Review
BibTex RIS Cite

Year 2025, Volume: 15 Issue: 2, 101 - 108, 29.08.2025
https://doi.org/10.26650/experimed.1623435

Abstract

References

  • 1. Kilchert C, Wittmann S, Vasiljeva L. The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 2016; 17(4): 227–39. google scholar
  • 2. Ogami K, Suzuki HI. Nuclear RNA exosome and pervasive transcription: Dual sculptors of genome function. Int J Mol Sci2021; 22(24): 13401. google scholar
  • 3. Boczonadi V, Müller JS, Pyle A, Munkley J, Dor T, Quartararo J, et al. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat Commun 2014; 5(1): 1–13. google scholar
  • 4. Blin J, Fitzgerald KA. Perspective: The RNA exosome, cytokine gene regulation and links to autoimmunity. Cytokine 2015; 74(2): 175–80. google scholar
  • 5. Chan YA, Hieter P, Stirling PC. Mechanisms of genome instability induced by RNA-processing defects. Trends Genet 2014; 30(6): 245–53. google scholar
  • 6. McIver SC, Katsumura KR, Davids E, Liu P, Kang YA, Yang D, et al. Exosome complex orchestrates developmental signaling to balance proliferation and differentiation during erythropoiesis. Elife 2016; 5: e17877. google scholar
  • 7. Taniue K, Tanu T, Shimoura Y, Mitsutomi S, Han H, Kakisaka R, et al. RNA Exosome component EXOSC4 amplified in multiple cancer types is required for the cancer cell survival. Int J Mol Sci 2022; 23(1): 496. google scholar
  • 8. Desterke C, Bennaceur-Griscelli A, Turhan AG. DIS3 mutation in RUNX1-mutated AML1 confers a highly dismal prognosis in AML by repressing sister chromatid cohesion. Blood 2019; 134(Supp 1): 1454. google scholar
  • 9. Todoerti K, Ronchetti D, Favasuli V, Maura F, Morabito F, Bolli N, et al. DIS3 mutations in multiple myeloma impact the transcriptional signature and clinical outcome. Haematologica 2022; 107(4): 921. google scholar
  • 10. Yan X, You SN, Chen Y, Qian K. Construction and validation of a newly prognostic signature for CRISPR-Cas9-based cancer dependency map genes in breast cancer. J Oncol 2022; 2022: 4566577. google scholar
  • 11. Lv CG, Cheng Y, Zhang L, Wu GG, Liang CY, Tao Z, et al. EXOSC2 mediates the pro-tumor role of WTAP in breast cancer cells via activating the Wnt/β-catenin signal. Mol Biotechnol 2024; 66(9): 2569–82. google scholar
  • 12. Vanacova S, Stef R. The exosome and RNA quality control in the nucleus. EMBO Rep 2007; 8(7): 651–7. google scholar
  • 13. Houseley J, LaCava J, Tollervey D. RNA-quality control by the exosome. Nat Rev Mol Cell Biol 2006; 7(7): 529–39. google scholar
  • 14. Schneider C, Leung E, Brown J, Tollervey D. The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 2009; 37(4): 1127. google scholar
  • 15. Makino DL, Baumgärtner M, Conti E. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 2013; 495(7439): 70–5. google scholar
  • 16. Davidson L, Francis L, Cordiner RA, Eaton JD, Estell C, Macias S, et al. Rapid depletion of DIS3, EXOSC10, or XRN2 reveals the immediate impact of exoribonucleolysis on nuclear RNA metabolism and transcriptional control. Cell Rep 2019; 26(10): 2779–91.e5. google scholar
  • 17. Makino DL, Schuch B, Stegmann E, Baumgärtner M, Basquin C, Conti E. RNA degradation paths in a 12-subunit nuclear exosome complex. Nature 2015; 524(7563): 54–8. google scholar
  • 18. Zinder JC, Wasmuth E V, Lima CD. Nuclear RNA exosome at 3.1 Å reveals substrate specificities, RNA paths, and allosteric inhibition of Rrp44/Dis3. Mol Cell 2016; 64(4): 734–45. google scholar
  • 19. Liu JJ, Bratkowski MA, Liu X, Niu CY, Ke A, Wang HW. Visualization of distinct substrate-recruitment pathways in the yeast exosome by EM. Nat Struct Mol Biol 2014; 21(1): 95–102. google scholar
  • 20. Han J, van Hoof A. The RNA exosome channeling and direct access conformations have distinct in vivo functions. Cell Rep 2016; 16(12): 3348–58. google scholar
  • 21. Gerlach P, Schuller JM, Bonneau F, Basquin J, Reichelt P, Falk S, et al. Distinct and evolutionary conserved structural features of the human nuclear exosome complex. Elife. 2018; 7: e38686. google scholar
  • 22. Gudipati RK, Xu Z, Lebreton A, Séraphin B, Steinmetz LM, Jacquier A, et al. Extensive degradation of RNA precursors by the exosome in wild-type cells. Mol Cell 2012; 48(3): 409–21. google scholar
  • 23. de Amorim JL, Leung SW, Haji-Seyed-Javadi R, Hou Y, Yu DS, Ghalei H, et al. The putative RNA helicase DDX1 associates with the nuclear RNA exosome and modulates RNA/DNA hybrids (R-loops). J Biol Chem 2024; 300(2): 105646. google scholar
  • 24. Papadopoulos D, Solvie D, Baluapuri A, Endres T, Ha SA, Herold S, et al. MYCN recruits the nuclear exosome complex to RNA polymerase II to prevent transcription-replication conflicts. Mol Cell 2022; 82(1): 159–76. e12. google scholar
  • 25. Pefanis E, Wang J, Rothschild G, Lim J, Kazadi D, Sun J, et al. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 2015; 161(4): 774–89. google scholar
  • 26. Favasuli VK, Ronchetti D, Silvestris I, Puccio N, Fabbiano G, Traini V, et al. DIS3 depletion in multiple myeloma causes extensive perturbation in cell cycle progression and centrosome amplification. Haematologica 2024; 109(1): 231–44. google scholar
  • 27. Szczepińska T, Kalisiak K, Tomecki R, Labno A, Borowski LS, Kulinski TM, et al. DIS3 shapes the RNA polymerase II transcriptome in humans by degrading a variety of unwanted transcripts. Genome Res 2015; 25(11): 1622–33. google scholar
  • 28. Marin-Vicente C, Domingo-Prim J, Eberle AB, Visa N. RRP6/EXOSC10 is required for the repair of DNA double-strand breaks by homologous recombination. J Cell Sci 2015; 128(6): 1097–107. google scholar
  • 29. Domingo-Prim J, Endara-Coll M, Bonath F, Jimeno S, Prados-Carvajal R, Friedländer MR, et al. EXOSC10 is required for RPA assembly and controlled DNA end resection at DNA double-strand breaks. Nat Commun 2019; 10(1): 2135. google scholar
  • 30. Yoshino S, Matsui Y, Fukui Y, Seki M, Yamaguchi K, Kanamori A, et al. EXOSC9 depletion attenuates P-body formation, stress resistance, and tumorigenicity of cancer cells. Sci Reports 2020; 10(1): 9275. google scholar
  • 31. Tsuda M, Noguchi M, Kurai T, Ichihashi Y, Ise K, Wang L, et al. Aberrant expression of MYD88 via RNA‐controlling CNOT4 and EXOSC3 in colonic mucosa impacts generation of colonic cancer. Cancer Sci 2021; 112(12): 5100–13. google scholar
  • 32. Wang YX, Li YZ, Zhao WL, Zhang ZY, Qian XL, He GY. STX2 drives colorectal cancer proliferation via upregulation of EXOSC4. Life Sci 2020; 263: 118597. google scholar
  • 33. Pan Y, Tong JHM, Kang W, Lung RWM, Chak WP, Chung LY, et al. EXOSC4 functions as a potential oncogene in development and progression of colorectal cancer. Mol Carcinog 2018; 57(12): 1780–91. google scholar
  • 34. de Wit M, Kant H, Piersma SR, Pham T V, Mongera S, van Berkel MPA, et al. Colorectal cancer candidate biomarkers identified by tissue secretome proteome profiling. J Proteomics 2014; 99: 26–39. google scholar
  • 35. Cui K, Gong L, Zhang H, Chen Y, Liu B, Gong Z, et al. EXOSC8 promotes colorectal cancer tumorigenesis via regulating ribosome biogenesis-related processes. Oncogene 2022; 41(50): 5397–410. google scholar
  • 36. Cui K, Liu C, Li X, Zhang Q, Li Y. Comprehensive characterization of the rRNA metabolism-related genes in human cancer. Oncogene 2019; 39(4): 786–800. google scholar
  • 37. Sun L, Patai Á V., Hogenson TL, Fernandez-Zapico ME, Qin B, Sinicrope FA. Irreversible JNK blockade overcomes PD-L1-mediated resistance to chemotherapy in colorectal cancer. Oncogene 2021; 40(32): 5105–15. google scholar
  • 38. Quttina M, Waiters KD, Khan AF, Karami S, Peidl AS, Babajide MF, et al. Exosc9 initiates SUMO-dependent lncRNA TERRA degradation to impact telomeric integrity in endocrine therapy insensitive hormone receptor-positive breast cancer. Cells 2023; 12(20): 2495. google scholar
  • 39. Liu Q, Xiao Q, Sun Z, Wang B, Wang L, Wang N, et al. Exosome component 1 cleaves single-stranded DNA and sensitizes human kidney renal clear cell carcinoma cells to poly(ADP-ribose) polymerase inhibitor. Elife 2021; 10: e69454. google scholar
  • 40. Pan H, Pan J, Song S, Ji L, Lv H, Yang Z. EXOSC5 as a novel prognostic marker promotes proliferation of colorectal cancer via activating the ERK and AKT pathways. Front Oncol 2019; 9: 643. Erratum in: Front Oncol 2021; 11: 670041. google scholar
  • 41. Makler A, Narayanan R. Mining exosomal genes for pancreatic cancer targets. Cancer Genomics Proteomics 2017; 14(3): 161–72. google scholar
  • 42. Taniue K, Tanu T, Shimoura Y, Mitsutomi S, Han H, Kakisaka R, et al. RNA exosome component exosc4 amplified in multiple cancer types is required for the cancer cell survival. Int J Mol Sci 2022; 23(1): 496. google scholar
  • 43. Chen X, Huang Y, Liu J, Lin W, Chen C, Chen Y, et al. EXOSC5 promotes proliferation of gastric cancer through regulating AKT/STAT3 signaling pathways. J Cancer 2022; 13(5): 1456–67. google scholar
  • 44. Cho JY, Lim JY, Cheong JH, Park YY, Yoon SL, Kim SM, et al. Gene expression signature-based prognostic risk score in gastric cancer. Clin Cancer Res 2011; 17(7): 1850–7. google scholar
  • 45. Tomecki R, Drazkowska K, Kucinski I, Stodus K, Szczesny RJ, Gruchota J, et al. Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target. Nucleic Acids Res 2014; 42(2): 1270–90. google scholar
  • 46. Zhang W, Zhu J, He X, Liu X, Li J, Li W, et al. Exosome complex genes mediate RNA degradation and predict survival in mantle cell lymphoma. Oncol Lett 2019; 18(5): 5119–28. google scholar
  • 47. Huang YH, Wang WL, Wang PH, Lee H Te, Chang WW. EXOSC5 maintains cancer stem cell activity in endometrial cancer by regulating the NTN4/integrin β1 signalling axis. Int J Biol Sci 2024; 20(1): 265–79. google scholar
  • 48. Attarha S, Andersson S, Mints M, Souchelnytskyi S. Individualised proteome profiling of human endometrial tumours improves detection of new prognostic markers. Br J Cancer 2013; 109(3): 704–13. google scholar
  • 49. Nichols CA, Gibson WJ, Brown MS, Kosmicki JA, Busanovich JP, Wei H, et al. Loss of heterozygosity of essential genes represents a widespread class of potential cancer vulnerabilities. Nat Commun 2020; 11(1): 2517. google scholar
  • 50. Zhang Y, Yang X, Hu Y, Huang X. Integrated bioinformatic investigation of EXOSCs in hepatocellular carcinoma followed by the preliminary validation of EXOSC5 in cell proliferation. Int J Mol Sci 2022; 23(20): 12161. google scholar
  • 51. Xiong C, Sun Z, Yu J, Lin Y. Exosome component 4 promotes epithelial ovarian cancer cell proliferation, migration, and invasion via the Wnt pathway. Front Oncol 2021; 11: 797968. google scholar
  • 52. Zhang Y, Chen C, Liu Z, Guo H, Lu W, Hu W, et al. PABPC1-induced stabilization of IFI27 mRNA promotes angiogenesis and malignant progression in esophageal squamous cell carcinoma through exosomal miRNA-21-5p. J Exp Clin Cancer Res 2022; 41(1): 111. google scholar
  • 53. Meng ZY, Fan YC, Zhang CS, Zhang LL, Wu T, Nong MY, et al. EXOSC10 is a novel hepatocellular carcinoma prognostic biomarker: a comprehensive bioinformatics analysis and experiment verification. PeerJ 2023; 11: e15860. google scholar
  • 54. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011; 471(7339): 467–72. google scholar
  • 55. Zhang L, Wan Y, Huang G, Wang D, Yu X, Huang G, et al. The exosome controls alternative splicing by mediating the gene expression and assembly of the spliceosome complex. Sci Reports 2015; 5: 13403. google scholar
  • 56. Mauger O, Scheiffele P. Beyond proteome diversity: alternative splicing as a regulator of neuronal transcript dynamics. Curr Opin Neurobiol 2017; 45: 162–8. google scholar
  • 57. Di Giovambattista AP, Jácome Querejeta I, Ventura Faci P, Rodríguez Martínez G, Ramos Fuentes F. Familial EXOSC3-related pontocerebellar hypoplasia. An Pediatr (Barc) 2017; 86(5): 284–6. google scholar
  • 58. Spyridakis AC, Cao Y, Litra F. A rare case of pontocerebellar hypoplasia type 1b with literature review. Cureus. 2022; 14(7): e27098. google scholar
  • 59. Zaki MS, Abdel-Ghafar SF, Abdel-Hamid MS. A missense variant in EXOSC8 causes exon skipping and expands the phenotypic spectrum of pontocerebellar hypoplasia type 1C. J Hum Genet 2024; 69(2): 79–84. google scholar
  • 60. Müller JS, Burns DT, Griffin H, Wells GR, Zendah RA, Munro B, et al. RNA exosome mutations in pontocerebellar hypoplasia alter ribosome biogenesis and p53 levels. Life Sci Alliance 2020; 3(8): e202000678. google scholar
  • 61. Gillespie A, Gabunilas J, Jen JC, Chanfreau GF. Mutations of EXOSC3/Rrp40p associated with neurological diseases impact ribosomal RNA processing functions of the exosome in S. cerevisiae. RNA 2017; 23(4): 466–72. google scholar
  • 62. Uozumi R, Mori K, Gotoh S, Miyamoto T, Kondo S, Yamashita T, et al. PABPC1 mediates degradation of C9orf72-FTLD/ALS GGGGCC repeat RNA. iScience 2024; 27(3): 109303. google scholar
  • 63. Kawabe Y, Mori K, Yamashita T, Gotoh S, Ikeda M. The RNA exosome complex degrades expanded hexanucleotide repeat RNA in C9orf72 FTLD/ALS. EMBO J 2020; 39(19): e102700. google scholar
  • 64. Eckard SC, Rice GI, Fabre A, Badens C, Gray EE, Hartley JL, et al. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat Immunol 2014; 15(9): 839–45. google scholar
  • 65. Fabre A, Martinez-Vinson C, Goulet O, Badens C. Syndromic diarrhea/tricho-hepato-enteric syndrome. Orphanet J Rare Dis 2013; 8: 5. google scholar
  • 66. Srinivasan S, He X, Mirza S, Mager J. Exosome complex components 1 and 2 are vital for early mammalian development. Gene Expr Patterns 2024; 51: 119346. google scholar
  • 67. Yatsuka H, Hada K, Shiraishi H, Umeda R, Morisaki I, Urushibata H, et al. Exosc2 deficiency leads to developmental disorders by causing a nucleotide pool imbalance in zebrafish. Biochem Biophys Res Commun 2020; 533(4): 1470–6. google scholar
  • 68. Zhou H, Huang L, Liang L, Chen L, Zou C, Li Z, et al. Identification of an mirna regulatory network and candidate markers for ischemic stroke related to diabetes. Int J Gen Med 2021; 14: 3213–23. google scholar
  • 69. Kammler S, Lykke-Andersen S, Jensen TH. The RNA exosome component hRrp6 is a target for 5-fluorouracil in human cells. Mol Cancer Res 2008; 6(6): 990–5. google scholar
  • 70. Bush JA, Meyer SM, Fuerst R, Tong Y, Li Y, Benhamou RI, et al. A blood–brain penetrant RNA-targeted small molecule triggers elimination of r(G4C2)exp in c9ALS/FTD via the nuclear RNA exosome. Proc Natl Acad Sci U S A 2022; 119(48): e2210532119. google scholar
  • 71. Damseh NS, Obeidat AN, Ahammed KS, Al-Ashhab M, Awad MA, van Hoof A. Pontocerebellar hypoplasia associated with p.Arg183Trp homozygous variant in EXOSC1 gene: A case report. Am J Med Genet Part A 2023; 191(7): 1923–8. google scholar
  • 72. Somashekar PH, Kaur P, Stephen J, Guleria VS, Kadavigere R, Girisha KM, et al. Bi-allelic missense variant, p.Ser35Leu in EXOSC1 is associated with pontocerebellar hypoplasia. Clin Genet 2021; 99(4): 594–600. google scholar
  • 73. Di Donato N, Neuhann T, Kahlert AK, Klink B, Hackmann K, Neuhann I, et al. Mutations in EXOSC2 are associated with a novel syndrome characterised by retinitis pigmentosa, progressive hearing loss, premature ageing, short stature, mild intellectual disability and distinctive gestalt. J Med Genet 2016; 53(6): 419– 25. google scholar
  • 74. Yang X, Bayat V, Didonato N, Zhao Y, Zarnegar B, Siprashvili Z, et al. Genetic and genomic studies of pathogenic EXOSC2 mutations in the newly described disease SHRF implicate the autophagy pathway in disease pathogenesis. Hum Mol Genet 2020; 29(4): 541–53. google scholar
  • 75. Wan J, Yourshaw M, Mamsa H, Rudnik-Schöneborn S, Menezes MP, Hong JE, et al. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat Genet 2012; 44(6): 704–8. google scholar
  • 76. Lu G, Liu H, Wang H, Tang X, Luo S, Du M, et al. Potentially functional variants of INPP5D and EXOSC3 in immunity B cell-related genes are associated with non-small cell lung cancer survival. Front Immunol 2024; 15: 1440454. google scholar
  • 77. Wijnsma KL, Schijvens AM, Bouwmeester RN, Aarts LAM, van den Heuvel L (Bert) P, Haaxma CA, et al. Mutations in genes encoding subunits of the RNA exosome as a potential novel cause of thrombotic microangiopathy. Int J Mol Sci 2024; 25(14): 7604. google scholar
  • 78. Huynh NCN, Pham AL, Pham NVT, Le PHN. Differential gene expression analysis of The Cancer Genome Atlas messenger ribonucleic acid sequencing data from male patients with and without lymph node metastasis in tongue cancer. Arch Orofac Sci 2024; 19(2): 127–39. google scholar
  • 79. Hong JQ, Huang QH, Huang ZY, Fan LP, Lin QY, Huang HB. Expression and clinical significance of exosome component 4 in newly diagnosed patients with diffuse large B-cell lymphoma. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2023; 31(6): 1684–9. google scholar
  • 80. Wang N, Miao X, Lu W, Ji Y, Zheng Y, Meng D, et al. RUNX3 exerts tumorsuppressive role through inhibiting EXOSC4 expression. Funct Integr Genomics 2024; 24(3): 1–12. google scholar
  • 81. Fasken MB, Leung SW, Cureton LA, Al-Awadi M, Al-Kindy A, van Hoof A, et al. A biallelic variant of the RNA exosome gene, EXOSC4, associated with neurodevelopmental defects impairs RNA exosome function and translation. J Biol Chem 2024; 300(8): 107571. google scholar
  • 82. Slavotinek A, Misceo D, Htun S, Mathisen L, Frengen E, Foreman M, et al. Biallelic variants in the RNA exosome gene EXOSC5 are associated with developmental delays, short stature, cerebellar hypoplasia and motor weakness. Hum Mol Genet 2020; 29(13): 2218–39. google scholar
  • 83. Huang Y, Cen Y, Wu H, Zeng G, Su Z, Zhang Z, et al. Nodularin-R synergistically enhances abiraterone against castrate- resistant prostate cancer via PPP1CA inhibition. J Cell Mol Med 2024; 28(22): e70210. google scholar
  • 84. Perez CM, Gong Z, Yoo C, Roy D, Deoraj A, Felty Q. Inhibitor of DNA binding protein 3 (ID3) and nuclear respiratory factor 1 (NRF1) mediated transcriptional gene signatures are associated with the severity of cerebral amyloid angiopathy. Mol Neurobiol 2024; 61(2): 835–82. google scholar
  • 85. Fan X, Yang X, Guo N, Gao X, Zhao Y. Development of an endoplasmic reticulum stress-related signature with potential implications in prognosis and immunotherapy in head and neck squamous cell carcinoma. Diagn Pathol 2023; 18(1): 1–14. google scholar
  • 86. Burns DT, Donkervoort S, Müller JS, Knierim E, Bharucha-Goebel D, Faqeih EA, et al. Variants in EXOSC9 disrupt the RNA exosome and result in cerebellar atrophy with spinal motor neuronopathy. Am J Hum Genet 2018; 102(5): 858–73. google scholar
  • 87. Sakamoto M, Iwama K, Sekiguchi F, Mashimo H, Kumada S, Ishigaki K, et al. Novel EXOSC9 variants cause pontocerebellar hypoplasia type 1D with spinal motor neuronopathy and cerebellar atrophy. J Hum Genet 2020; 66(4): 401–7. google scholar
  • 88. Bizzari S, Hamzeh AR, Mohamed M, Al-Ali MT, Bastaki F. Expanded PCH1D phenotype linked to EXOSC9 mutation. Eur J Med Genet 2020; 63(1): 103622. google scholar
  • 89. Demini L, Kervarrec C, Guillot L, Com E, Lavigne R, Kernanec PY, et al. Inactivation of Exosc10 in the oocyte impairs oocyte development and maturation, leading to a depletion of the ovarian reserve in mice. Int J Biol Sci 2023; 19(4): 1080. google scholar
  • 90. Kline BL, Siddall NA, Wijaya F, Stuart CJ, Orlando L, Bakhshalizadeh S, et al. Functional characterization of human recessive DIS3 variants in premature ovarian insufficiency. Biol Reprod 2025; 112(1): 102-18. google scholar
  • 91. Wang Z, Wu D, Xu X, Yu G, Li N, Wang X, et al. DIS3 ribonuclease is essential for spermatogenesis and male fertility in mice. Development 2024; 151(13): dev202579. Erratum in: Development 2024; 151(17): dev204238. google scholar
  • 92. Li X, Ruan Z, Yang S, Yang Q, Li J, Hu M. Bioinformatic-experimental screening uncovers multiple targets for increase of MHC-I expression through activating the interferon response in breast cancer. Int J Mol Sci 2024; 25(19): 10546. google scholar

The Exosome Complex in Health and Disease: A Multifaceted Regulator of RNA Homeostasis

Year 2025, Volume: 15 Issue: 2, 101 - 108, 29.08.2025
https://doi.org/10.26650/experimed.1623435

Abstract

The RNA exosome complex is a multi-subunit ribonuclease complex that participates in RNA degradation, processing, and quality control. In recent years, mutations and dysregulation in the subunits of this complex, which play significant roles in RNA metabolism, have been associated with neurodegenerative diseases, hematological malignancies, and solid tumors. This review discusses the contributions of genes encoding both the catalytic and non-catalytic subunits of the exosome complex to cellular homeostasis, development, and disease pathogenesis. In addition to its roles in RNA homeostasis, the complex also plays a role in maintaining the stability of genomic-resolving DNA:RNA hybrids, regulating telomere integrity, and facilitating homologous recombination. Considering the current literature, this review highlights the potential of RNA exosomes as biomarkers for disease diagnosis and as therapeutic targets for developing new treatment approaches.

Ethical Statement

This research involved the use of publicly available data and did not include any human or animal subjects; therefore, ethics approval was not necessary.

Supporting Institution

The Research Fund of Istanbul University (Project No: TYL-2022-38465)

References

  • 1. Kilchert C, Wittmann S, Vasiljeva L. The regulation and functions of the nuclear RNA exosome complex. Nat Rev Mol Cell Biol 2016; 17(4): 227–39. google scholar
  • 2. Ogami K, Suzuki HI. Nuclear RNA exosome and pervasive transcription: Dual sculptors of genome function. Int J Mol Sci2021; 22(24): 13401. google scholar
  • 3. Boczonadi V, Müller JS, Pyle A, Munkley J, Dor T, Quartararo J, et al. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia. Nat Commun 2014; 5(1): 1–13. google scholar
  • 4. Blin J, Fitzgerald KA. Perspective: The RNA exosome, cytokine gene regulation and links to autoimmunity. Cytokine 2015; 74(2): 175–80. google scholar
  • 5. Chan YA, Hieter P, Stirling PC. Mechanisms of genome instability induced by RNA-processing defects. Trends Genet 2014; 30(6): 245–53. google scholar
  • 6. McIver SC, Katsumura KR, Davids E, Liu P, Kang YA, Yang D, et al. Exosome complex orchestrates developmental signaling to balance proliferation and differentiation during erythropoiesis. Elife 2016; 5: e17877. google scholar
  • 7. Taniue K, Tanu T, Shimoura Y, Mitsutomi S, Han H, Kakisaka R, et al. RNA Exosome component EXOSC4 amplified in multiple cancer types is required for the cancer cell survival. Int J Mol Sci 2022; 23(1): 496. google scholar
  • 8. Desterke C, Bennaceur-Griscelli A, Turhan AG. DIS3 mutation in RUNX1-mutated AML1 confers a highly dismal prognosis in AML by repressing sister chromatid cohesion. Blood 2019; 134(Supp 1): 1454. google scholar
  • 9. Todoerti K, Ronchetti D, Favasuli V, Maura F, Morabito F, Bolli N, et al. DIS3 mutations in multiple myeloma impact the transcriptional signature and clinical outcome. Haematologica 2022; 107(4): 921. google scholar
  • 10. Yan X, You SN, Chen Y, Qian K. Construction and validation of a newly prognostic signature for CRISPR-Cas9-based cancer dependency map genes in breast cancer. J Oncol 2022; 2022: 4566577. google scholar
  • 11. Lv CG, Cheng Y, Zhang L, Wu GG, Liang CY, Tao Z, et al. EXOSC2 mediates the pro-tumor role of WTAP in breast cancer cells via activating the Wnt/β-catenin signal. Mol Biotechnol 2024; 66(9): 2569–82. google scholar
  • 12. Vanacova S, Stef R. The exosome and RNA quality control in the nucleus. EMBO Rep 2007; 8(7): 651–7. google scholar
  • 13. Houseley J, LaCava J, Tollervey D. RNA-quality control by the exosome. Nat Rev Mol Cell Biol 2006; 7(7): 529–39. google scholar
  • 14. Schneider C, Leung E, Brown J, Tollervey D. The N-terminal PIN domain of the exosome subunit Rrp44 harbors endonuclease activity and tethers Rrp44 to the yeast core exosome. Nucleic Acids Res 2009; 37(4): 1127. google scholar
  • 15. Makino DL, Baumgärtner M, Conti E. Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature 2013; 495(7439): 70–5. google scholar
  • 16. Davidson L, Francis L, Cordiner RA, Eaton JD, Estell C, Macias S, et al. Rapid depletion of DIS3, EXOSC10, or XRN2 reveals the immediate impact of exoribonucleolysis on nuclear RNA metabolism and transcriptional control. Cell Rep 2019; 26(10): 2779–91.e5. google scholar
  • 17. Makino DL, Schuch B, Stegmann E, Baumgärtner M, Basquin C, Conti E. RNA degradation paths in a 12-subunit nuclear exosome complex. Nature 2015; 524(7563): 54–8. google scholar
  • 18. Zinder JC, Wasmuth E V, Lima CD. Nuclear RNA exosome at 3.1 Å reveals substrate specificities, RNA paths, and allosteric inhibition of Rrp44/Dis3. Mol Cell 2016; 64(4): 734–45. google scholar
  • 19. Liu JJ, Bratkowski MA, Liu X, Niu CY, Ke A, Wang HW. Visualization of distinct substrate-recruitment pathways in the yeast exosome by EM. Nat Struct Mol Biol 2014; 21(1): 95–102. google scholar
  • 20. Han J, van Hoof A. The RNA exosome channeling and direct access conformations have distinct in vivo functions. Cell Rep 2016; 16(12): 3348–58. google scholar
  • 21. Gerlach P, Schuller JM, Bonneau F, Basquin J, Reichelt P, Falk S, et al. Distinct and evolutionary conserved structural features of the human nuclear exosome complex. Elife. 2018; 7: e38686. google scholar
  • 22. Gudipati RK, Xu Z, Lebreton A, Séraphin B, Steinmetz LM, Jacquier A, et al. Extensive degradation of RNA precursors by the exosome in wild-type cells. Mol Cell 2012; 48(3): 409–21. google scholar
  • 23. de Amorim JL, Leung SW, Haji-Seyed-Javadi R, Hou Y, Yu DS, Ghalei H, et al. The putative RNA helicase DDX1 associates with the nuclear RNA exosome and modulates RNA/DNA hybrids (R-loops). J Biol Chem 2024; 300(2): 105646. google scholar
  • 24. Papadopoulos D, Solvie D, Baluapuri A, Endres T, Ha SA, Herold S, et al. MYCN recruits the nuclear exosome complex to RNA polymerase II to prevent transcription-replication conflicts. Mol Cell 2022; 82(1): 159–76. e12. google scholar
  • 25. Pefanis E, Wang J, Rothschild G, Lim J, Kazadi D, Sun J, et al. RNA exosome-regulated long non-coding RNA transcription controls super-enhancer activity. Cell 2015; 161(4): 774–89. google scholar
  • 26. Favasuli VK, Ronchetti D, Silvestris I, Puccio N, Fabbiano G, Traini V, et al. DIS3 depletion in multiple myeloma causes extensive perturbation in cell cycle progression and centrosome amplification. Haematologica 2024; 109(1): 231–44. google scholar
  • 27. Szczepińska T, Kalisiak K, Tomecki R, Labno A, Borowski LS, Kulinski TM, et al. DIS3 shapes the RNA polymerase II transcriptome in humans by degrading a variety of unwanted transcripts. Genome Res 2015; 25(11): 1622–33. google scholar
  • 28. Marin-Vicente C, Domingo-Prim J, Eberle AB, Visa N. RRP6/EXOSC10 is required for the repair of DNA double-strand breaks by homologous recombination. J Cell Sci 2015; 128(6): 1097–107. google scholar
  • 29. Domingo-Prim J, Endara-Coll M, Bonath F, Jimeno S, Prados-Carvajal R, Friedländer MR, et al. EXOSC10 is required for RPA assembly and controlled DNA end resection at DNA double-strand breaks. Nat Commun 2019; 10(1): 2135. google scholar
  • 30. Yoshino S, Matsui Y, Fukui Y, Seki M, Yamaguchi K, Kanamori A, et al. EXOSC9 depletion attenuates P-body formation, stress resistance, and tumorigenicity of cancer cells. Sci Reports 2020; 10(1): 9275. google scholar
  • 31. Tsuda M, Noguchi M, Kurai T, Ichihashi Y, Ise K, Wang L, et al. Aberrant expression of MYD88 via RNA‐controlling CNOT4 and EXOSC3 in colonic mucosa impacts generation of colonic cancer. Cancer Sci 2021; 112(12): 5100–13. google scholar
  • 32. Wang YX, Li YZ, Zhao WL, Zhang ZY, Qian XL, He GY. STX2 drives colorectal cancer proliferation via upregulation of EXOSC4. Life Sci 2020; 263: 118597. google scholar
  • 33. Pan Y, Tong JHM, Kang W, Lung RWM, Chak WP, Chung LY, et al. EXOSC4 functions as a potential oncogene in development and progression of colorectal cancer. Mol Carcinog 2018; 57(12): 1780–91. google scholar
  • 34. de Wit M, Kant H, Piersma SR, Pham T V, Mongera S, van Berkel MPA, et al. Colorectal cancer candidate biomarkers identified by tissue secretome proteome profiling. J Proteomics 2014; 99: 26–39. google scholar
  • 35. Cui K, Gong L, Zhang H, Chen Y, Liu B, Gong Z, et al. EXOSC8 promotes colorectal cancer tumorigenesis via regulating ribosome biogenesis-related processes. Oncogene 2022; 41(50): 5397–410. google scholar
  • 36. Cui K, Liu C, Li X, Zhang Q, Li Y. Comprehensive characterization of the rRNA metabolism-related genes in human cancer. Oncogene 2019; 39(4): 786–800. google scholar
  • 37. Sun L, Patai Á V., Hogenson TL, Fernandez-Zapico ME, Qin B, Sinicrope FA. Irreversible JNK blockade overcomes PD-L1-mediated resistance to chemotherapy in colorectal cancer. Oncogene 2021; 40(32): 5105–15. google scholar
  • 38. Quttina M, Waiters KD, Khan AF, Karami S, Peidl AS, Babajide MF, et al. Exosc9 initiates SUMO-dependent lncRNA TERRA degradation to impact telomeric integrity in endocrine therapy insensitive hormone receptor-positive breast cancer. Cells 2023; 12(20): 2495. google scholar
  • 39. Liu Q, Xiao Q, Sun Z, Wang B, Wang L, Wang N, et al. Exosome component 1 cleaves single-stranded DNA and sensitizes human kidney renal clear cell carcinoma cells to poly(ADP-ribose) polymerase inhibitor. Elife 2021; 10: e69454. google scholar
  • 40. Pan H, Pan J, Song S, Ji L, Lv H, Yang Z. EXOSC5 as a novel prognostic marker promotes proliferation of colorectal cancer via activating the ERK and AKT pathways. Front Oncol 2019; 9: 643. Erratum in: Front Oncol 2021; 11: 670041. google scholar
  • 41. Makler A, Narayanan R. Mining exosomal genes for pancreatic cancer targets. Cancer Genomics Proteomics 2017; 14(3): 161–72. google scholar
  • 42. Taniue K, Tanu T, Shimoura Y, Mitsutomi S, Han H, Kakisaka R, et al. RNA exosome component exosc4 amplified in multiple cancer types is required for the cancer cell survival. Int J Mol Sci 2022; 23(1): 496. google scholar
  • 43. Chen X, Huang Y, Liu J, Lin W, Chen C, Chen Y, et al. EXOSC5 promotes proliferation of gastric cancer through regulating AKT/STAT3 signaling pathways. J Cancer 2022; 13(5): 1456–67. google scholar
  • 44. Cho JY, Lim JY, Cheong JH, Park YY, Yoon SL, Kim SM, et al. Gene expression signature-based prognostic risk score in gastric cancer. Clin Cancer Res 2011; 17(7): 1850–7. google scholar
  • 45. Tomecki R, Drazkowska K, Kucinski I, Stodus K, Szczesny RJ, Gruchota J, et al. Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target. Nucleic Acids Res 2014; 42(2): 1270–90. google scholar
  • 46. Zhang W, Zhu J, He X, Liu X, Li J, Li W, et al. Exosome complex genes mediate RNA degradation and predict survival in mantle cell lymphoma. Oncol Lett 2019; 18(5): 5119–28. google scholar
  • 47. Huang YH, Wang WL, Wang PH, Lee H Te, Chang WW. EXOSC5 maintains cancer stem cell activity in endometrial cancer by regulating the NTN4/integrin β1 signalling axis. Int J Biol Sci 2024; 20(1): 265–79. google scholar
  • 48. Attarha S, Andersson S, Mints M, Souchelnytskyi S. Individualised proteome profiling of human endometrial tumours improves detection of new prognostic markers. Br J Cancer 2013; 109(3): 704–13. google scholar
  • 49. Nichols CA, Gibson WJ, Brown MS, Kosmicki JA, Busanovich JP, Wei H, et al. Loss of heterozygosity of essential genes represents a widespread class of potential cancer vulnerabilities. Nat Commun 2020; 11(1): 2517. google scholar
  • 50. Zhang Y, Yang X, Hu Y, Huang X. Integrated bioinformatic investigation of EXOSCs in hepatocellular carcinoma followed by the preliminary validation of EXOSC5 in cell proliferation. Int J Mol Sci 2022; 23(20): 12161. google scholar
  • 51. Xiong C, Sun Z, Yu J, Lin Y. Exosome component 4 promotes epithelial ovarian cancer cell proliferation, migration, and invasion via the Wnt pathway. Front Oncol 2021; 11: 797968. google scholar
  • 52. Zhang Y, Chen C, Liu Z, Guo H, Lu W, Hu W, et al. PABPC1-induced stabilization of IFI27 mRNA promotes angiogenesis and malignant progression in esophageal squamous cell carcinoma through exosomal miRNA-21-5p. J Exp Clin Cancer Res 2022; 41(1): 111. google scholar
  • 53. Meng ZY, Fan YC, Zhang CS, Zhang LL, Wu T, Nong MY, et al. EXOSC10 is a novel hepatocellular carcinoma prognostic biomarker: a comprehensive bioinformatics analysis and experiment verification. PeerJ 2023; 11: e15860. google scholar
  • 54. Chapman MA, Lawrence MS, Keats JJ, Cibulskis K, Sougnez C, Schinzel AC, et al. Initial genome sequencing and analysis of multiple myeloma. Nature 2011; 471(7339): 467–72. google scholar
  • 55. Zhang L, Wan Y, Huang G, Wang D, Yu X, Huang G, et al. The exosome controls alternative splicing by mediating the gene expression and assembly of the spliceosome complex. Sci Reports 2015; 5: 13403. google scholar
  • 56. Mauger O, Scheiffele P. Beyond proteome diversity: alternative splicing as a regulator of neuronal transcript dynamics. Curr Opin Neurobiol 2017; 45: 162–8. google scholar
  • 57. Di Giovambattista AP, Jácome Querejeta I, Ventura Faci P, Rodríguez Martínez G, Ramos Fuentes F. Familial EXOSC3-related pontocerebellar hypoplasia. An Pediatr (Barc) 2017; 86(5): 284–6. google scholar
  • 58. Spyridakis AC, Cao Y, Litra F. A rare case of pontocerebellar hypoplasia type 1b with literature review. Cureus. 2022; 14(7): e27098. google scholar
  • 59. Zaki MS, Abdel-Ghafar SF, Abdel-Hamid MS. A missense variant in EXOSC8 causes exon skipping and expands the phenotypic spectrum of pontocerebellar hypoplasia type 1C. J Hum Genet 2024; 69(2): 79–84. google scholar
  • 60. Müller JS, Burns DT, Griffin H, Wells GR, Zendah RA, Munro B, et al. RNA exosome mutations in pontocerebellar hypoplasia alter ribosome biogenesis and p53 levels. Life Sci Alliance 2020; 3(8): e202000678. google scholar
  • 61. Gillespie A, Gabunilas J, Jen JC, Chanfreau GF. Mutations of EXOSC3/Rrp40p associated with neurological diseases impact ribosomal RNA processing functions of the exosome in S. cerevisiae. RNA 2017; 23(4): 466–72. google scholar
  • 62. Uozumi R, Mori K, Gotoh S, Miyamoto T, Kondo S, Yamashita T, et al. PABPC1 mediates degradation of C9orf72-FTLD/ALS GGGGCC repeat RNA. iScience 2024; 27(3): 109303. google scholar
  • 63. Kawabe Y, Mori K, Yamashita T, Gotoh S, Ikeda M. The RNA exosome complex degrades expanded hexanucleotide repeat RNA in C9orf72 FTLD/ALS. EMBO J 2020; 39(19): e102700. google scholar
  • 64. Eckard SC, Rice GI, Fabre A, Badens C, Gray EE, Hartley JL, et al. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat Immunol 2014; 15(9): 839–45. google scholar
  • 65. Fabre A, Martinez-Vinson C, Goulet O, Badens C. Syndromic diarrhea/tricho-hepato-enteric syndrome. Orphanet J Rare Dis 2013; 8: 5. google scholar
  • 66. Srinivasan S, He X, Mirza S, Mager J. Exosome complex components 1 and 2 are vital for early mammalian development. Gene Expr Patterns 2024; 51: 119346. google scholar
  • 67. Yatsuka H, Hada K, Shiraishi H, Umeda R, Morisaki I, Urushibata H, et al. Exosc2 deficiency leads to developmental disorders by causing a nucleotide pool imbalance in zebrafish. Biochem Biophys Res Commun 2020; 533(4): 1470–6. google scholar
  • 68. Zhou H, Huang L, Liang L, Chen L, Zou C, Li Z, et al. Identification of an mirna regulatory network and candidate markers for ischemic stroke related to diabetes. Int J Gen Med 2021; 14: 3213–23. google scholar
  • 69. Kammler S, Lykke-Andersen S, Jensen TH. The RNA exosome component hRrp6 is a target for 5-fluorouracil in human cells. Mol Cancer Res 2008; 6(6): 990–5. google scholar
  • 70. Bush JA, Meyer SM, Fuerst R, Tong Y, Li Y, Benhamou RI, et al. A blood–brain penetrant RNA-targeted small molecule triggers elimination of r(G4C2)exp in c9ALS/FTD via the nuclear RNA exosome. Proc Natl Acad Sci U S A 2022; 119(48): e2210532119. google scholar
  • 71. Damseh NS, Obeidat AN, Ahammed KS, Al-Ashhab M, Awad MA, van Hoof A. Pontocerebellar hypoplasia associated with p.Arg183Trp homozygous variant in EXOSC1 gene: A case report. Am J Med Genet Part A 2023; 191(7): 1923–8. google scholar
  • 72. Somashekar PH, Kaur P, Stephen J, Guleria VS, Kadavigere R, Girisha KM, et al. Bi-allelic missense variant, p.Ser35Leu in EXOSC1 is associated with pontocerebellar hypoplasia. Clin Genet 2021; 99(4): 594–600. google scholar
  • 73. Di Donato N, Neuhann T, Kahlert AK, Klink B, Hackmann K, Neuhann I, et al. Mutations in EXOSC2 are associated with a novel syndrome characterised by retinitis pigmentosa, progressive hearing loss, premature ageing, short stature, mild intellectual disability and distinctive gestalt. J Med Genet 2016; 53(6): 419– 25. google scholar
  • 74. Yang X, Bayat V, Didonato N, Zhao Y, Zarnegar B, Siprashvili Z, et al. Genetic and genomic studies of pathogenic EXOSC2 mutations in the newly described disease SHRF implicate the autophagy pathway in disease pathogenesis. Hum Mol Genet 2020; 29(4): 541–53. google scholar
  • 75. Wan J, Yourshaw M, Mamsa H, Rudnik-Schöneborn S, Menezes MP, Hong JE, et al. Mutations in the RNA exosome component gene EXOSC3 cause pontocerebellar hypoplasia and spinal motor neuron degeneration. Nat Genet 2012; 44(6): 704–8. google scholar
  • 76. Lu G, Liu H, Wang H, Tang X, Luo S, Du M, et al. Potentially functional variants of INPP5D and EXOSC3 in immunity B cell-related genes are associated with non-small cell lung cancer survival. Front Immunol 2024; 15: 1440454. google scholar
  • 77. Wijnsma KL, Schijvens AM, Bouwmeester RN, Aarts LAM, van den Heuvel L (Bert) P, Haaxma CA, et al. Mutations in genes encoding subunits of the RNA exosome as a potential novel cause of thrombotic microangiopathy. Int J Mol Sci 2024; 25(14): 7604. google scholar
  • 78. Huynh NCN, Pham AL, Pham NVT, Le PHN. Differential gene expression analysis of The Cancer Genome Atlas messenger ribonucleic acid sequencing data from male patients with and without lymph node metastasis in tongue cancer. Arch Orofac Sci 2024; 19(2): 127–39. google scholar
  • 79. Hong JQ, Huang QH, Huang ZY, Fan LP, Lin QY, Huang HB. Expression and clinical significance of exosome component 4 in newly diagnosed patients with diffuse large B-cell lymphoma. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2023; 31(6): 1684–9. google scholar
  • 80. Wang N, Miao X, Lu W, Ji Y, Zheng Y, Meng D, et al. RUNX3 exerts tumorsuppressive role through inhibiting EXOSC4 expression. Funct Integr Genomics 2024; 24(3): 1–12. google scholar
  • 81. Fasken MB, Leung SW, Cureton LA, Al-Awadi M, Al-Kindy A, van Hoof A, et al. A biallelic variant of the RNA exosome gene, EXOSC4, associated with neurodevelopmental defects impairs RNA exosome function and translation. J Biol Chem 2024; 300(8): 107571. google scholar
  • 82. Slavotinek A, Misceo D, Htun S, Mathisen L, Frengen E, Foreman M, et al. Biallelic variants in the RNA exosome gene EXOSC5 are associated with developmental delays, short stature, cerebellar hypoplasia and motor weakness. Hum Mol Genet 2020; 29(13): 2218–39. google scholar
  • 83. Huang Y, Cen Y, Wu H, Zeng G, Su Z, Zhang Z, et al. Nodularin-R synergistically enhances abiraterone against castrate- resistant prostate cancer via PPP1CA inhibition. J Cell Mol Med 2024; 28(22): e70210. google scholar
  • 84. Perez CM, Gong Z, Yoo C, Roy D, Deoraj A, Felty Q. Inhibitor of DNA binding protein 3 (ID3) and nuclear respiratory factor 1 (NRF1) mediated transcriptional gene signatures are associated with the severity of cerebral amyloid angiopathy. Mol Neurobiol 2024; 61(2): 835–82. google scholar
  • 85. Fan X, Yang X, Guo N, Gao X, Zhao Y. Development of an endoplasmic reticulum stress-related signature with potential implications in prognosis and immunotherapy in head and neck squamous cell carcinoma. Diagn Pathol 2023; 18(1): 1–14. google scholar
  • 86. Burns DT, Donkervoort S, Müller JS, Knierim E, Bharucha-Goebel D, Faqeih EA, et al. Variants in EXOSC9 disrupt the RNA exosome and result in cerebellar atrophy with spinal motor neuronopathy. Am J Hum Genet 2018; 102(5): 858–73. google scholar
  • 87. Sakamoto M, Iwama K, Sekiguchi F, Mashimo H, Kumada S, Ishigaki K, et al. Novel EXOSC9 variants cause pontocerebellar hypoplasia type 1D with spinal motor neuronopathy and cerebellar atrophy. J Hum Genet 2020; 66(4): 401–7. google scholar
  • 88. Bizzari S, Hamzeh AR, Mohamed M, Al-Ali MT, Bastaki F. Expanded PCH1D phenotype linked to EXOSC9 mutation. Eur J Med Genet 2020; 63(1): 103622. google scholar
  • 89. Demini L, Kervarrec C, Guillot L, Com E, Lavigne R, Kernanec PY, et al. Inactivation of Exosc10 in the oocyte impairs oocyte development and maturation, leading to a depletion of the ovarian reserve in mice. Int J Biol Sci 2023; 19(4): 1080. google scholar
  • 90. Kline BL, Siddall NA, Wijaya F, Stuart CJ, Orlando L, Bakhshalizadeh S, et al. Functional characterization of human recessive DIS3 variants in premature ovarian insufficiency. Biol Reprod 2025; 112(1): 102-18. google scholar
  • 91. Wang Z, Wu D, Xu X, Yu G, Li N, Wang X, et al. DIS3 ribonuclease is essential for spermatogenesis and male fertility in mice. Development 2024; 151(13): dev202579. Erratum in: Development 2024; 151(17): dev204238. google scholar
  • 92. Li X, Ruan Z, Yang S, Yang Q, Li J, Hu M. Bioinformatic-experimental screening uncovers multiple targets for increase of MHC-I expression through activating the interferon response in breast cancer. Int J Mol Sci 2024; 25(19): 10546. google scholar
There are 92 citations in total.

Details

Primary Language English
Subjects Clinical Sciences (Other)
Journal Section Review
Authors

Esra Nur Demirtaş 0000-0002-3533-0697

Selcuk Sozer Tokdemir 0000-0002-5035-4048

Publication Date August 29, 2025
Submission Date January 20, 2025
Acceptance Date April 8, 2025
Published in Issue Year 2025 Volume: 15 Issue: 2

Cite

Vancouver Demirtaş EN, Sozer Tokdemir S. The Exosome Complex in Health and Disease: A Multifaceted Regulator of RNA Homeostasis. Experimed. 2025;15(2):101-8.