Research Article
BibTex RIS Cite

Year 2025, Volume: 15 Issue: 3, 252 - 260, 31.12.2025
https://doi.org/10.26650/experimed.1722060

Abstract

Project Number

38201

References

  • 1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med 2015; 373(12):1136-52.
  • 2. Liu Y, Cheng Z, Pang Y, Cui L, Qian T, Quan L, et al. Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol 2019; 12(1):51.
  • 3. Pelcovits A, Niroula R. Acute Myeloid Leukemia: A Review. R I Med J (2013) 2020; 103(3):38-40.
  • 4. Wachter F, Pikman Y. Pathophysiology of Acute Myeloid Leukemia. Acta Haematol 2024; 147(2):229-46.
  • 5. Wysota M, Konopleva M, Mitchell S. Novel Therapeutic Targets in Acute Myeloid Leukemia (AML). Curr Oncol Rep 2024; 26(4):409-20.
  • 6. Salehi A. A novel therapeutic strategy: the significance of exosomal miRNAs in acute myeloid leukemia. Med Oncol 2024; 41(2):62.
  • 7. Erdogan C, Suer I, Kaya M, Ozturk S, Aydin N, Kurt Z. Bioinformatics analysis of the potentially functional circRNA-miRNA-mRNA network in breast cancer. PLoS One 2024; 19(4):e0301995.
  • 8. Suer I, Kaya M. Is the AURKB Gene Involved in Aml Cell Proliferation Since It is Targeted by miR-34a-5p and let-7b-5p? Konuralp Med J 2023; 15(1):16-23.
  • 9. Kaya M. A bioinformatics approach to male infertility, microRNAs, and targeted genes. Ahi Evran Med J 2023; 7(3):296-303.
  • 10. Kaya M, Suer I. The effect of miR-34a-5p on overexpressed AML associated genes. J Istanbul Fac Med 2023; 86(1):59-68.
  • 11. Kaya M, Karatas OF. The relationship between larynx cancer and microRNAs. Van Med J 2020; 27(4):535-41.
  • 12. Kaya M, Abuaisha A, Suer I, Alptekin MS, Abanoz F, Emiroglu S, et al. Overexpression of CDC25A, AURKB, and TOP2A genes could be an important clue for luminal a breast cancer. Eur J Breast Health 2024; 20(4):284.
  • 13. Capik O, Sanli F, Kurt A, Ceylan O, Suer I, Kaya M, et al. CASC11 promotes aggressiveness of prostate cancer cells through miR-145/IGF1R axis. Prostate Cancer Prostatic Dis 2021; 24(3):891-902.
  • 14. Kaya M, Abuaisha A, Suer I, Emiroglu S, Önder S, Onay Ucar E, et al. Let-7b-5p sensitizes breast cancer cells to doxorubicin through Aurora Kinase B. PLoS One 2025; 20(1):e0307420.
  • 15. Kaya M, Suer I, Ozgur E, Capik O, Karatas OF, Ozturk S, et al. miR-145-5p suppresses cell proliferation by targeting IGF1R and NRAS genes in multiple myeloma cells. Turk J Biochem 2023; 48(5):563-9.
  • 16. Shi Q, Xing G, Qi M, Xing Y. Lower Serum miR-145 Predicts Poor Prognosis in Patients with Acute Myeloid Leukemia. Clin Lab 2020; 66(6).
  • 17. Wuxiao Z, Wang H, Su Q, Zhou H, Hu M, Tao S, et al. MicroRNA?145 promotes the apoptosis of leukemic stem cells and enhances drug?resistant K562/ADM cell sensitivity to adriamycin via the regulation of ABCE1. Int J Mol Med 2020; 46(4):1289-300.
  • 18. Li E, Zhao Z, Ma B, Zhang J. Long noncoding RNA HOTAIR promotes the proliferation and metastasis of osteosarcoma cells through the AKT/mTOR signaling pathway. Exp Ther Med 2017; 14(6):5321-8.
  • 19. Shao Y, Qu Y, Dang S, Yao B, Ji M. MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int 2013; 13(1):51.
  • 20. Zhao Y, Yan M, Yun Y, Zhang J, Zhang R, Li Y, et al. MicroRNA-455-3p functions as a tumor suppressor by targeting eIF4E in prostate cancer. Oncol Rep 2017; 37(4):2449-58.
  • 21. Suer I, Karatas OF, Yuceturk B, Yilmaz M, Guven G, Buge O, et al. Characterization of stem-like cells directly isolated from freshly resected laryngeal squamous cell carcinoma specimens. Curr Stem Cell Res Ther 2014; 9(4):347-53.
  • 22. Shang AQ, Wang WW, Yang YB, Gu CZ, Ji P, Chen C, et al. Knockdown of long noncoding RNA PVT1 suppresses cell proliferation and invasion of colorectal cancer via upregulation of microRNA-214-3p. Am J Physiol Gastrointest Liver Physiol 2019; 317(2):G222-G32.
  • 23. Fiore D, Donnarumma E, Roscigno G, Iaboni M, Russo V, Affinito A, et al. miR-340 predicts glioblastoma survival and modulates key cancer hallmarks through down-regulation of NRAS. Oncotarget 2016; 7(15):19531-47.
  • 24. Goulart H, Wei AH, Kadia TM. Maintenance Therapy in AML: What Is the Future Potential? Am J Hematol 2025; 100 Suppl 2:38-49.
  • 25. Liao Q, Wang B, Li X, Jiang G. miRNAs in acute myeloid leukemia. Oncotarget 2017; 8(2):3666-82.
  • 26. Xu W, Hua Y, Deng F, Wang D, Wu Y, Zhang W, et al. MiR-145 in cancer therapy resistance and sensitivity: A comprehensive review. Cancer Sci 2020; 111(9):3122-31.
  • 27. Yao J, Zhong L, Zhong P, Liu D, Yuan Z, Liu J, et al. RAS-Responsive ElementBinding Protein 1 Blocks the Granulocytic Differentiation of Myeloid Leukemia Cells. Oncol Res 2019; 27(7):809-18.
  • 28. Kurata M, Antony ML, Noble-Orcutt KE, Rathe SK, Lee Y, Furuno H, et al. Proliferation and Self-Renewal Are Differentially Sensitive to NRASG12V Oncogene Levels in an Acute Myeloid Leukemia Cell Line. Mol Cancer Res 2022; 20(11):1646-58.
  • 29. Yu F, Huang D, Kuang Y, Dong J, Han Q, Zhou J, et al. IRS1 promotes thyroid cancer metastasis through EMT and PI3K/AKT pathways. Clin Endocrinol (Oxf) 2024; 100(3):284-93.
  • 30. Assouline S, Culjkovic B, Cocolakis E, Rousseau C, Beslu N, Amri A, et al. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood 2009; 114(2):257-60.
  • 31. Lv H, Zhang Z, Wang Y, Li C, Gong W, Wang X. MicroRNA-92a Promotes Colorectal Cancer Cell Growth and Migration by Inhibiting KLF4. Oncol Res 2016; 23(6):283- 90.
  • 32. Yang C, Boyson CA, Di Liberto M, Huang X, Hannah J, Dorn DC, et al. CDK4/6 Inhibitor PD 0332991 Sensitizes Acute Myeloid Leukemia to Cytarabine-Mediated Cytotoxicity. Cancer Res 2015; 75(9):1838-45.
  • 33. Matsuo H, Nakatani K, Harata Y, Higashitani M, Ito Y, Inagami A, et al. Efficacy of a combination therapy targeting CDK4/6 and autophagy in a mouse xenograft model of t(8;21) acute myeloid leukemia. Biochem Biophys Rep 2021; 27:101099.
  • 34. Zhu X, Li Y, Xie C, Yin X, Liu Y, Cao Y, et al. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. Int J Cancer 2014; 135(6):1286-96.
  • 35. Sun M, Zhao W, Chen Z, Li M, Li S, Wu B, et al. Circ_0058063 regulates CDK6 to promote bladder cancer progression by sponging miR-145-5p. J Cell Physiol 2019; 234(4):4812-24.
  • 36. Uras IZ, Walter GJ, Scheicher R, Bellutti F, Prchal-Murphy M, Tigan AS, et al. Palbociclib treatment of FLT3-ITD+ AML cells uncovers a kinase-dependent transcriptional regulation of FLT3 and PIM1 by CDK6. Blood 2016; 127(23):2890- 902.
  • 37. Ghaleb AM, Yang VW. Kruppel-like factor 4 (KLF4): What we currently know. Gene 2017; 611:27-37.
  • 38. Lewis AH, Bridges CS, Punia VS, Cooper AFJ, Puppi M, Lacorazza HD. Kruppel-like factor 4 promotes survival and expansion in acute myeloid leukemia cells. Oncotarget 2021; 12(4):255-67.
  • 39. Minami K, Taniguchi K, Sugito N, Kuranaga Y, Inamoto T, Takahara K, et al. MiR-145 negatively regulates Warburg effect by silencing KLF4 and PTBP1 in bladder cancer cells. Oncotarget 2017; 8(20):33064-77.
  • 40. Tuo Z, Liang L, Zhou R. LINC00852 is associated with poor prognosis in nonsmall cell lung cancer patients and its inhibition suppresses cancer cell proliferation and chemoresistance via the hsa-miR-145-5p/KLF4 axis. J Gene Med 2021; 23(12):e3384.
  • 41. Guzel Tanoglu E, Ozturk S. miR-145 suppresses epithelial-mesenchymal transition by targeting stem cells in Ewing sarcoma cells. Bratisl Lek Listy 2021; 122(1):71-7.
  • 42. Christie M, Igreja C. eIF4E-homologous protein (4EHP): a multifarious capbinding protein. FEBS J 2023; 290(2):266-85.
  • 43. Reiss K, Del Valle L, Lassak A, Trojanek J. Nuclear IRS-1 and cancer. J Cell Physiol 2012; 227(8):2992-3000.
  • 44. Siddiqui N, Sonenberg N. Signalling to eIF4E in cancer. Biochem Soc Trans 2015; 43(5):763-72.
  • 45. Chen Z, Zeng H, Guo Y, Liu P, Pan H, Deng A, et al. miRNA-145 inhibits nonsmall cell lung cancer cell proliferation by targeting c-Myc. J Exp Clin Cancer Res 2010; 29(1):151.
  • 46. Abdel-Aziz AK, Pallavicini I, Ceccacci E, Meroni G, Saadeldin MK, Varasi M, et al. Tuning mTORC1 activity dictates the response of acute myeloid leukemia to LSD1 inhibition. Haematologica 2020; 105(8):2105-17.
  • 47. Pan S, Zhao X, Shao C, Fu B, Huang Y, Zhang N, et al. STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells. Cell Death Dis 2021; 12(1):38.
  • 48. Picot T, Kesr S, Wu Y, Aanei CM, Flandrin-Gresta P, Tondeur S, et al. Potential Role of OCT4 in Leukemogenesis. Stem Cells Dev 2017; 26(22):1637-47.
  • 49. Suzuki S, Suzuki S, Sato-Nagaoka Y, Ito C, Takahashi S. Identification of triciribine as a novel myeloid cell differentiation inducer. PLoS One 2024; 19(5):e0303428.
  • 50. Simanshu DK, Nissley DV, McCormick F. RAS Proteins and Their Regulators in Human Disease. Cell 2017; 170(1):17-33.
  • 51. Wang Y, Hu C, Cheng J, Chen B, Ke Q, Lv Z, et al. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling. Biochem Biophys Res Commun 2014; 446(4):1255-60.

In Silico and In Vitro Analysis of the Regulatory Role of miR-145-5p on Its Potential Target Genes in Acute Myeloid Leukemia Cell Lines

Year 2025, Volume: 15 Issue: 3, 252 - 260, 31.12.2025
https://doi.org/10.26650/experimed.1722060

Abstract

Objective: Acute myeloid leukemia (AML) demonstrates prognostic heterogeneity, and the underlying pathophysiology is still not fully elucidated. This study investigated how the tumor suppressor miR-145-5p contributes to AML heterogeneity and associated biological processes through its potential target onco genes.

Materials and Methods: HL-60 and NB4 AML cells were transfected with miR-145-5p mimics using Lipo fectamine™ 2000. Apoptosis was evaluated by caspase-3 activity in NB4 cells, while cell viability was determined using WST-8 assays in HL-60 and NB4 cells. Putative miR-145-5p targets were predicted using the miRTarBase (v9.0) and miRNET (v2.0) databases. Following further filtration, PPI, KEGG, and GO analyses were performed using in silico approaches. Expression profiling of the identified genes was evaluated via quantitative real-time polymerase chain reaction (qRT-PCR), and the data were statistically compared.

Results: After miR-145-5p transfection, cell survival markedly decreased in both cell lines, and caspase-3 levels markedly increased in NB4 cells (p<0.05). Among the putative genes CDK4, CDK6, KLF4, NRAS, IRS1, and eIF4E identified via in silico analysis, CDK4 and KLF4 showed significantly decreased expression in both cell lines (p<0.05 for both).

Conclusion: The results demonstrate that miR-145-5p potentially regulates apoptosis and proliferation in AML via target genes, including CDK4 and KLF4. Further studies may reinforce the biomarker potential of miR-145-5p and facilitate the advancement of innovative diagnostic and therapeutic approaches for AML.

Ethical Statement

Commercially obtained cell lines were used in this study; therefore, ethical approval was not required.

Supporting Institution

This research was funded by the Scientific Research Projects Unit of Istanbul University (Project No: 38201).

Project Number

38201

References

  • 1. Döhner H, Weisdorf DJ, Bloomfield CD. Acute Myeloid Leukemia. N Engl J Med 2015; 373(12):1136-52.
  • 2. Liu Y, Cheng Z, Pang Y, Cui L, Qian T, Quan L, et al. Role of microRNAs, circRNAs and long noncoding RNAs in acute myeloid leukemia. J Hematol Oncol 2019; 12(1):51.
  • 3. Pelcovits A, Niroula R. Acute Myeloid Leukemia: A Review. R I Med J (2013) 2020; 103(3):38-40.
  • 4. Wachter F, Pikman Y. Pathophysiology of Acute Myeloid Leukemia. Acta Haematol 2024; 147(2):229-46.
  • 5. Wysota M, Konopleva M, Mitchell S. Novel Therapeutic Targets in Acute Myeloid Leukemia (AML). Curr Oncol Rep 2024; 26(4):409-20.
  • 6. Salehi A. A novel therapeutic strategy: the significance of exosomal miRNAs in acute myeloid leukemia. Med Oncol 2024; 41(2):62.
  • 7. Erdogan C, Suer I, Kaya M, Ozturk S, Aydin N, Kurt Z. Bioinformatics analysis of the potentially functional circRNA-miRNA-mRNA network in breast cancer. PLoS One 2024; 19(4):e0301995.
  • 8. Suer I, Kaya M. Is the AURKB Gene Involved in Aml Cell Proliferation Since It is Targeted by miR-34a-5p and let-7b-5p? Konuralp Med J 2023; 15(1):16-23.
  • 9. Kaya M. A bioinformatics approach to male infertility, microRNAs, and targeted genes. Ahi Evran Med J 2023; 7(3):296-303.
  • 10. Kaya M, Suer I. The effect of miR-34a-5p on overexpressed AML associated genes. J Istanbul Fac Med 2023; 86(1):59-68.
  • 11. Kaya M, Karatas OF. The relationship between larynx cancer and microRNAs. Van Med J 2020; 27(4):535-41.
  • 12. Kaya M, Abuaisha A, Suer I, Alptekin MS, Abanoz F, Emiroglu S, et al. Overexpression of CDC25A, AURKB, and TOP2A genes could be an important clue for luminal a breast cancer. Eur J Breast Health 2024; 20(4):284.
  • 13. Capik O, Sanli F, Kurt A, Ceylan O, Suer I, Kaya M, et al. CASC11 promotes aggressiveness of prostate cancer cells through miR-145/IGF1R axis. Prostate Cancer Prostatic Dis 2021; 24(3):891-902.
  • 14. Kaya M, Abuaisha A, Suer I, Emiroglu S, Önder S, Onay Ucar E, et al. Let-7b-5p sensitizes breast cancer cells to doxorubicin through Aurora Kinase B. PLoS One 2025; 20(1):e0307420.
  • 15. Kaya M, Suer I, Ozgur E, Capik O, Karatas OF, Ozturk S, et al. miR-145-5p suppresses cell proliferation by targeting IGF1R and NRAS genes in multiple myeloma cells. Turk J Biochem 2023; 48(5):563-9.
  • 16. Shi Q, Xing G, Qi M, Xing Y. Lower Serum miR-145 Predicts Poor Prognosis in Patients with Acute Myeloid Leukemia. Clin Lab 2020; 66(6).
  • 17. Wuxiao Z, Wang H, Su Q, Zhou H, Hu M, Tao S, et al. MicroRNA?145 promotes the apoptosis of leukemic stem cells and enhances drug?resistant K562/ADM cell sensitivity to adriamycin via the regulation of ABCE1. Int J Mol Med 2020; 46(4):1289-300.
  • 18. Li E, Zhao Z, Ma B, Zhang J. Long noncoding RNA HOTAIR promotes the proliferation and metastasis of osteosarcoma cells through the AKT/mTOR signaling pathway. Exp Ther Med 2017; 14(6):5321-8.
  • 19. Shao Y, Qu Y, Dang S, Yao B, Ji M. MiR-145 inhibits oral squamous cell carcinoma (OSCC) cell growth by targeting c-Myc and Cdk6. Cancer Cell Int 2013; 13(1):51.
  • 20. Zhao Y, Yan M, Yun Y, Zhang J, Zhang R, Li Y, et al. MicroRNA-455-3p functions as a tumor suppressor by targeting eIF4E in prostate cancer. Oncol Rep 2017; 37(4):2449-58.
  • 21. Suer I, Karatas OF, Yuceturk B, Yilmaz M, Guven G, Buge O, et al. Characterization of stem-like cells directly isolated from freshly resected laryngeal squamous cell carcinoma specimens. Curr Stem Cell Res Ther 2014; 9(4):347-53.
  • 22. Shang AQ, Wang WW, Yang YB, Gu CZ, Ji P, Chen C, et al. Knockdown of long noncoding RNA PVT1 suppresses cell proliferation and invasion of colorectal cancer via upregulation of microRNA-214-3p. Am J Physiol Gastrointest Liver Physiol 2019; 317(2):G222-G32.
  • 23. Fiore D, Donnarumma E, Roscigno G, Iaboni M, Russo V, Affinito A, et al. miR-340 predicts glioblastoma survival and modulates key cancer hallmarks through down-regulation of NRAS. Oncotarget 2016; 7(15):19531-47.
  • 24. Goulart H, Wei AH, Kadia TM. Maintenance Therapy in AML: What Is the Future Potential? Am J Hematol 2025; 100 Suppl 2:38-49.
  • 25. Liao Q, Wang B, Li X, Jiang G. miRNAs in acute myeloid leukemia. Oncotarget 2017; 8(2):3666-82.
  • 26. Xu W, Hua Y, Deng F, Wang D, Wu Y, Zhang W, et al. MiR-145 in cancer therapy resistance and sensitivity: A comprehensive review. Cancer Sci 2020; 111(9):3122-31.
  • 27. Yao J, Zhong L, Zhong P, Liu D, Yuan Z, Liu J, et al. RAS-Responsive ElementBinding Protein 1 Blocks the Granulocytic Differentiation of Myeloid Leukemia Cells. Oncol Res 2019; 27(7):809-18.
  • 28. Kurata M, Antony ML, Noble-Orcutt KE, Rathe SK, Lee Y, Furuno H, et al. Proliferation and Self-Renewal Are Differentially Sensitive to NRASG12V Oncogene Levels in an Acute Myeloid Leukemia Cell Line. Mol Cancer Res 2022; 20(11):1646-58.
  • 29. Yu F, Huang D, Kuang Y, Dong J, Han Q, Zhou J, et al. IRS1 promotes thyroid cancer metastasis through EMT and PI3K/AKT pathways. Clin Endocrinol (Oxf) 2024; 100(3):284-93.
  • 30. Assouline S, Culjkovic B, Cocolakis E, Rousseau C, Beslu N, Amri A, et al. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood 2009; 114(2):257-60.
  • 31. Lv H, Zhang Z, Wang Y, Li C, Gong W, Wang X. MicroRNA-92a Promotes Colorectal Cancer Cell Growth and Migration by Inhibiting KLF4. Oncol Res 2016; 23(6):283- 90.
  • 32. Yang C, Boyson CA, Di Liberto M, Huang X, Hannah J, Dorn DC, et al. CDK4/6 Inhibitor PD 0332991 Sensitizes Acute Myeloid Leukemia to Cytarabine-Mediated Cytotoxicity. Cancer Res 2015; 75(9):1838-45.
  • 33. Matsuo H, Nakatani K, Harata Y, Higashitani M, Ito Y, Inagami A, et al. Efficacy of a combination therapy targeting CDK4/6 and autophagy in a mouse xenograft model of t(8;21) acute myeloid leukemia. Biochem Biophys Rep 2021; 27:101099.
  • 34. Zhu X, Li Y, Xie C, Yin X, Liu Y, Cao Y, et al. miR-145 sensitizes ovarian cancer cells to paclitaxel by targeting Sp1 and Cdk6. Int J Cancer 2014; 135(6):1286-96.
  • 35. Sun M, Zhao W, Chen Z, Li M, Li S, Wu B, et al. Circ_0058063 regulates CDK6 to promote bladder cancer progression by sponging miR-145-5p. J Cell Physiol 2019; 234(4):4812-24.
  • 36. Uras IZ, Walter GJ, Scheicher R, Bellutti F, Prchal-Murphy M, Tigan AS, et al. Palbociclib treatment of FLT3-ITD+ AML cells uncovers a kinase-dependent transcriptional regulation of FLT3 and PIM1 by CDK6. Blood 2016; 127(23):2890- 902.
  • 37. Ghaleb AM, Yang VW. Kruppel-like factor 4 (KLF4): What we currently know. Gene 2017; 611:27-37.
  • 38. Lewis AH, Bridges CS, Punia VS, Cooper AFJ, Puppi M, Lacorazza HD. Kruppel-like factor 4 promotes survival and expansion in acute myeloid leukemia cells. Oncotarget 2021; 12(4):255-67.
  • 39. Minami K, Taniguchi K, Sugito N, Kuranaga Y, Inamoto T, Takahara K, et al. MiR-145 negatively regulates Warburg effect by silencing KLF4 and PTBP1 in bladder cancer cells. Oncotarget 2017; 8(20):33064-77.
  • 40. Tuo Z, Liang L, Zhou R. LINC00852 is associated with poor prognosis in nonsmall cell lung cancer patients and its inhibition suppresses cancer cell proliferation and chemoresistance via the hsa-miR-145-5p/KLF4 axis. J Gene Med 2021; 23(12):e3384.
  • 41. Guzel Tanoglu E, Ozturk S. miR-145 suppresses epithelial-mesenchymal transition by targeting stem cells in Ewing sarcoma cells. Bratisl Lek Listy 2021; 122(1):71-7.
  • 42. Christie M, Igreja C. eIF4E-homologous protein (4EHP): a multifarious capbinding protein. FEBS J 2023; 290(2):266-85.
  • 43. Reiss K, Del Valle L, Lassak A, Trojanek J. Nuclear IRS-1 and cancer. J Cell Physiol 2012; 227(8):2992-3000.
  • 44. Siddiqui N, Sonenberg N. Signalling to eIF4E in cancer. Biochem Soc Trans 2015; 43(5):763-72.
  • 45. Chen Z, Zeng H, Guo Y, Liu P, Pan H, Deng A, et al. miRNA-145 inhibits nonsmall cell lung cancer cell proliferation by targeting c-Myc. J Exp Clin Cancer Res 2010; 29(1):151.
  • 46. Abdel-Aziz AK, Pallavicini I, Ceccacci E, Meroni G, Saadeldin MK, Varasi M, et al. Tuning mTORC1 activity dictates the response of acute myeloid leukemia to LSD1 inhibition. Haematologica 2020; 105(8):2105-17.
  • 47. Pan S, Zhao X, Shao C, Fu B, Huang Y, Zhang N, et al. STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells. Cell Death Dis 2021; 12(1):38.
  • 48. Picot T, Kesr S, Wu Y, Aanei CM, Flandrin-Gresta P, Tondeur S, et al. Potential Role of OCT4 in Leukemogenesis. Stem Cells Dev 2017; 26(22):1637-47.
  • 49. Suzuki S, Suzuki S, Sato-Nagaoka Y, Ito C, Takahashi S. Identification of triciribine as a novel myeloid cell differentiation inducer. PLoS One 2024; 19(5):e0303428.
  • 50. Simanshu DK, Nissley DV, McCormick F. RAS Proteins and Their Regulators in Human Disease. Cell 2017; 170(1):17-33.
  • 51. Wang Y, Hu C, Cheng J, Chen B, Ke Q, Lv Z, et al. MicroRNA-145 suppresses hepatocellular carcinoma by targeting IRS1 and its downstream Akt signaling. Biochem Biophys Res Commun 2014; 446(4):1255-60.
There are 51 citations in total.

Details

Primary Language English
Subjects Epigenetics
Journal Section Research Article
Authors

Rukiye Aslan 0000-0002-0555-5588

Murat Kaya 0000-0003-2241-7088

Ilknur Suer 0000-0003-1954-4190

Kıvanç Çefle 0000-0002-9420-4543

Şükrü Öztürk 0000-0002-8809-7462

Project Number 38201
Submission Date June 18, 2025
Acceptance Date November 17, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 15 Issue: 3

Cite

Vancouver Aslan R, Kaya M, Suer I, Çefle K, Öztürk Ş. In Silico and In Vitro Analysis of the Regulatory Role of miR-145-5p on Its Potential Target Genes in Acute Myeloid Leukemia Cell Lines. Experimed. 2025;15(3):252-60.