Year 2024,
Volume: 14 Issue: 3, 146 - 153, 19.12.2024
Sercan Şeker
,
Gaye Eskicioğlu
,
Zeynep Küçük
,
Sacit Karamursel
References
- 1. Wind AE, Takken T, Helders PJM, Engelbert RHH. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur J Pediatr 2010; 169(3): 281-7. google scholar
- 2. Everhart DE, Harrison DW, Shenal BV, Williamson J, Wuensch KL. Grip-strength, fatigue, and motor perseveration in anxious men without depression. Neuropsychiatry Neuropsychol Behav Neurol 2002; 15(2): 133-42. google scholar
- 3. Fink B, Weege B, Pham MN, Shackelford TK. Handgrip strength and the Big Five personality factors in men and women. Personal Individ Differ 2016; 88: 175-7. google scholar
- 4. Mathersul D, Williams LM, Hopkinson PJ, Kemp AH. Investigating models of affect: Relationships among EEG alpha asymmetry, depression, and anxiety. Emotion 2008; 8(4): 560-72. google scholar
- 5. Ding H, Leino-Arjas P, Murtomaa H, Takala EP, Solovieva S. Variation in work tasks in relation to pinch grip strength among middle-aged female dentists. Appl Ergon 2013; 44(6): 977-81. google scholar
- 6. Sims SEG, Engel L, Hammert WC, Elfar JC. Hand sensibility, strength, and laxity of high-level musicians compared to nonmusicians. J Hand Surg 2015; 40(10): 1996-2002.e5. google scholar
- 7. Stinear CM, Byblow WD. Role of intracortical inhibition in selective hand muscle activation. J Neurophysiol 2003; 89(4): 2014-20. google scholar
- 8. Mason J, Frazer AK, Avela J, Pearce AJ, Howatson G, Kidgell DJ. Tracking the corticospinal responses to strength training. Eur J Appl Physiol 2020; 120(4): 783-98. google scholar
- 9. Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, et al. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J Physiol 2019; 597(7): 1873-87. google scholar
- 10. Fling BW, Christie A, Kamen G. Motor unit synchronization in FDI and biceps brachii muscles of strength-trained males. J Electromyogr Kinesiol 2009; 19(5): 800-9. google scholar
- 11. Zatsiorsky VM, Kraemer WJ, Fry AC. Science and practice of strength training. Third edition. Champaign, IL: Human Kinetics; 2021. google scholar
- 12. Van Duinen H, Renken R, Maurits N, Zijdewind I. Effects of motor fatigue on human brain activity, an fMRI study. NeuroImage 2007; 35(4): 1438-49. google scholar
- 13. Das S, Holland P, Frens MA, Donchin O. Impact of transcranial direct current stimulation (tDCS) on neuronal functions. Front Neurosci 2016; 10: 550. google scholar
- 14. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000; 527(3): 633-9. google scholar
- 15. Chinzara TT, Buckingham G, Harris DJ. Transcranial direct current stimulation and sporting performance: A systematic review and meta-analysis of transcranial direct current stimulation effects on physical endurance, muscular strength and visuomotor skills. Eur J Neurosci 2022; 55(2): 468-86. google scholar
- 16. Hu K, Chen Y, Guo F, Wang X. Effects of transcranial direct current stimulation on upper limb muscle strength and endurance in healthy individuals: a systematic review and meta-analysis. Front Physiol 2022; 13: 834397. google scholar
- 17. Neuling T, Rach S, Wagner S, Wolters CH, Herrmann CS. Good vibrations: Oscillatory phase shapes perception. NeuroImage 2012; 63(2): 771-8. google scholar
- 18. Merlet I, Birot G, Salvador R, Molaee-Ardekani B, Mekonnen A, Soria-Frish A, et al. From oscillatory transcranial current stimulation to scalp EEG changes: a biophysical and physiological modeling study. PLoS ONE 2013; 8(2): e57330. google scholar
- 19. Filho E, Dobersek U, Husselman TA. The role of neural efficiency, transient hypofrontality and neural proficiency in optimal performance in self-paced sports: a meta-analytic review. Exp Brain Res 2021; 239(5): 1381-93. google scholar
- 20. Ogata K, Nakazono H, Uehara T, Tobimatsu S. Prestimulus cortical EEG oscillations can predict the excitability of the primary motor cortex. Brain Stimulat 2019; 12(6): 1508-16. google scholar
- 21. Bemben MG, Massey BH, Bemben DA, Misner JE, Boileau RA. Isometric intermittent endurance of four muscle groups in men aged 20-74 yr: Med Sci Sports Exerc 1996; 28(1): 145-53. google scholar
- 22. White C, Dixon K, Samuel D, Stokes M. Handgrip and quadriceps muscle endurance testing in young adults. Springer Plus 2013; 2(1): 451. google scholar
- 23. Vulic K, Bjekic J, Paunovic D, Jovanovic M, Milanovic S, Filipovic SR. Theta-modulated oscillatory transcranial direct current stimulation over posterior parietal cortex improves associative memory. Sci Rep 2021; 11(1): 3013. google scholar
- 24. Workman C, Fietsam A, Rudroff T. Transcranial direct current stimulation at 4 mA induces greater leg muscle fatigability in women compared to men. Brain Sci 2020; 10(4): 244. google scholar
- 25. Rudroff T, Workman CD, Fietsam AC, Kamholz J. Response variability in transcranial direct current stimulation: why sex matters. Front Psychiatry 2020; 11: 585. google scholar
- 26. Gerodimos V. Reliability of handgrip strength test in basketball players. J Hum Kinet 2012; 31(2012): 25-36. google scholar
- 27. Xu Z yang, Gao D fa, Xu K, Zhou Z qi, Guo Y kun. The Effect of posture on maximum grip strength measurements. J Clin Densitom 2021; 24(4): 638-44. google scholar
- 28. Karatrantou K. Dynamic Handgrip Strength Endurance: A reliable measurement in older women. J Geriatr Phys Ther 2019; 42(3): E51-6. google scholar
- 29. Nicolay CW, Walker AL. Grip strength and endurance: influences of anthropometric variation, hand dominance, and gender. Int J Ind Ergon 2005; 35(7): 605-18. google scholar
- 30. Evans WJ, Hurley BF. Age, gender, and muscular strength. J Gerontol A Biol Sci Med Sci 1995; 50A(Special): 41-4. google scholar
- 31. Alix-Fages, Romero-Arenas, Castro-Alonso, Colomer-Poveda, Rfo-Rodriguez, Jerez-Martı'nez, et al. Short-term effects of anodal transcranial direct current stimulation on endurance and maximal force production. A systematic review and meta-analysis. J Clin Med 2019; 8(4): 536. google scholar
- 32. Hazime FA, da Cunha RA, Soliaman RR, Romancini ACB, Pochini A de C, Ejnisman B, et al. Anodal transcranial direct current stimulation (TDCS) increases isometric strength of shoulder rotators muscles in handball players. Int J Sports Phys Ther 2017; 12(3): 402-7. google scholar
- 33. Vargas VZ, Baptista AF, Pereira GOC, Pochini AC, Ejnisman B, Santos MB, et al. Modulation of isometric quadriceps strength in soccer players with transcranial direct current stimulation: a crossover study. J Strength Cond Res 2018; 32(5): 1336-41. google scholar
- 34. Tanaka S, Hanakawa T, Honda M, Watanabe K. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res 2009; 196(3): 459-65. google scholar
- 35. DaSilva AF, Volz MS, Bikson M, Fregni F. Electrode positioning and montage in transcranial direct current stimulation. J Vis Exp JoVE 2011; (51): 2744. google scholar
- 36. Pavlova E, Kuo MF, Nitsche MA, Borg J. Transcranial direct current stimulation of the premotor cortex: Effects on hand dexterity. Brain Res 2014; 1576: 52-62. google scholar
- 37. Trinidad-Fernandez M, Gonzalez-Molina F, Moya-Esteban A, Roldan-Jimenez C, Gonzalez-Sanchez M, Cuesta-Vargas AI. Muscle activity and architecture as a predictor of hand-grip strength. Physiol Meas 2020; 41(7): 075008. google scholar
Effects of o-tDCS and tDCS on Maximal Grip Strength
Year 2024,
Volume: 14 Issue: 3, 146 - 153, 19.12.2024
Sercan Şeker
,
Gaye Eskicioğlu
,
Zeynep Küçük
,
Sacit Karamursel
Abstract
Objective: The aim of the current study was to examine and compare the effects of oscillatory transcranial direct current stimulation (o-tDCS) and transcranial direct current stimulation (tDCS) against sham stimulation on maximal intermittent gripping performance.
Materials and Methods: The study included 25 healthy, right-handed male subjects (age range 18-35 years) who were randomly assigned to three separate groups: o-tDCS (n=9), tDCS (n=8) and sham (n=8). The left primary motor cortex was selected as the anodal stimulation region, and a cathode electrode was placed over the right supraorbital area. A hand dynamometer is used to measure the maximum grip values during a maximal intermittent gripping task. Between-group comparisons were made; for each stimulation group, baseline grip values of the participants were compared with those obtained during stimulation.
Results: Although the o-tDCS group showed slightly better improvements in maximal and mean strength, there were no statistically significant differences between stimulation groups (p>0.05).
Conclusion: The findings of the study suggest neither o-tDCS nor tDCS has a significant facilitative impact on grip strength values in healthy young males, most likely due to a ceiling effect in this population.
References
- 1. Wind AE, Takken T, Helders PJM, Engelbert RHH. Is grip strength a predictor for total muscle strength in healthy children, adolescents, and young adults? Eur J Pediatr 2010; 169(3): 281-7. google scholar
- 2. Everhart DE, Harrison DW, Shenal BV, Williamson J, Wuensch KL. Grip-strength, fatigue, and motor perseveration in anxious men without depression. Neuropsychiatry Neuropsychol Behav Neurol 2002; 15(2): 133-42. google scholar
- 3. Fink B, Weege B, Pham MN, Shackelford TK. Handgrip strength and the Big Five personality factors in men and women. Personal Individ Differ 2016; 88: 175-7. google scholar
- 4. Mathersul D, Williams LM, Hopkinson PJ, Kemp AH. Investigating models of affect: Relationships among EEG alpha asymmetry, depression, and anxiety. Emotion 2008; 8(4): 560-72. google scholar
- 5. Ding H, Leino-Arjas P, Murtomaa H, Takala EP, Solovieva S. Variation in work tasks in relation to pinch grip strength among middle-aged female dentists. Appl Ergon 2013; 44(6): 977-81. google scholar
- 6. Sims SEG, Engel L, Hammert WC, Elfar JC. Hand sensibility, strength, and laxity of high-level musicians compared to nonmusicians. J Hand Surg 2015; 40(10): 1996-2002.e5. google scholar
- 7. Stinear CM, Byblow WD. Role of intracortical inhibition in selective hand muscle activation. J Neurophysiol 2003; 89(4): 2014-20. google scholar
- 8. Mason J, Frazer AK, Avela J, Pearce AJ, Howatson G, Kidgell DJ. Tracking the corticospinal responses to strength training. Eur J Appl Physiol 2020; 120(4): 783-98. google scholar
- 9. Del Vecchio A, Casolo A, Negro F, Scorcelletti M, Bazzucchi I, Enoka R, et al. The increase in muscle force after 4 weeks of strength training is mediated by adaptations in motor unit recruitment and rate coding. J Physiol 2019; 597(7): 1873-87. google scholar
- 10. Fling BW, Christie A, Kamen G. Motor unit synchronization in FDI and biceps brachii muscles of strength-trained males. J Electromyogr Kinesiol 2009; 19(5): 800-9. google scholar
- 11. Zatsiorsky VM, Kraemer WJ, Fry AC. Science and practice of strength training. Third edition. Champaign, IL: Human Kinetics; 2021. google scholar
- 12. Van Duinen H, Renken R, Maurits N, Zijdewind I. Effects of motor fatigue on human brain activity, an fMRI study. NeuroImage 2007; 35(4): 1438-49. google scholar
- 13. Das S, Holland P, Frens MA, Donchin O. Impact of transcranial direct current stimulation (tDCS) on neuronal functions. Front Neurosci 2016; 10: 550. google scholar
- 14. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol 2000; 527(3): 633-9. google scholar
- 15. Chinzara TT, Buckingham G, Harris DJ. Transcranial direct current stimulation and sporting performance: A systematic review and meta-analysis of transcranial direct current stimulation effects on physical endurance, muscular strength and visuomotor skills. Eur J Neurosci 2022; 55(2): 468-86. google scholar
- 16. Hu K, Chen Y, Guo F, Wang X. Effects of transcranial direct current stimulation on upper limb muscle strength and endurance in healthy individuals: a systematic review and meta-analysis. Front Physiol 2022; 13: 834397. google scholar
- 17. Neuling T, Rach S, Wagner S, Wolters CH, Herrmann CS. Good vibrations: Oscillatory phase shapes perception. NeuroImage 2012; 63(2): 771-8. google scholar
- 18. Merlet I, Birot G, Salvador R, Molaee-Ardekani B, Mekonnen A, Soria-Frish A, et al. From oscillatory transcranial current stimulation to scalp EEG changes: a biophysical and physiological modeling study. PLoS ONE 2013; 8(2): e57330. google scholar
- 19. Filho E, Dobersek U, Husselman TA. The role of neural efficiency, transient hypofrontality and neural proficiency in optimal performance in self-paced sports: a meta-analytic review. Exp Brain Res 2021; 239(5): 1381-93. google scholar
- 20. Ogata K, Nakazono H, Uehara T, Tobimatsu S. Prestimulus cortical EEG oscillations can predict the excitability of the primary motor cortex. Brain Stimulat 2019; 12(6): 1508-16. google scholar
- 21. Bemben MG, Massey BH, Bemben DA, Misner JE, Boileau RA. Isometric intermittent endurance of four muscle groups in men aged 20-74 yr: Med Sci Sports Exerc 1996; 28(1): 145-53. google scholar
- 22. White C, Dixon K, Samuel D, Stokes M. Handgrip and quadriceps muscle endurance testing in young adults. Springer Plus 2013; 2(1): 451. google scholar
- 23. Vulic K, Bjekic J, Paunovic D, Jovanovic M, Milanovic S, Filipovic SR. Theta-modulated oscillatory transcranial direct current stimulation over posterior parietal cortex improves associative memory. Sci Rep 2021; 11(1): 3013. google scholar
- 24. Workman C, Fietsam A, Rudroff T. Transcranial direct current stimulation at 4 mA induces greater leg muscle fatigability in women compared to men. Brain Sci 2020; 10(4): 244. google scholar
- 25. Rudroff T, Workman CD, Fietsam AC, Kamholz J. Response variability in transcranial direct current stimulation: why sex matters. Front Psychiatry 2020; 11: 585. google scholar
- 26. Gerodimos V. Reliability of handgrip strength test in basketball players. J Hum Kinet 2012; 31(2012): 25-36. google scholar
- 27. Xu Z yang, Gao D fa, Xu K, Zhou Z qi, Guo Y kun. The Effect of posture on maximum grip strength measurements. J Clin Densitom 2021; 24(4): 638-44. google scholar
- 28. Karatrantou K. Dynamic Handgrip Strength Endurance: A reliable measurement in older women. J Geriatr Phys Ther 2019; 42(3): E51-6. google scholar
- 29. Nicolay CW, Walker AL. Grip strength and endurance: influences of anthropometric variation, hand dominance, and gender. Int J Ind Ergon 2005; 35(7): 605-18. google scholar
- 30. Evans WJ, Hurley BF. Age, gender, and muscular strength. J Gerontol A Biol Sci Med Sci 1995; 50A(Special): 41-4. google scholar
- 31. Alix-Fages, Romero-Arenas, Castro-Alonso, Colomer-Poveda, Rfo-Rodriguez, Jerez-Martı'nez, et al. Short-term effects of anodal transcranial direct current stimulation on endurance and maximal force production. A systematic review and meta-analysis. J Clin Med 2019; 8(4): 536. google scholar
- 32. Hazime FA, da Cunha RA, Soliaman RR, Romancini ACB, Pochini A de C, Ejnisman B, et al. Anodal transcranial direct current stimulation (TDCS) increases isometric strength of shoulder rotators muscles in handball players. Int J Sports Phys Ther 2017; 12(3): 402-7. google scholar
- 33. Vargas VZ, Baptista AF, Pereira GOC, Pochini AC, Ejnisman B, Santos MB, et al. Modulation of isometric quadriceps strength in soccer players with transcranial direct current stimulation: a crossover study. J Strength Cond Res 2018; 32(5): 1336-41. google scholar
- 34. Tanaka S, Hanakawa T, Honda M, Watanabe K. Enhancement of pinch force in the lower leg by anodal transcranial direct current stimulation. Exp Brain Res 2009; 196(3): 459-65. google scholar
- 35. DaSilva AF, Volz MS, Bikson M, Fregni F. Electrode positioning and montage in transcranial direct current stimulation. J Vis Exp JoVE 2011; (51): 2744. google scholar
- 36. Pavlova E, Kuo MF, Nitsche MA, Borg J. Transcranial direct current stimulation of the premotor cortex: Effects on hand dexterity. Brain Res 2014; 1576: 52-62. google scholar
- 37. Trinidad-Fernandez M, Gonzalez-Molina F, Moya-Esteban A, Roldan-Jimenez C, Gonzalez-Sanchez M, Cuesta-Vargas AI. Muscle activity and architecture as a predictor of hand-grip strength. Physiol Meas 2020; 41(7): 075008. google scholar