidative stress. Fundam Clin Pharmacol 2012; 26(6): 712-21.
  • 37. Park HS, Hwang ES, Choi GY, Kim HB, Park KS, Sul JY, et al. Sulforaphane enhances long-term potentiation and ameliorates scopolamine-induced memory impairment. Physiol Behav 2021; 238: 113467.
  • 38. Lee S, Kim J, Seo SG, Choi BR, Han JS, Lee KW, et al. Sulforaphane alleviates scopolamine-induced memory impairment in mice. Pharmacol Res 2014; 85: 23-32.
  • 39. Gao J, Xiong B, Zhang B, Li S, Huang N, Zhan G, et al. Sulforaphane alleviates lipopolysaccharide-induced spatial learning and memory dysfunction in mice: The role of BDNF-mTOR signaling pathway. Neuroscience 2018; 388: 357-66.
  • 40. Li B, Cui W, Liu J, Li R, Liu Q, Xie XH, et al. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp Neurol 2013; 250: 239-49.
  • 41. Schachtele SJ, Hu S, Lokensgard JR. Modulation of experimental herpes encephalitis-associated neurotoxicity through sulforaphane treatment. PLoS One 2012; 7(4): e36216.
  • 42. Geisel J, Bruck J, Glocova I, Dengler K, Sinnberg T, Rothfuss O, et al. Sulforaphane protects from T cell-mediated autoimmune disease by inhibition of IL-23 and IL-12 in dendritic cells. J Immunol 2014; 192(8): 3530-9.
  • 43. Najjarsadeghi S, Nazemiyeh H, Vandghanooni S, Ghanbari H, Hamedeyazdan S. Antiproliferative, antioxidant and phytochemical analysis of Loranthus europaeus fruits. Vietnam J Chem 2024; 62(5): 590-9.
  • 44. Servi H, Barak TH, Sen A, Ertekin S, Turker H, Unal BT, et al. Chemical composition of endemic Hypericum bilgehan-bilgilii Baskose and Savran essential oil and its alpha-glucosidase antidiabetic, anti-inflammatory, cytotoxic and antioxidant potentials. Trakya Univ J Nat Sci 2025; 26(2):e1-8. doi: 10.23902/trkjnat.5767632345.
  • 45. Ruhee RT, Ma S, Suzuki K. Protective effects of sulforaphane on exercise- induced organ damage via inducing antioxidant defense responses. Antioxidants 2020; 9(2): 136.
  • 46. Zhang G, Wen F, Li Y, Sun P, Li Y, Hu Z, et al. Sulforaphane acts through the NFE2L2/AMPK signaling pathway to protect boar spermatozoa from cryoinjury by activating antioxidant defenses. Theriogenology 2024; 230: 330-40.
  • 47. Moradi N, Champsi S, Hood DA. Sulforaphane, urolithin A, and ZLN005 induce time-dependent alterations in antioxidant capacity, mitophagy, and mitochondrial biogenesis in muscle cells. Sports Med Health Sci 2024; 7(1): 16-27.
  • 48. Wang YT, Li S, Kan Y, Zhu Y, Li K, Liu HY, et al. Dietary sulforaphane modulates hepatic anti-oxidative genes via REV-ERB alpha and histone modifications in pigs. J Integr Agric 2025. doi:10.1016/j.jia.2025.02.019.
  • 49. Alansari WS. Sulforaphane (4-methylsulfnylbutyl isothiocyanate) mitigates gold nanoparticle-induced brain toxicity in male albino rats. J King Saud Univ Sci 2024; 36(7): 103257.
  • 50. Yunusoglu O, Ayaz I, Dovankaya EH. Pharmacological, medicinal and biological properties of flavonoids: A comprehensive review. J Res Pharm 2025; 29(2): 561-84.
  • 51. Sun Y, Koyama Y, Shimada S. Inflammation from peripheral organs to the brain: How does systemic inflammation cause neuroinflammation? Front Aging Neurosci 2022; 14: 903455.
  • 52. Ranaweera SS, Dissanayake CY, Natraj P, Lee YJ, Han C. Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob/ob mice. J Vet Sci 2020; 21(6): e91.
  • 53. Marshall SA, Young RB, Lewis JM, Rutten EL, Gould J, Barlow CK, et al. The broccoli-derived antioxidant sulforaphane changes the growth of gastrointestinal microbiota, allowing for the production of anti-inflammatory metabolites. J Funct Foods 2023; 107: 105645.
  • 54. An YW, Jhang KA, Woo SY, Kang JL, Chong YH. Sulforaphane exerts its anti-inflammatory effect against amyloid-beta peptide via STAT-1 Experimed, 15 (3): 201–216 fffill
  • dephosphorylation and activation of Nrf2/HO-1 cascade in human THP-1 macrophages. Neurobiol Aging 2016; 38: 1-10.
  • 55. Kavsara GK, Ertugrul B, Bireller S, Cakmakoglu B. Zebrafish genetic models of Alzheimer's disease. In: Zebrafish models of neurodegenerative disorders. CRC Press 2025; 296-307.
  • 56. Yunusoglu O, Kalfa I, Demirel ME, Binzet MA, Sevinc UZ, Turel I, et al. A comprehensive review of the pharmacological, therapeutic, and toxicological properties of boric acid and other boron-containing compounds: Current landscape and future perspectives. Pharm Pharmacol 2025; 13(3): 202-38.
  • 57. Ozdemir HS, Yunusoglu O, Sagmanligil V, Yasar S, Colcimen N, Goceroglu R, et al. Investigation of the pharmacological, behavioral, and biochemical effects of boron in Parkinson-indicated rats. Cell Mol Biol 2022; 68(8): 13-21.
  • 58. Allahverdiyev O, Dzhafar S, Berkoz M, Yildirim M. Advances in current medication and new therapeutic approaches in epilepsy. Eastern J Med 2018; 23(1): 48-59.
  • 59. Aysel SB, Merve S, Gizem K, Muhammet BD, Oguz Y, Aytul M, et al. Treatment- resistant patients with focal epilepsy of unknown cause display reduced neurogranin levels: A preliminary study. Ideggyogy Sz 2025; 78(5-6): 163-8.
  • 60. Bozkurt S, Duzenli OF, Yucesan E. Identifying hub genes and miRNAs associated with mesial temporal lobe epilepsy. Experimed 2025; 15(2): 183-92.
  • 61. Akunal Turel C, Yunusoglu O. Oleanolic acid suppresses pentylenetetrazole- induced seizure in vivo. Int J Environ Health Res 2023; 33(5): 529-40.
  • 62. Mitra S, Natarajan R, Ziedonis D, Fan X. Antioxidant and anti-inflammatory nutrient status, supplementation, and mechanisms in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 78: 1-11.
  • 63. Shiina A, Kanahara N, Sasaki T, Oda Y, Hashimoto T, Hasegawa T, et al. An open study of sulforaphane-rich broccoli sprout extract in patients with schizophrenia. Clin Psychopharmacol Neurosci 2015; 13(1): 62-7.
  • 64. Chen H, Lu J, Zou T, Teng Z, Qin Y, Wu R, et al. Effects of sulforaphane on negative symptoms and cognitive impairments in chronic schizophrenia patients: A randomized double-blind trial. J Psychiatr Res 2025; 184: 464-72.
  • 65. Lee JH, Jeong JK, Park SY, Park SY. Sulforaphane-induced autophagy flux prevents prion protein-mediated neurotoxicity through AMPK pathway. Neuroscience 2014; 278: 31-9.
  • 66. Qin S, Yang C, Huang W, Du S, Mai H, Xiao J, et al. Sulforaphane attenuates microglia-mediated neuronal necroptosis through down-regulation of MAPK/ NF-kappaB signaling pathways in LPS-activated BV-2 microglia. Pharmacol Res 2018; 133: 218-35.
  • 67. Schepici G, Bramanti P, Mazzon E. Efficacy of sulforaphane in neurodegenerative diseases. Int J Mol Sci 2020; 21(22): 8637.
  • 68. Sharma S, Sharma R, Verma AK. Sulforaphane and gut-brain axis: An overview of its impact on intestinal inflammation, microbiota composition, and neurodegeneration. ACS Food Sci Technol 2025; 5(10): 3645-61.
  • 69. Yang Y, Zhang J, Yang C, Dong B, Fu Y, Wang Y, et al. Sulforaphane attenuates microglia-mediated neuronal damage by down-regulating the ROS/autophagy/NLRP3 signal axis in fibrillar Aβ-activated microglia. Brain Res 2023; 1801: 148206.
  • 70. Yang W, Liu Y, Xu QQ, Xian YF, Lin ZX. Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/Akt/GSK-3 beta pathway in experimental models of Alzheimer's disease. Oxid Med Cell Longev 2020; 2020(1): 4754
  • 71. Qu X, Neuhoff C, Cinar MU, Proll M, Tholen E, Tesfaye D, et al. Epigenetic modulation of TLR4 expression by sulforaphane increases anti-inflammatory capacity in porcine monocyte-derived dendritic cells. Biology 2021; 10(6): 490.
  • 72. Wang X, Chen X, Zhou W, Men H, Bao T, Sun Y, et al. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm Sin B 2022; 12(2): 708-22.
  • 73. Zhang YQ, Shi CX, Zhang DM, Zhang LY, Wang LW, Gong ZJ. Sulforaphane, an NRF2 agonist, alleviates ferroptosis in acute liver failure by regulating HDAC6 activity. J Integr Med 2023; 21(5): 464-73.
  • 74. Zheng Z, Xu J, Mao Y, Mei Z, Zhu J, Lan P, et al. Sulforaphane improves post- resuscitation myocardial dysfunction by inhibiting cardiomyocyte ferroptosis via the Nrf2/IRF1/GPX4 pathway. Biomed Pharmacother 2024; 179: 117408.
  • 75. Hu B, Cao P, Wang JH, Feng W, Zhang Y, Yang H, et al. Sulforaphane triggers Sirtuin 3-mediated ferroptosis in colorectal cancer cells via activating the adenosine 5’-monophosphate-activated protein kinase/mammalian target of rapamycin signaling pathway. Hum Exp Toxicol 2024; 43: 9603271241266106.
  • 76. Nishikawa T, Tsuno NH, Okaji Y, Shuno Y, Sasaki K, Hongo K, et al. Inhibition of autophagy potentiates sulforaphane-induced apoptosis in human colon cancer cells. Ann Surg Oncol 2010; 17(2): 592-602.
  • 77. Lu Z, Ren Y, Yang L, Jia A, Hu Y, Zhao Y, et al. Inhibiting autophagy enhances sulforaphane-induced apoptosis via targeting NRF2 in esophageal squamous cell carcinoma. Acta Pharm Sin B 2021; 11(5): 1246-60.
  • 78. Liu H, Smith AJ, Ball SS, Bao Y, Bowater RP, Wang N, et al. Sulforaphane promotes ER stress, autophagy, and cell death: Implications for cataract surgery. J Mol Med 2017; 95(5): 553-64.
  • 79. Cascajosa-Lira A, Prieto AI, Pichardo S, Jos A, Camean AM. Protective effects of sulforaphane against toxic substances and contaminants: A systematic review. Phytomedicine 2024; 130: 155731.
  • 80. Mangla B, Javed S, Sultan MH, Kumar P, Kohli K, Najmi A, et al. Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trials. Phytother Res 2021; 35(10): 5440-58.
  • 81. Socala K, Nieoczym D, Kowalczuk-Vasilev E, Wyska E, Wlaz P. Increased seizure susceptibility and other toxicity symptoms following acute sulforaphane treatment in mice. Toxicol Appl Pharmacol 2017; 326: 43-53.
There are 82 citations in total.

Details

Primary Language English
Subjects Biochemistry and Cell Biology (Other)
Journal Section Review
Authors

Oruç Yunusoğlu 0000-0003-1075-9574

Esma Koyuncu 0009-0007-5070-4187

İrem Kalfa 0009-0002-5658-1011

Submission Date June 17, 2025
Acceptance Date November 19, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

Vancouver Yunusoğlu O, Koyuncu E, Kalfa İ. Sulforaphane in the Therapeutic Targeting of CNS Disorders: Current Evidence and Perspectives. Experimed. 2025;15(3):201-16.