In the study, we first give an inequality that non-negative differentiable functions must satisfy to be B^{-1}-convex. Then, using the inequality, we show that the B^{-1}-convexity property of functions is preserved by Bernstein-Stancu operators, Sz'asz-Mirakjan operators and Baskakov operators. In addition, we compare the concepts B^{-1}-convexity and B-concavity of functions.
B−1 -convexity Bernstein-Stancu operators Sz´asz-Mirakjan operators Baskakov operators Shape preserving approximation.
Birincil Dil | İngilizce |
---|---|
Konular | Yaklaşım Teorisi ve Asimptotik Yöntemler |
Bölüm | Research Articles |
Yazarlar | |
Yayımlanma Tarihi | 31 Temmuz 2024 |
Gönderilme Tarihi | 21 Kasım 2023 |
Kabul Tarihi | 19 Şubat 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 5 Sayı: 2 |
FCMS is licensed under the Creative Commons Attribution 4.0 International Public License.