Araştırma Makalesi
BibTex RIS Kaynak Göster

Carbon Monoxide and Their Donor (CORM-2) Change the Healing Rate of Skin Wound Healing in Mice Through Reduced Expression of Aquaporin-3

Yıl 2023, , 1 - 10, 01.03.2023
https://doi.org/10.55262/fabadeczacilik.1095369

Öz

Carbon monoxide, which is a toxic gas, has a beneficial effect on cells in low doses. It is known that low concentrations of this gas are produced in the body during the decay of heme-containing proteins and have pro-apoptotic, anti-inflammatory, anti-allergic, vasodilator effects, stimulating angiogenesis. The danger of using this gas is the difficulty of its dosage. CO donors are used to controlling the amount and gradual release of carbon monoxide. This study studied the effect of treatment with CO and donor CORM-2 on wound healing processes in laboratory mice. Treatment with CO and CORM-2 reduced the healing rate of skin wounds in laboratory mice. The greatest delay in healing was observed in animals whose wounds were treated with CO. In this group, aquaporin-3 mRNA expression was decreased to the smallest degree among all other animals. This most likely caused the appearance of crusts. CORM-2 treatment also led to a decrease in AQP3 mRNA expression, but no crusts were formed. This can be explained by the fact that CO is released slowly. Having a dry crust on the wound increases the healing time. But, the formation of a dry crust is useful in the healing of burns, because with a dry scab, pus cannot appear; with some degrees of burns, it prevents suppuration and creates a protective barrier. The study confirmed the hypothesis that CO and CORM-2 reduce AQP3 expression after treatment of damaged skin.

Destekleyen Kurum

Kherson State University

Proje Numarası

no

Teşekkür

We would like to thanks grad student Lebid Anton for technical assistance.

Kaynakça

  • Abdel‐Magied, N., & Shedid, S. M. (2019). The effect of naringenin on the role of nuclear factor (erythroid‐derived 2)‐like2 (Nrf2) and haem oxygenase 1 (HO‐1) in reducing the risk of oxidative stress‐related radiotoxicity in the spleen of rats. Environmental toxicology, 34(7), 788-795. doi: 10.1002/tox.22745
  • Beschasnyi, S. P., & Hasiuk, О. M. (2020). CO-Releasing Molecule (CORM-2) in the regulation of Ca2+ dependent K+ permeability of erythrocyte. Ukrainian Journal of Medicine, Biology and Sport, 5(2), 166-171. doi: 10.26693/jmbs05.02.166
  • Bollag, W. B., Aitkens, L., White, J., & Hyndman, K. A. (2020). Aquaporin-3 in the epidermis: more than skin deep. American Journal of Physiology-Cell Physiology, 318(6), C1144-C1153. doi: 10.1152/ajpcell.00075.2020
  • Bollag, W. B., Xie, D., Zheng, X., & Zhong, X. (2007). A potential role for the phospholipase D2-aquaporin-3 signaling module in early keratinocyte differentiation: production of a phosphatidylglycerol signaling lipid. Journal of Investigative Dermatology, 127(12), 2823-2831. doi: 10.1038/sj.jid.5700921
  • Boury-Jamot, M., Sougrat, R., Tailhardat, M., Le Varlet, B., Bonté, F., Dumas, M., & Verbavatz, J. M. (2006). Expression and function of aquaporins in human skin: Is aquaporin-3 just a glycerol transporter?. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1758(8), 1034-1042. doi: 10.1016/j.bbamem.2006.06.013
  • Brouard, S., Berberat, P. O., Tobiasch, E., Seldon, M. P., Bach, F. H., & Soares, M. P. (2002). Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-κB to protect endothelial cells from tumor necrosis factor-α-mediated apoptosis. Journal of Biological Chemistry, 277(20), 17950-17961. doi: 10.1074/jbc.M108317200
  • Chang, R. Y. K., Das, T., Manos, J., Kutter, E., Morales, S., & Chan, H. K. (2019). Bacteriophage PEV20 and ciprofloxacin combination treatment enhances removal of Pseudomonas aeruginosa biofilm isolated from cystic fibrosis and wound patients. The AAPS journal, 21(3), 1-8. doi: 10.1208/s12248-019-0315-0
  • Choudhary, V., Olala, L. O., Qin, H., Helwa, I., Pan, Z. Q., Tsai, Y. Y., ... & Bollag, W. B. (2015). Aquaporin-3 re-expression induces differentiation in a phospholipase D2-dependent manner in aquaporin-3-knockout mouse keratinocytes. Journal of Investigative Dermatology, 135(2), 499-507. doi: 10.1038/jid.2014.412
  • Galiano, R. D., Michaels, V, J., Dobryansky, M., Levine, J. P., & Gurtner, G. C. (2004). Quantitative and reproducible murine model of excisional wound healing. Wound repair and regeneration, 12(4), 485-492. doi: 10.1111/j.1067-1927.2004.12404.x
  • Hara-Chikuma, M., Satooka, H., Watanabe, S., Honda, T., Miyachi, Y., Watanabe, T., & Verkman, A. S. (2015). Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nature communications, 6(1), 1-14. doi: 10.1038/ncomms8454
  • Hara-Chikuma, M., & Verkman, A. S. (2008). Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Molecular and cellular biology, 28(1), 326-332. doi: 10.1128/MCB.01482-07
  • Hermann, A., Sitdikova, G. F., & Weiger, T. M. (Eds.). (2012). Gasotransmitters: physiology and pathophysiology (pp. 163-201). Berlin; Heidelberg: Springer.
  • Ikarashi, N., Aburada, T., Kon, R., & Sugiyama, K. (2019). Water control mechanism of byakkokaninjinto and its active components via aquaporins. Traditional & Kampo Medicine, 6(2), 57-61. doi: 10.1002/tkm2.1213
  • Ikarashi, N., Ogiue, N., Toyoda, E., Kon, R., Ishii, M., Toda, T., ... & Sugiyama, K. (2012). Gypsum fibrosum and its major component CaSO4 increase cutaneous aquaporin-3 expression levels. Journal of ethnopharmacology, 139(2), 409-413. doi: 10.1016/j.jep.2011.11.025
  • Johnson, T. E., Wells, R. J., Bell, A., Nielsen, V. G., & Olver, C. S. (2019). Carbon monoxide releasing molecule enhances coagulation and decreases fibrinolysis in canine plasma exposed to Crotalus viridis venom in vitro and in vivo. Basic & Clinical Pharmacology & Toxicology, 125(4), 328-336. doi: 10.1111/bcpt.13242
  • Jones, M., Kujundzic, M., John, S., & Bismarck, A. (2020). Crab vs. Mushroom: A review of crustacean and fungal chitin in wound treatment. Marine Drugs, 18(1), 64. doi: 10.3390/md18010064
  • Kapetanaki, S. M., Burton, M. J., Basran, J., Uragami, C., Moody, P. C., Mitcheson, J. S., ... & Raven, E. (2018). A mechanism for CO regulation of ion channels. Nature communications, 9(1), 1-10. doi: 10.1038/s41467-018-03291-z
  • Kirsner, R., Dove, C., Reyzelman, A., Vayser, D., & Jaimes, H. (2019). A prospective, randomized, controlled clinical trial on the efficacy of a single‐use negative pressure wound therapy system, compared to traditional negative pressure wound therapy in the treatment of chronic ulcers of the lower extremities. Wound Repair and Regeneration, 27(5), 519-529. doi: 10.1111/wrr.12727
  • Kolupaev, Y. E., Karpets, Y. V., Beschasniy, S. P., & Dmitriev, A. P. (2019). Gasotransmitters and their role in adaptive reactions of plant cells. Cytology and Genetics, 53(5), 392-406. doi: 10.3103/S0095452719050098
  • Lin, C. C., Hsiao, L. D., Cho, R. L., & Yang, C. M. (2019). Carbon monoxide releasing molecule-2-upregulated ROS-dependent heme oxygenase-1 axis suppresses lipopolysaccharide-induced airway inflammation. International Journal of Molecular Sciences, 20(13), 3157. doi: 10.3390/ijms20133157
  • Liu, Y., Wang, X., Xu, X., Qin, W., & Sun, B. (2019). Protective effects of carbon monoxide releasing molecule‑2 on pancreatic function in septic mice. Molecular Medicine Reports, 19(5), 3449-3458. doi: 10.3892/mmr.2019.10049
  • Ma, T., Hara, M., Sougrat, R., Verbavatz, J. M., & Verkman, A. S. (2002). Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. Journal of Biological Chemistry, 277(19), 17147-17153. doi: 10.1074/jbc.M200925200
  • Magierowska, K., Korbut, E., Hubalewska-Mazgaj, M., Surmiak, M., Chmura, A., Bakalarz, D., ... & Magierowski, M. (2019). Oxidative gastric mucosal damage induced by ischemia/reperfusion and the mechanisms of its prevention by carbon monoxide-releasing tricarbonyldichlororuthenium (II) dimer. Free Radical Biology and Medicine, 145, 198-208. doi: 10.1016/j.freeradbiomed.2019.09.032
  • Magierowski, M., Magierowska, K., Hubalewska‐Mazgaj, M., Sliwowski, Z., Ginter, G., Pajdo, R., ... & Brzozowski, T. (2017). Carbon monoxide released from its pharmacological donor, tricarbonyldichlororuthenium (II) dimer, accelerates the healing of pre‐existing gastric ulcers. British journal of pharmacology, 174(20), 3654-3668. doi: 10.1111/bph.13968
  • Motterlini, R., & Foresti, R. (2017). Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. American Journal of Physiology-Cell Physiology, 312(3), C302-C313. doi: 10.1152/ajpcell.00360.2016
  • Motterlini, R., Mann, B. E., Johnson, T. R., Clark, J. E., Foresti, R., & Green, C. J. (2003). Bioactivity and pharmacological actions of carbon monoxide-releasing molecules. Current pharmaceutical design, 9(30), 2525-2539. doi: 10.2174/1381612033453785
  • Olas, B. (2014). Carbon monoxide is not always a poison gas for human organism: Physiological and pharmacological features of CO. Chemico-biological interactions, 222, 37-43. doi: 10.1016/j.cbi.2014.08.005
  • Olsson, M., Broberg, A., Jernås, M., Carlsson, L., Rudemo, M., Suurküla, M., ... & Benson, M. (2006). Increased expression of aquaporin 3 in atopic eczema. Allergy, 61(9), 1132-1137. doi: 10.1111/j.1398-9995.2006.01151.x
  • Olszanecki, R., Gebska, A., & Korbut, R. (2007). The role of haem oxygenase‐1 in the decrease of endothelial intercellular adhesion molecule‐1 expression by curcumin. Basic & clinical pharmacology & toxicology, 101(6), 411-415. doi: 10.1111/j.1742-7843.2007.00151.x
  • Patel, S., Srivastava, S., Singh, M. R., & Singh, D. (2019). Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomedicine & Pharmacotherapy, 112, 108615. doi: 10.1016/j.biopha.2019.108615
  • Qin, H., Zheng, X., Zhong, X., Shetty, A. K., Elias, P. M., & Bollag, W. B. (2011). Aquaporin-3 in keratinocytes and skin: Its role and interaction with phospholipase D2. Archives of Biochemistry and Biophysics, 508(2), 138-143. doi: 10.1016/j.abb.2011.01.014
  • Qureshi, O. S., Zeb, A., Akram, M., Kim, M. S., Kang, J. H., Kim, H. S., ... & Kim, J. K. (2016). Enhanced acute anti-inflammatory effects of CORM-2-loaded nanoparticles via sustained carbon monoxide delivery. European Journal of Pharmaceutics and Biopharmaceutics, 108, 187-195. doi: 10.1016/j.ejpb.2016.09.008
  • Singer, A. J., & Clark, R. A. (1999). Cutaneous wound healing. New England journal of medicine, 341(10), 738-746. doi: 10.1056/NEJM199909023411006
  • Verkman, A. S., Anderson, M. O., & Papadopoulos, M. C. (2014). Aquaporins: important but elusive drug targets. Nature reviews Drug discovery, 13(4), 259-277. doi: 10.1038/nrd4226
  • Verkman, A. S. (2008). A cautionary note on cosmetics containing ingredients that increase aquaporin‐3 expression. Experimental dermatology, 17(10), 871-872. doi: 10.1111/j.1600-0625.2008.00698.x
  • Wang, M., Yang, X., Pan, Z., Wang, Y., De La Cruz, L. K., Wang, B., & Tan, C. (2020). Towards “CO in a pill”: Pharmacokinetic studies of carbon monoxide prodrugs in mice. Journal of Controlled Release, 327, 174-185. doi: 10.1016/j.jconrel.2020.07.040
  • Wang, R. (Ed.). (2004). Signal Transduction and the Gasotransmitters: NO, CO, and H2S in Biology and Medicine. Springer Science & Business Media. Wu, L., & Wang, R. (2005). Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacological reviews, 57(4), 585-630. doi: 10.1124/pr.57.4.3
Yıl 2023, , 1 - 10, 01.03.2023
https://doi.org/10.55262/fabadeczacilik.1095369

Öz

Proje Numarası

no

Kaynakça

  • Abdel‐Magied, N., & Shedid, S. M. (2019). The effect of naringenin on the role of nuclear factor (erythroid‐derived 2)‐like2 (Nrf2) and haem oxygenase 1 (HO‐1) in reducing the risk of oxidative stress‐related radiotoxicity in the spleen of rats. Environmental toxicology, 34(7), 788-795. doi: 10.1002/tox.22745
  • Beschasnyi, S. P., & Hasiuk, О. M. (2020). CO-Releasing Molecule (CORM-2) in the regulation of Ca2+ dependent K+ permeability of erythrocyte. Ukrainian Journal of Medicine, Biology and Sport, 5(2), 166-171. doi: 10.26693/jmbs05.02.166
  • Bollag, W. B., Aitkens, L., White, J., & Hyndman, K. A. (2020). Aquaporin-3 in the epidermis: more than skin deep. American Journal of Physiology-Cell Physiology, 318(6), C1144-C1153. doi: 10.1152/ajpcell.00075.2020
  • Bollag, W. B., Xie, D., Zheng, X., & Zhong, X. (2007). A potential role for the phospholipase D2-aquaporin-3 signaling module in early keratinocyte differentiation: production of a phosphatidylglycerol signaling lipid. Journal of Investigative Dermatology, 127(12), 2823-2831. doi: 10.1038/sj.jid.5700921
  • Boury-Jamot, M., Sougrat, R., Tailhardat, M., Le Varlet, B., Bonté, F., Dumas, M., & Verbavatz, J. M. (2006). Expression and function of aquaporins in human skin: Is aquaporin-3 just a glycerol transporter?. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1758(8), 1034-1042. doi: 10.1016/j.bbamem.2006.06.013
  • Brouard, S., Berberat, P. O., Tobiasch, E., Seldon, M. P., Bach, F. H., & Soares, M. P. (2002). Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-κB to protect endothelial cells from tumor necrosis factor-α-mediated apoptosis. Journal of Biological Chemistry, 277(20), 17950-17961. doi: 10.1074/jbc.M108317200
  • Chang, R. Y. K., Das, T., Manos, J., Kutter, E., Morales, S., & Chan, H. K. (2019). Bacteriophage PEV20 and ciprofloxacin combination treatment enhances removal of Pseudomonas aeruginosa biofilm isolated from cystic fibrosis and wound patients. The AAPS journal, 21(3), 1-8. doi: 10.1208/s12248-019-0315-0
  • Choudhary, V., Olala, L. O., Qin, H., Helwa, I., Pan, Z. Q., Tsai, Y. Y., ... & Bollag, W. B. (2015). Aquaporin-3 re-expression induces differentiation in a phospholipase D2-dependent manner in aquaporin-3-knockout mouse keratinocytes. Journal of Investigative Dermatology, 135(2), 499-507. doi: 10.1038/jid.2014.412
  • Galiano, R. D., Michaels, V, J., Dobryansky, M., Levine, J. P., & Gurtner, G. C. (2004). Quantitative and reproducible murine model of excisional wound healing. Wound repair and regeneration, 12(4), 485-492. doi: 10.1111/j.1067-1927.2004.12404.x
  • Hara-Chikuma, M., Satooka, H., Watanabe, S., Honda, T., Miyachi, Y., Watanabe, T., & Verkman, A. S. (2015). Aquaporin-3-mediated hydrogen peroxide transport is required for NF-κB signalling in keratinocytes and development of psoriasis. Nature communications, 6(1), 1-14. doi: 10.1038/ncomms8454
  • Hara-Chikuma, M., & Verkman, A. S. (2008). Prevention of skin tumorigenesis and impairment of epidermal cell proliferation by targeted aquaporin-3 gene disruption. Molecular and cellular biology, 28(1), 326-332. doi: 10.1128/MCB.01482-07
  • Hermann, A., Sitdikova, G. F., & Weiger, T. M. (Eds.). (2012). Gasotransmitters: physiology and pathophysiology (pp. 163-201). Berlin; Heidelberg: Springer.
  • Ikarashi, N., Aburada, T., Kon, R., & Sugiyama, K. (2019). Water control mechanism of byakkokaninjinto and its active components via aquaporins. Traditional & Kampo Medicine, 6(2), 57-61. doi: 10.1002/tkm2.1213
  • Ikarashi, N., Ogiue, N., Toyoda, E., Kon, R., Ishii, M., Toda, T., ... & Sugiyama, K. (2012). Gypsum fibrosum and its major component CaSO4 increase cutaneous aquaporin-3 expression levels. Journal of ethnopharmacology, 139(2), 409-413. doi: 10.1016/j.jep.2011.11.025
  • Johnson, T. E., Wells, R. J., Bell, A., Nielsen, V. G., & Olver, C. S. (2019). Carbon monoxide releasing molecule enhances coagulation and decreases fibrinolysis in canine plasma exposed to Crotalus viridis venom in vitro and in vivo. Basic & Clinical Pharmacology & Toxicology, 125(4), 328-336. doi: 10.1111/bcpt.13242
  • Jones, M., Kujundzic, M., John, S., & Bismarck, A. (2020). Crab vs. Mushroom: A review of crustacean and fungal chitin in wound treatment. Marine Drugs, 18(1), 64. doi: 10.3390/md18010064
  • Kapetanaki, S. M., Burton, M. J., Basran, J., Uragami, C., Moody, P. C., Mitcheson, J. S., ... & Raven, E. (2018). A mechanism for CO regulation of ion channels. Nature communications, 9(1), 1-10. doi: 10.1038/s41467-018-03291-z
  • Kirsner, R., Dove, C., Reyzelman, A., Vayser, D., & Jaimes, H. (2019). A prospective, randomized, controlled clinical trial on the efficacy of a single‐use negative pressure wound therapy system, compared to traditional negative pressure wound therapy in the treatment of chronic ulcers of the lower extremities. Wound Repair and Regeneration, 27(5), 519-529. doi: 10.1111/wrr.12727
  • Kolupaev, Y. E., Karpets, Y. V., Beschasniy, S. P., & Dmitriev, A. P. (2019). Gasotransmitters and their role in adaptive reactions of plant cells. Cytology and Genetics, 53(5), 392-406. doi: 10.3103/S0095452719050098
  • Lin, C. C., Hsiao, L. D., Cho, R. L., & Yang, C. M. (2019). Carbon monoxide releasing molecule-2-upregulated ROS-dependent heme oxygenase-1 axis suppresses lipopolysaccharide-induced airway inflammation. International Journal of Molecular Sciences, 20(13), 3157. doi: 10.3390/ijms20133157
  • Liu, Y., Wang, X., Xu, X., Qin, W., & Sun, B. (2019). Protective effects of carbon monoxide releasing molecule‑2 on pancreatic function in septic mice. Molecular Medicine Reports, 19(5), 3449-3458. doi: 10.3892/mmr.2019.10049
  • Ma, T., Hara, M., Sougrat, R., Verbavatz, J. M., & Verkman, A. S. (2002). Impaired stratum corneum hydration in mice lacking epidermal water channel aquaporin-3. Journal of Biological Chemistry, 277(19), 17147-17153. doi: 10.1074/jbc.M200925200
  • Magierowska, K., Korbut, E., Hubalewska-Mazgaj, M., Surmiak, M., Chmura, A., Bakalarz, D., ... & Magierowski, M. (2019). Oxidative gastric mucosal damage induced by ischemia/reperfusion and the mechanisms of its prevention by carbon monoxide-releasing tricarbonyldichlororuthenium (II) dimer. Free Radical Biology and Medicine, 145, 198-208. doi: 10.1016/j.freeradbiomed.2019.09.032
  • Magierowski, M., Magierowska, K., Hubalewska‐Mazgaj, M., Sliwowski, Z., Ginter, G., Pajdo, R., ... & Brzozowski, T. (2017). Carbon monoxide released from its pharmacological donor, tricarbonyldichlororuthenium (II) dimer, accelerates the healing of pre‐existing gastric ulcers. British journal of pharmacology, 174(20), 3654-3668. doi: 10.1111/bph.13968
  • Motterlini, R., & Foresti, R. (2017). Biological signaling by carbon monoxide and carbon monoxide-releasing molecules. American Journal of Physiology-Cell Physiology, 312(3), C302-C313. doi: 10.1152/ajpcell.00360.2016
  • Motterlini, R., Mann, B. E., Johnson, T. R., Clark, J. E., Foresti, R., & Green, C. J. (2003). Bioactivity and pharmacological actions of carbon monoxide-releasing molecules. Current pharmaceutical design, 9(30), 2525-2539. doi: 10.2174/1381612033453785
  • Olas, B. (2014). Carbon monoxide is not always a poison gas for human organism: Physiological and pharmacological features of CO. Chemico-biological interactions, 222, 37-43. doi: 10.1016/j.cbi.2014.08.005
  • Olsson, M., Broberg, A., Jernås, M., Carlsson, L., Rudemo, M., Suurküla, M., ... & Benson, M. (2006). Increased expression of aquaporin 3 in atopic eczema. Allergy, 61(9), 1132-1137. doi: 10.1111/j.1398-9995.2006.01151.x
  • Olszanecki, R., Gebska, A., & Korbut, R. (2007). The role of haem oxygenase‐1 in the decrease of endothelial intercellular adhesion molecule‐1 expression by curcumin. Basic & clinical pharmacology & toxicology, 101(6), 411-415. doi: 10.1111/j.1742-7843.2007.00151.x
  • Patel, S., Srivastava, S., Singh, M. R., & Singh, D. (2019). Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomedicine & Pharmacotherapy, 112, 108615. doi: 10.1016/j.biopha.2019.108615
  • Qin, H., Zheng, X., Zhong, X., Shetty, A. K., Elias, P. M., & Bollag, W. B. (2011). Aquaporin-3 in keratinocytes and skin: Its role and interaction with phospholipase D2. Archives of Biochemistry and Biophysics, 508(2), 138-143. doi: 10.1016/j.abb.2011.01.014
  • Qureshi, O. S., Zeb, A., Akram, M., Kim, M. S., Kang, J. H., Kim, H. S., ... & Kim, J. K. (2016). Enhanced acute anti-inflammatory effects of CORM-2-loaded nanoparticles via sustained carbon monoxide delivery. European Journal of Pharmaceutics and Biopharmaceutics, 108, 187-195. doi: 10.1016/j.ejpb.2016.09.008
  • Singer, A. J., & Clark, R. A. (1999). Cutaneous wound healing. New England journal of medicine, 341(10), 738-746. doi: 10.1056/NEJM199909023411006
  • Verkman, A. S., Anderson, M. O., & Papadopoulos, M. C. (2014). Aquaporins: important but elusive drug targets. Nature reviews Drug discovery, 13(4), 259-277. doi: 10.1038/nrd4226
  • Verkman, A. S. (2008). A cautionary note on cosmetics containing ingredients that increase aquaporin‐3 expression. Experimental dermatology, 17(10), 871-872. doi: 10.1111/j.1600-0625.2008.00698.x
  • Wang, M., Yang, X., Pan, Z., Wang, Y., De La Cruz, L. K., Wang, B., & Tan, C. (2020). Towards “CO in a pill”: Pharmacokinetic studies of carbon monoxide prodrugs in mice. Journal of Controlled Release, 327, 174-185. doi: 10.1016/j.jconrel.2020.07.040
  • Wang, R. (Ed.). (2004). Signal Transduction and the Gasotransmitters: NO, CO, and H2S in Biology and Medicine. Springer Science & Business Media. Wu, L., & Wang, R. (2005). Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacological reviews, 57(4), 585-630. doi: 10.1124/pr.57.4.3
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri, Klinik Tıp Bilimleri
Bölüm Araştırma Makalesi
Yazarlar

Serhii Beschasnyı 0000-0002-7423-4112

Olena Hasıuk Bu kişi benim 0000-0003-1055-2848

Proje Numarası no
Yayımlanma Tarihi 1 Mart 2023
Gönderilme Tarihi 29 Mart 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Beschasnyı, S., & Hasıuk, O. (2023). Carbon Monoxide and Their Donor (CORM-2) Change the Healing Rate of Skin Wound Healing in Mice Through Reduced Expression of Aquaporin-3. Fabad Eczacılık Bilimler Dergisi, 48(1), 1-10. https://doi.org/10.55262/fabadeczacilik.1095369