Araştırma Makalesi
BibTex RIS Kaynak Göster

The most relevant drought-tolerant indices for selecting barley drought-tolerant genotypes

Yıl 2024, , 15 - 23, 30.04.2024
https://doi.org/10.51753/flsrt.1362571

Öz

During its development cycle, lack of water is one of the factors reducing plant growth and yields, in the world's arid regions. The identification of indices that characterize the most tolerant genotypes to drought is very useful since it allows us to evaluate the tolerance of large varieties collections within a short and early stage. This study aimed to identify the most efficient drought tolerance indicators and evaluate, from the early stage of plant development, the germination parameters that would be correlated with drought tolerance in the field. If such correlations were identified, it would be possible to screen dozens of genotypes in the laboratory and identify the most tolerant ones before moving into the field. To attain this objective, two tests were carried out: The first one was realized in the laboratory to assess some germination parameters (germination rate, root length, root number, etc.) of sixteen North African barley genotypes (Algerians, Tunisians, and Egyptians) at the germination stage, under polyethylene glycol (PEG-6000) induced stress. The second test was carried out in the field to measure the grain yield of the same genotypes, under favorable and limited water conditions. The laboratory test revealed significant differences between root lengths (RL) of different genotypes within each water regime and between different treatments (control and PEG-6000 solution). The obtained result showed the superiority of most Egyptian genotypes, especially under stress conditions induced by PEG-6000. The field trial also showed significant differences in grain yields under both water regimes (stressful and non-stressful regimes) and pointed to the high performance of the majority of Egyptian genotypes. The calculated indices [(STI), (SSI), (YSI), and (TOL)] showed variable correlations depending on the index used and concluded that STI and YSI are the best indicators of drought tolerance compared to the others. Among the germination parameters, only the root length (RL) under PEG stress is positively correlated with grain yield, obtained under drought conditions in the field. Therefore, it would be possible to use this parameter to select, at an early stage, the most drought-tolerant genotypes.

Kaynakça

  • Abdel-Moneam, M. A., Sultan, M. S., Eid, A. A., & El-Wakeel, S. E. (2014). Response of Hull-less barley genotypes for high yield potential and stability as affected by different water stress conditions. Asian Journal of Crop Science, 6(3), 202-213.
  • Abd El-Raouf, M., Kandil, A., El-Sayed, A., & Attya, A. (2012). Evaluation of some barley genotypes under soil moisture stress. Egyptian Journal of Plant Breeding, 203(1127), 1-14.
  • Abdul-Mannan, M. A., Begum, F., Al Mamun, M. A., & Habib, M. A. (2023). Evaluation of maize (Zea mays) genotypes for tolerance to drought using yield based tolerance indices. Journal of Agriculture and Crops, 9(3), 329-337.
  • Anwar, J., Subhani, G. M., Hussain, M., Ahmad, J., Hussain, M., & Munir, M. (2011). Drought tolerance indices and their correlation with yield in exotic wheat genotypes. Pakistan Journal of Botany, 43(3), 1527-1530.
  • Asadi, B., & Seyedi, S. M. (2021). Evaluation of drought tolerance indices in red bean lines. Journal of Crop Breeding, 13(38), 160-168.
  • Aslam, S., Hussain, S. B., Baber, M., Shaheen, S., Aslam, S., Waheed, R., & Azhar, M. T. (2023). Estimation of drought tolerance indices in upland cotton under water deficit conditions. Agronomy, 13(4), 984.
  • Ayranci, R., Sade, B., & Soylu, S. (2014). The respons of bread wheat genotypes in different drought types i. grain yield, drouhgt tolerance, and grain yield stability. Turkish Journal of Field Crops, 19(2), 183-188.
  • Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress. 1000Research, 5, 1-10.
  • Ben Naceur, A., Cheikh-M’Hamed, H., Abdelly, C., & Ben Naceur, M. (2018). Screening of North African barley genotypes for drought tolerance based on yields using tolerance indices under water deficit conditions. Turkish Journal of Field Crops, 23(2), 135-145.
  • Cai, Z. Q., & Gao, Q. (2020). Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC Plant Biology, 20(1), 1-15.
  • Esan, V. I., Obisesan, I. A., & Ogunbode, T. O. (2023). Root system architecture and physiological characteristics of soybean (Glycine max L.) seedlings in response to PEG6000-simulated drought stress. International Journal of Agronomy, 2023.
  • El-Shawy, E. E., El-Sabagh, A., Mansour, M., & Barutcular, C. (2017). A comparative study for drought tolerance and yield stability in different genotypes of barley (Hordeum vulgare L.). Journal of Experimental Biology and Agricultural Sciences, 5(2), 151-162.
  • Geetha, A., Sivasankar, A., & Prayaga, L. (2017). Effect of moisture stress on key physiological parameters in sunflower genotypes. International Journal of Current Microbiology and Applied Sciences, 6(5), 147-159.
  • Gerszberg, A., & Hnatuszko-Konka, K. (2017). Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regulation, 83, 175-198.
  • Gitore, S. A., Danga, B., Henga, S., & Gurmu, F. (2021). Evaluating drought tolerance indices for selection of drought tolerant orange fleshed sweet potato (OFSP) genotypes in Ethiopia. International Journal of Agricultural Science and Food Technology, 7(2), 249-254.
  • Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental Biology, 419(1), 64-77.
  • Hassan, M. A., Dahu, N., Hongning, T., Qian, Z., Yueming, Y., Yiru, L., & Shimei, W. (2023). Drought stress in rice: morpho-physiological and molecular responses and marker-assisted breeding. Frontiers in Plant Science, 14.
  • Hellal, F., Abdel-Hady, M., Khatab, I., El-Sayed, S., & Abdelly, C. (2019). Yield characterization of Mediterranean barley under drought stress condition. AIMS Agriculture & Food, 4(3), 518-533.
  • Huang, H. X., Yang, Q. Q., Cui, P., Lu, G., & Han, G. J. (2021). Changes in morphological and physiological characteristics of Gymnocarposprzewalskii roots in response to water stress. Acta Prataculturae Sinica, 30(1), 197.
  • Ilker, E., Tatar, O., Tonk, F. A., & Tosun, M. (2011). Determination of tolerance level of some wheat genotypes to post-anthesis drought. Turkish Journal of Field Crops, 16(1), 59-63.
  • Karavitis, C. A., Alexandris, S., Tsesmelis, D. E., & Athanasopoulos, G. (2011). Application of the standardized precipitation index (SPI) in Greece. Water, 3(3), 787-805.
  • Kim, Y., Chung, Y. S., Lee, E., Tripathi, P., Heo, S., & Kim, K. H. (2020). Root response to drought stress in rice (Oryza sativa L.). International journal of molecular sciences, 21(4), 1513.
  • Kou, X., Han, W., & Kang, J. (2022). Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. Frontiers in Plant Science, 13, 1085409.
  • Kuru, I. S. (2023). The morpho-physiological responses of a tolerant and sensitive wheat (Triticum aestivum L.) cultivar to drought stress and exogenous methyl jasmonate. Frontiers in Life Sciences and Related Technologies, 4(1), 7-12.
  • Lalić, A., Ban, S. G., Perica, S., Novoselović, D., Abičić, I., Kovačević, J., ... & Guberac, V. (2017). The effect of water stress on some traits of winter barley cultivars during early stages of plant growth. Poljoprivreda, 23(1), 22-27.
  • Lamba, K., Kumar, M., Singh, V., Chaudhary, L., Sharma, R., Yashveer, S., & Dalal, M. S. (2023). Heat stress tolerance indices for identification of the heat tolerant wheat genotypes. Scientific Reports, 13(1), 10842.
  • Min, L., Wen, D. X., Sun, Q. Q., Wu, C. L., Yan, L. I., & Zhang, C. Q. (2022). Factors influencing seed reserve utilization during seedling establishment in maize inbred lines. Journal of Integrative Agriculture, 21(3), 677-684.
  • Li, J., Abbas, K., Wang, L., Gong, B., Hou, S., Wang, W., & Gao, H. (2023). Drought resistance index screening and evaluation of lettuce under water deficit conditions on the basis of morphological and physiological differences. Frontiers in Plant Science, 14.
  • Nouri, A., Etminan, A., Teixeira da Silva, J. A., & Mohammadi, R. (2011). Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turjidum var. durum Desf.). Australian Journal of Crop Science, 5(1), 8-16.
  • Mahdavi, Z., Rashidi, V., Yarnia, M., Aharizad, S., & Roustaii, M. (2023). Evaluation of yield traits and tolerance indices of different wheat genotypes under drought stress conditions. Cereal Research Communications, 51(3), 659-669.
  • Maiti, R. (2012). Root responses are indicators for salinity and drought stress in crops. International Journal of Bio-resource and Stress Management, 3(Sep, 3), 1-3.
  • Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5), 914-916.
  • Mishra, S. S., Behera, P. K., & Panda, D. (2019). Genotypic variability for drought tolerance-related morpho-physiological traits among indigenous rice landraces of Jeypore tract of Odisha, India. Journal of Crop Improvement, 33(2), 254-278.
  • Minocha, R., Majumdar, R., & Minocha, S. C. (2014). Polyamines and abiotic stress in plants: a complex relationship. Frontiers in Plant Science, 5, 175.
  • Mohammadi, M., Karimizadeh, R., & Abdipour, M. (2011). Evaluation of drought tolerance in bread wheat genotypes under dryland and supplemental irrigation conditions. Australian Journal of Crop Science, 5(4), 487-493.
  • Negisho, K., Shibru, S., Matros, A., Pillen, K., Ordon, F., & Wehner, G. (2022). Association mapping of drought tolerance indices in Ethiopian durum wheat (Triticum turgidum ssp. durum). Frontiers in Plant Science, 13, 838088.
  • Nupur, J. A., Hannan, A., Islam, A. U., Sagor, G. H. M., & Robin, A. H. K. (2020). Root development and anti-oxidative response of rice genotypes under polyethylene glycol induced osmotic stress. Plant Breeding and Biotechnology, 8(2), 151-162.
  • Poudel, P. B., Poudel, M. R., & Puri, R. R. (2021). Evaluation of heat stress tolerance in spring wheat (Triticum aestivum L.) genotypes using stress tolerance indices in western region of Nepal. Journal of Agriculture and Food Research, 5, 100179.
  • Reyes, J. A. O., Casas, D. E., Gandia, J. L., Parducho, M. J. L., Renovalles, E. M., Quilloy, E. P., & Delfin, E. F. (2023). Polyethylene glycol-induced drought stress screening of selected Philippine high-yielding sugarcane varieties. Journal of Agriculture and Food Research, 14,100676.
  • Sakr, M. T., El-Sarkassy, N. M., & Fuller, M. P. (2012). Osmoregulators proline and glycine betaine counteract salinity stress in canola. Agronomy for Sustainable Development, 32, 747-754.
  • Sánchez-Reinoso, A. D., Ligarreto-Moreno, G. A., & Restrepo-Díaz, H. (2020). Evaluation of drought indices to identify tolerant genotypes in common bean bush (Phaseolus vulgaris L.). Journal of Integrative Agriculture, 19(1), 99-107.
  • Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259.
  • Tembe, K. O., Chemining’wa, G. N., Ambuko, J., & Owino, W. (2017). Effect of water stress on yield and physiological traits among selected African tomato (Solanum lycopersicum) landraces. International Network for Natural Sciences, 10(1):78-85.
  • Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., & Yano, M. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45(9), 1097-1102.
  • Yin, G., & Zhang, H. (2023). A new integrated index for drought stress monitoring based on decomposed vegetation response factors. Journal of Hydrology, 618, 129252.
  • Yooyongwech, S., Samphumphung, T., Tisaram, R., Theerawitaya, C., & Suriyan, C. U. (2017). Physiological, morphological changes and storage root yield of sweetpotato [Ipomoea batatas (L.) Lam.] under peg-induced water stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(1), 164-171.
Yıl 2024, , 15 - 23, 30.04.2024
https://doi.org/10.51753/flsrt.1362571

Öz

Kaynakça

  • Abdel-Moneam, M. A., Sultan, M. S., Eid, A. A., & El-Wakeel, S. E. (2014). Response of Hull-less barley genotypes for high yield potential and stability as affected by different water stress conditions. Asian Journal of Crop Science, 6(3), 202-213.
  • Abd El-Raouf, M., Kandil, A., El-Sayed, A., & Attya, A. (2012). Evaluation of some barley genotypes under soil moisture stress. Egyptian Journal of Plant Breeding, 203(1127), 1-14.
  • Abdul-Mannan, M. A., Begum, F., Al Mamun, M. A., & Habib, M. A. (2023). Evaluation of maize (Zea mays) genotypes for tolerance to drought using yield based tolerance indices. Journal of Agriculture and Crops, 9(3), 329-337.
  • Anwar, J., Subhani, G. M., Hussain, M., Ahmad, J., Hussain, M., & Munir, M. (2011). Drought tolerance indices and their correlation with yield in exotic wheat genotypes. Pakistan Journal of Botany, 43(3), 1527-1530.
  • Asadi, B., & Seyedi, S. M. (2021). Evaluation of drought tolerance indices in red bean lines. Journal of Crop Breeding, 13(38), 160-168.
  • Aslam, S., Hussain, S. B., Baber, M., Shaheen, S., Aslam, S., Waheed, R., & Azhar, M. T. (2023). Estimation of drought tolerance indices in upland cotton under water deficit conditions. Agronomy, 13(4), 984.
  • Ayranci, R., Sade, B., & Soylu, S. (2014). The respons of bread wheat genotypes in different drought types i. grain yield, drouhgt tolerance, and grain yield stability. Turkish Journal of Field Crops, 19(2), 183-188.
  • Basu, S., Ramegowda, V., Kumar, A., & Pereira, A. (2016). Plant adaptation to drought stress. 1000Research, 5, 1-10.
  • Ben Naceur, A., Cheikh-M’Hamed, H., Abdelly, C., & Ben Naceur, M. (2018). Screening of North African barley genotypes for drought tolerance based on yields using tolerance indices under water deficit conditions. Turkish Journal of Field Crops, 23(2), 135-145.
  • Cai, Z. Q., & Gao, Q. (2020). Comparative physiological and biochemical mechanisms of salt tolerance in five contrasting highland quinoa cultivars. BMC Plant Biology, 20(1), 1-15.
  • Esan, V. I., Obisesan, I. A., & Ogunbode, T. O. (2023). Root system architecture and physiological characteristics of soybean (Glycine max L.) seedlings in response to PEG6000-simulated drought stress. International Journal of Agronomy, 2023.
  • El-Shawy, E. E., El-Sabagh, A., Mansour, M., & Barutcular, C. (2017). A comparative study for drought tolerance and yield stability in different genotypes of barley (Hordeum vulgare L.). Journal of Experimental Biology and Agricultural Sciences, 5(2), 151-162.
  • Geetha, A., Sivasankar, A., & Prayaga, L. (2017). Effect of moisture stress on key physiological parameters in sunflower genotypes. International Journal of Current Microbiology and Applied Sciences, 6(5), 147-159.
  • Gerszberg, A., & Hnatuszko-Konka, K. (2017). Tomato tolerance to abiotic stress: a review of most often engineered target sequences. Plant Growth Regulation, 83, 175-198.
  • Gitore, S. A., Danga, B., Henga, S., & Gurmu, F. (2021). Evaluating drought tolerance indices for selection of drought tolerant orange fleshed sweet potato (OFSP) genotypes in Ethiopia. International Journal of Agricultural Science and Food Technology, 7(2), 249-254.
  • Gray, S. B., & Brady, S. M. (2016). Plant developmental responses to climate change. Developmental Biology, 419(1), 64-77.
  • Hassan, M. A., Dahu, N., Hongning, T., Qian, Z., Yueming, Y., Yiru, L., & Shimei, W. (2023). Drought stress in rice: morpho-physiological and molecular responses and marker-assisted breeding. Frontiers in Plant Science, 14.
  • Hellal, F., Abdel-Hady, M., Khatab, I., El-Sayed, S., & Abdelly, C. (2019). Yield characterization of Mediterranean barley under drought stress condition. AIMS Agriculture & Food, 4(3), 518-533.
  • Huang, H. X., Yang, Q. Q., Cui, P., Lu, G., & Han, G. J. (2021). Changes in morphological and physiological characteristics of Gymnocarposprzewalskii roots in response to water stress. Acta Prataculturae Sinica, 30(1), 197.
  • Ilker, E., Tatar, O., Tonk, F. A., & Tosun, M. (2011). Determination of tolerance level of some wheat genotypes to post-anthesis drought. Turkish Journal of Field Crops, 16(1), 59-63.
  • Karavitis, C. A., Alexandris, S., Tsesmelis, D. E., & Athanasopoulos, G. (2011). Application of the standardized precipitation index (SPI) in Greece. Water, 3(3), 787-805.
  • Kim, Y., Chung, Y. S., Lee, E., Tripathi, P., Heo, S., & Kim, K. H. (2020). Root response to drought stress in rice (Oryza sativa L.). International journal of molecular sciences, 21(4), 1513.
  • Kou, X., Han, W., & Kang, J. (2022). Responses of root system architecture to water stress at multiple levels: A meta-analysis of trials under controlled conditions. Frontiers in Plant Science, 13, 1085409.
  • Kuru, I. S. (2023). The morpho-physiological responses of a tolerant and sensitive wheat (Triticum aestivum L.) cultivar to drought stress and exogenous methyl jasmonate. Frontiers in Life Sciences and Related Technologies, 4(1), 7-12.
  • Lalić, A., Ban, S. G., Perica, S., Novoselović, D., Abičić, I., Kovačević, J., ... & Guberac, V. (2017). The effect of water stress on some traits of winter barley cultivars during early stages of plant growth. Poljoprivreda, 23(1), 22-27.
  • Lamba, K., Kumar, M., Singh, V., Chaudhary, L., Sharma, R., Yashveer, S., & Dalal, M. S. (2023). Heat stress tolerance indices for identification of the heat tolerant wheat genotypes. Scientific Reports, 13(1), 10842.
  • Min, L., Wen, D. X., Sun, Q. Q., Wu, C. L., Yan, L. I., & Zhang, C. Q. (2022). Factors influencing seed reserve utilization during seedling establishment in maize inbred lines. Journal of Integrative Agriculture, 21(3), 677-684.
  • Li, J., Abbas, K., Wang, L., Gong, B., Hou, S., Wang, W., & Gao, H. (2023). Drought resistance index screening and evaluation of lettuce under water deficit conditions on the basis of morphological and physiological differences. Frontiers in Plant Science, 14.
  • Nouri, A., Etminan, A., Teixeira da Silva, J. A., & Mohammadi, R. (2011). Assessment of yield, yield-related traits and drought tolerance of durum wheat genotypes (Triticum turjidum var. durum Desf.). Australian Journal of Crop Science, 5(1), 8-16.
  • Mahdavi, Z., Rashidi, V., Yarnia, M., Aharizad, S., & Roustaii, M. (2023). Evaluation of yield traits and tolerance indices of different wheat genotypes under drought stress conditions. Cereal Research Communications, 51(3), 659-669.
  • Maiti, R. (2012). Root responses are indicators for salinity and drought stress in crops. International Journal of Bio-resource and Stress Management, 3(Sep, 3), 1-3.
  • Michel, B. E., & Kaufmann, M. R. (1973). The osmotic potential of polyethylene glycol 6000. Plant Physiology, 51(5), 914-916.
  • Mishra, S. S., Behera, P. K., & Panda, D. (2019). Genotypic variability for drought tolerance-related morpho-physiological traits among indigenous rice landraces of Jeypore tract of Odisha, India. Journal of Crop Improvement, 33(2), 254-278.
  • Minocha, R., Majumdar, R., & Minocha, S. C. (2014). Polyamines and abiotic stress in plants: a complex relationship. Frontiers in Plant Science, 5, 175.
  • Mohammadi, M., Karimizadeh, R., & Abdipour, M. (2011). Evaluation of drought tolerance in bread wheat genotypes under dryland and supplemental irrigation conditions. Australian Journal of Crop Science, 5(4), 487-493.
  • Negisho, K., Shibru, S., Matros, A., Pillen, K., Ordon, F., & Wehner, G. (2022). Association mapping of drought tolerance indices in Ethiopian durum wheat (Triticum turgidum ssp. durum). Frontiers in Plant Science, 13, 838088.
  • Nupur, J. A., Hannan, A., Islam, A. U., Sagor, G. H. M., & Robin, A. H. K. (2020). Root development and anti-oxidative response of rice genotypes under polyethylene glycol induced osmotic stress. Plant Breeding and Biotechnology, 8(2), 151-162.
  • Poudel, P. B., Poudel, M. R., & Puri, R. R. (2021). Evaluation of heat stress tolerance in spring wheat (Triticum aestivum L.) genotypes using stress tolerance indices in western region of Nepal. Journal of Agriculture and Food Research, 5, 100179.
  • Reyes, J. A. O., Casas, D. E., Gandia, J. L., Parducho, M. J. L., Renovalles, E. M., Quilloy, E. P., & Delfin, E. F. (2023). Polyethylene glycol-induced drought stress screening of selected Philippine high-yielding sugarcane varieties. Journal of Agriculture and Food Research, 14,100676.
  • Sakr, M. T., El-Sarkassy, N. M., & Fuller, M. P. (2012). Osmoregulators proline and glycine betaine counteract salinity stress in canola. Agronomy for Sustainable Development, 32, 747-754.
  • Sánchez-Reinoso, A. D., Ligarreto-Moreno, G. A., & Restrepo-Díaz, H. (2020). Evaluation of drought indices to identify tolerant genotypes in common bean bush (Phaseolus vulgaris L.). Journal of Integrative Agriculture, 19(1), 99-107.
  • Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259.
  • Tembe, K. O., Chemining’wa, G. N., Ambuko, J., & Owino, W. (2017). Effect of water stress on yield and physiological traits among selected African tomato (Solanum lycopersicum) landraces. International Network for Natural Sciences, 10(1):78-85.
  • Uga, Y., Sugimoto, K., Ogawa, S., Rane, J., Ishitani, M., Hara, N., & Yano, M. (2013). Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nature Genetics, 45(9), 1097-1102.
  • Yin, G., & Zhang, H. (2023). A new integrated index for drought stress monitoring based on decomposed vegetation response factors. Journal of Hydrology, 618, 129252.
  • Yooyongwech, S., Samphumphung, T., Tisaram, R., Theerawitaya, C., & Suriyan, C. U. (2017). Physiological, morphological changes and storage root yield of sweetpotato [Ipomoea batatas (L.) Lam.] under peg-induced water stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 45(1), 164-171.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Yönetimi (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Mbarek Ben Naceur 0000-0003-3197-2067

Hatem Cheikh-mhamed Bu kişi benim 0000-0003-2691-8568

Yayımlanma Tarihi 30 Nisan 2024
Gönderilme Tarihi 19 Eylül 2023
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Ben Naceur, M., & Cheikh-mhamed, H. (2024). The most relevant drought-tolerant indices for selecting barley drought-tolerant genotypes. Frontiers in Life Sciences and Related Technologies, 5(1), 15-23. https://doi.org/10.51753/flsrt.1362571

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.