Derleme
BibTex RIS Kaynak Göster

Effect of metallic nanoparticles on cancer cell lines: A review on plant-based biosynthesis

Yıl 2024, , 231 - 243, 30.12.2024
https://doi.org/10.51753/flsrt.1498193

Öz

The green synthesis method is an environmentally friendly, cost-efficient, and safe method for the production of metallic nanoparticles (MNPs). This method mainly relies on the use of plants and microorganisms as well. While plant-based MNPs are produced via the green synthesis method, the secondary metabolites of plants have the ability to enrich some functional properties of these MNPs. As a result of this, plant-based MNPs can be cytotoxic to some cancer cell lines. This review regarding the effect of plant-based MNPs anticancer activities on various cancer cell lines provides a summary of research articles in this area. Additionally, this review reports secondary metabolites of the plants used to synthesize MNPs. Thus, this article provides an overview of which plant species are being used and which metallic nanoparticles are being studied for anti-cancer activities on which cancer cell lines. This review aims to provide a general perspective for researchers in the field to study novel combinations of plants, metals, and cancer types.

Kaynakça

  • Abbai, R., Mathiyalagan, R., Markus, J., Kim, Y. J., Wang, C., Singh, P., ... & Yang, D. C. (2016). Green synthesis of multifunctional silver and gold nanoparticles from the oriental herbal adaptogen: Siberian ginseng. International Journal of Nanomedicine, 3131-3143.
  • Abdollahzadeh, H., Pazhang, Y., Zamani, A., & Sharafi, Y. (2024). Green synthesis of copper oxide nanoparticles using walnut shell and their size dependent anticancer effects on breast and colorectal cancer cell lines. Scientific Reports, 14(1), 20323.
  • Ahmeda, A., Zangeneh, A., & Zangeneh, M. M. (2020). Green synthesis and chemical characterization of gold nanoparticle synthesized using Camellia sinensis leaf aqueous extract for the treatment of acute myeloid leukemia in comparison to daunorubicin in a leukemic mouse model. Applied Organometallic Chemistry, 34(3), e5290.
  • Akhter, M. S., Rahman, M. A., Ripon, R., Mubarak, M., Akter, M., Mahbub, S., ... & Sikder, M. T. (2024). A systematic review on green synthesis of silver nanoparticles using plants extract and their bio-medical applications. Heliyon, 10(11), e29766.
  • Al Baloushi, K. S. Y., Senthilkumar, A., Kandhan, K., Subramanian, R., Kizhakkayil, J., Ramachandran, T., ... & Jaleel, A. (2024). Green synthesis and characterization of silver nanoparticles using Moringa peregrina and their toxicity on MCF-7 and Caco-2 Human Cancer Cells. International Journal of Nanomedicine, 3891-3905.
  • Alkhathlan, A. H., Al-Abdulkarim, H. A., Khan, M., Khan, M., Alkholief, M., Alshamsan, A., ... & Siddiqui, M. R. H. (2021). Evaluation of the anticancer activity of phytomolecules conjugated gold nanoparticles synthesized by aqueous extracts of Zingiber officinale (ginger) and Nigella sativa L. seeds (black cumin). Materials, 14(12), 3368.
  • Almukaynizi, F. B., Daghestani, M. H., Awad, M. A., Althomali, A., Merghani, N. M., Bukhari, W. I., ... & Bhat, R. S. (2022). Cytotoxicity of green-synthesized silver nanoparticles by Adansonia digitata fruit extract against HTC116 and SW480 human colon cancer cell lines. Green Processing and Synthesis, 11(1), 411-422.
  • Al-Radadi, N. S. (2021). Facile one-step green synthesis of gold nanoparticles (AuNp) using licorice root extract: Antimicrobial and anticancer study against HepG2 cell line. Arabian Journal of Chemistry, 14(2), 102956.
  • Alsamri, H., Athamneh, K., Pintus, G., Eid, A. H., & Iratni, R. (2021). Pharmacological and antioxidant activities of Rhus coriaria L.(Sumac). Antioxidants, 10(1), 73.
  • Althubiti, A. A., Alsudir, S. A., Alfahad, A. J., Alshehri, A. A., Bakr, A. A., Alamer, A. A., ... & Tawfik, E. A. (2023). Green synthesis of silver nanoparticles using Jacobaea maritima and the evaluation of their antibacterial and anticancer activities. International Journal of Molecular Sciences, 24(22), 16512.
  • Amina, M., Al Musayeib, N. M., Alarfaj, N. A., El-Tohamy, M. F., Oraby, H. F., Al Hamoud, G. A., ... & Moubayed, N. M. (2020). Biogenic green synthesis of MgO nanoparticles using Saussurea costus biomasses for a comprehensive detection of their antimicrobial, cytotoxicity against MCF-7 breast cancer cells and photocatalysis potentials. PLoS One, 15(8), e0237567.
  • Arulvasu, C., Prabhu, D., Manikandan, R., Srinivasan, P., Dinesh, D., Babu, G., & Sellamuthu, S. (2010). Induction of apoptosis by the aqueous and ethanolic leaf extract of Vitex negundo L. in MCF-7 human breast cancer cells. International Journal of Drug Discovery, 2(1), 1-7.
  • Asadollahi, K., Abassi, N., Afshar, N., Alipour, M., & Asadollahi, P. (2010). Investigation of the effects of Prosopis farcta plant extract on rat’s aorta. Journal of Medicinal Plants Research, 4(2), 142-7.
  • Ashokkumar, M., Palanisamy, K., Ganesh Kumar, A., Muthusamy, C., & Senthil Kumar, K. J. (2024). Green synthesis of silver and copper nanoparticles and their composites using Ocimum sanctum leaf extract displayed enhanced antibacterial, antioxidant and anticancer potentials. Artificial Cells, Nanomedicine, and Biotechnology, 52(1), 438-448.
  • Balmuri, S. R., Selvaraj, U., Kumar, V. V., Anthony, S. P., Tsatsakis, A. M., Golokhvast, K. S., & Raman, T. (2017). Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: implications for mitigating cadmium toxicity in environment. Environmental Research, 152, 141-149.
  • Banne, S. V., Patil, M. S., Kulkarni, R. M., & Patil, S. J. (2017). Synthesis and characterization of silver nano particles for EDM applications. Materials Today: Proceedings, 4(11), 12054-12060.
  • Barani, M., Mir, A., Roostaee, M., Sargazi, G., & Adeli-Sardou, M. (2024). Green synthesis of copper oxide nanoparticles via Moringa peregrina extract incorporated in graphene oxide: evaluation of antibacterial and anticancer efficacy. Bioprocess and Biosystems Engineering, 47(11), 1915-1928.
  • Batool, A., Azizullah, A., Ullah, K., Shad, S., Khan, F. U., Seleiman, M. F., ... & Zeb, U. (2024). Green synthesis of Zn-doped TIO2 nanoparticles from Zanthoxylum armatum. BMC Plant Biology, 24(1), 820.
  • Bhardwaj, M., & Alia, A. (2019). Commiphora wightii (Arn.) Bhandari. Review of its botany, medicinal uses, pharmacological activities and phytochemistry. Journal of Drug Delivery and Therapeutics, 9(4-s), 613-621.
  • Carrapico, A., Martins, M. R., Caldeira, A. T., Mirão, J., & Dias, L. (2023). Biosynthesis of metal and metal oxide nanoparticles using microbial cultures: Mechanisms, antimicrobial activity and applications to cultural heritage. Microorganisms, 11(2), 378.
  • Chen, C. C., Kao, C. P., Chiu, M. M., & Wang, S. H. (2017). The anti-cancer effects and mechanisms of Scutellaria barbata D. Don on CL1-5 lung cancer cells. Oncotarget, 8(65), 109340.
  • Chen, J., Li, Y., Fang, G., Cao, Z., Shang, Y., Alfarraj, S., ... & Duan, X. (2021). Green synthesis, characterization, cytotoxicity, antioxidant, and anti-human ovarian cancer activities of Curcumae kwangsiensis leaf aqueous extract green-synthesized gold nanoparticles. Arabian Journal of Chemistry, 14(3), 103000.
  • Cruz, D. M., Mostafavi, E., Vernet-Crua, A., Barabadi, H., Shah, V., Cholula-Díaz, J. L., ... & Webster, T. J. (2020). Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review. Journal of Physics: Materials, 3(3), 034005.
  • Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352.
  • Davydov, M., & Krikorian, A. D. (2000). Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: a closer look. Journal of Ethnopharmacology, 72(3), 345-393.
  • Demir, C., Aygun, A., Gunduz, M. K., Altınok, B. Y., Karahan, T., Meydan, I., ... & Sen, F. (2024). Production of plant-based ZnO NPs by green synthesis; anticancer activities and photodegradation of methylene red dye under sunlight. Biomass Conversion and Biorefinery, 1-16.
  • Dikshit, P. K., Kumar, J., Das, A. K., Sadhu, S., Sharma, S., Singh, S., ... & Kim, B. S. (2021). Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts, 11(8), 902.
  • Ebell, M. H., Culp, M. B., & Radke, T. J. (2016). A systematic review of symptoms for the diagnosis of ovarian cancer. American Journal of Preventive Medicine, 50(3), 384-394.
  • Elagbar, Z. A., Shakya, A. K., Barhoumi, L. M., & Al‐Jaber, H. I. (2020). Phytochemical diversity and pharmacological properties of Rhus coriaria. Chemistry & Biodiversity, 17(4), e1900561.
  • Escárcega-González, C. E., Garza-Cervantes, J. A., Vázquez-Rodríguez, A., & Morones-Ramírez, J. R. (2018). Bacterial exopolysaccharides as reducing and/or stabilizing agents during synthesis of metal nanoparticles with biomedical applications. International Journal of Polymer Science, 2018(1), 7045852.
  • Franco, D., Calabrese, G., Guglielmino, S. P. P., & Conoci, S. (2022). Metal-based nanoparticles: Antibacterial mechanisms and biomedical application. Microorganisms, 10(9), 1778.
  • Gade, A., Gaikwad, S., Duran, N., & Rai, M. (2014). Green synthesis of silver nanoparticles by Phoma glomerata. Micron, 59, 52-59.
  • Genc, D., & Celik, I. (2024). Investigation of the effects of Eremurus spectabilis Bieb. lyophilized and nanoparticle extracts on the cellular and enzymatic immune system in experimentally-induced hepatocellular carcinogenesis in rats. Frontiers in Life Sciences and Related Technologies, 5(2), 95-100.
  • Gharari, Z., Hanachi, P., Sadeghinia, H., & Walker, T. R. (2023). Eco-friendly green synthesis and characterization of silver nanoparticles by Scutellaria multicaulis leaf extract and its biological activities. Pharmaceuticals, 16(7), 992.
  • Ghobashy, M. M., Alkhursani, S. A., Alqahtani, H. A., El-damhougy, T. K., & Madani, M. (2024). Gold nanoparticles in microelectronics advancements and biomedical applications. Materials Science and Engineering: B, 301, 117191.
  • Ghorbani, H. R. (2014). A review of methods for synthesis of Al nanoparticles. Oriental Journal of Chemistry, 30(4), 1941-1949.
  • Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 844-851.
  • Grace, M. H., & Khattab, A. M. (1998). Chemical constituents and molluscicidal activity of Senecio cineraria DC. Grancharova, T., Simeonova, S., Pilicheva, B., & Zagorchev, P. (2024). Gold nanoparticles in Parkinson’s disease therapy: A focus on plant-based green synthesis. Cureus, 16(2).
  • Gupta, R., Sharma, A. K., Dobhal, M. P., Sharma, M. C., & Gupta, R. S. (2011). Antidiabetic and antioxidant potential of β‐sitosterol in streptozotocin‐induced experimental hyperglycemia. Journal of Diabetes, 3(1), 29-37.
  • Gutiérrez, R. M. P., & Perez, R. L. (2004). Raphanus sativus (Radish): Their chemistry and biology. The Scientific World Journal, 4(1), 811-837.
  • Haji, S. H., Ali, F. A., & Aka, S. T. H. (2022). Synergistic antibacterial activity of silver nanoparticles biosynthesized by carbapenem-resistant Gram-negative bacilli. Scientific Reports, 12(1), 15254.
  • Hashemi, S. F., Tasharrofi, N., & Saber, M. M. (2020). Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. Journal of Molecular Structure, 1208, 127889.
  • Herlekar, M., Barve, S., & Kumar, R. (2014). Plant‐mediated green synthesis of iron nanoparticles. Journal of Nanoparticles, 2014(1), 140614.
  • Husain, J. H., Arumugam, D., Nawabjohn, M. S., Kumaran, S., & Pandurangan, A. K. (2024). Green synthesis of silver nanoparticles using Centratherum anthelminticum extract against breast cancer cells. Asian Pacific Journal of Cancer Prevention: APJCP, 25(8), 2711.
  • Iqbal, S., Fakhar-e-Alam, M., Akbar, F., Shafiq, M., Atif, M., Amin, N., ... & Farooq, W. A. (2019). Application of silver oxide nanoparticles for the treatment of cancer. Journal of Molecular Structure, 1189, 203-209.
  • Jaggi, R. K., Madaan, R., & Singh, B. (2003). Anticonvulsant potential of holy basil, Ocimum sanctum Linn., and its cultures. Indian Journal of Experimental Biology, 41, 1329-1333.
  • Jeevanandam, J., Kiew, S. F., Boakye-Ansah, S., Lau, S. Y., Barhoum, A., Danquah, M. K., & Rodrigues, J. (2022). Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale, 14(7), 2534-2571.
  • Johnson, J. J. (2011). Carnosol: a promising anti-cancer and anti-inflammatory agent. Cancer Letters, 305(1), 1-7.
  • Kabiri, F., Aghaei, S. S., Pourbabaee, A. A., Soleimani, M., & Komeili Movahhed, T. (2023). Antibiofilm and cytotoxic potential of extracellular biosynthesized gold nanoparticles using actinobacteria Amycolatopsis sp. KMN. Preparative Biochemistry & Biotechnology, 53(3), 265-278.
  • Kamatou, G. P. P., Vermaak, I., & Viljoen, A. M. (2011). An updated review of Adansonia digitata: A commercially important African tree. South African Journal of Botany, 77(4), 908-919.
  • Kan, X., Zhang, W., You, R., Niu, Y., Guo, J., & Xue, J. (2017). Scutellaria barbata D. Don extract inhibits the tumor growth through down-regulating of Treg cells and manipulating Th1/Th17 immune response in hepatoma H22-bearing mice. BMC Complementary and Alternative Medicine, 17, 1-10.
  • Karahan, H., Tetik, N., & Colgecen, H. (2023). Phytofabrication of silver nanoparticles using callus extracts of natural tetraploid Trifolium pratense L. and its bioactivities. Frontiers in Life Sciences and Related Technologies, 18-28.
  • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 12(7), 908-931.
  • Khdary, N. H., Alangari, A. A., Katubi, K. M., Alanazi, M., Alhassan, A., Alzahrani, S. D., ... & Alanazi, I. O. (2023). Synthesis of Gingerol-Metals Complex and in-vitro Cytotoxic Activity on Human Colon Cancer Cell Line. Cancer Management and Research, 87-98.
  • Khorrami, S., Zarrabi, A., Khaleghi, M., Danaei, M., & Mozafari, M. R. (2018). Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine, 8013-8024.
  • Khursheed, R., Dua, K., Vishwas, S., Gulati, M., Jha, N. K., Aldhafeeri, G. M., ... & Singh, S. K. (2022). Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Biomedicine & Pharmacotherapy, 150, 112951.
  • Kim, J. Y., Jo, O. H., Choe, C. M., & Cho, H. B. (2006). Rhizoma Rehmanniae induced apoptosis in human cervical carcinoma HeLa cells. The Journal of Korean Obstetrics and Gynecology, 19(1), 69-80.
  • Lahiri, D., Nag, M., Sheikh, H. I., Sarkar, T., Edinur, H. A., Pati, S., & Ray, R. R. (2021). Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Frontiers in Microbiology, 12, 636588.
  • Lambertini, E., Piva, R., Khan, M. T. H., Lampronti, I., Bianchi, N., Borgatti, M., & Gambari, R. (2004). Effects of extracts from Bangladeshi medicinal plants on in vitro proliferation of human breast cancer cell lines and expression of estrogen receptor α gene. International Journal of Oncology, 24(2), 419-423.
  • Lee, S. R., Kim, M. S., Kim, S., Hwang, K. W., & Park, S. Y. (2017). Constituents from Scutellaria barbata inhibiting nitric oxide production in LPS‐stimulated microglial cells. Chemistry & Biodiversity, 14(11), e1700231.
  • Liu, P., Jin, H., Guo, Z., Ma, J., Zhao, J., Li, D., ... & Gu, N. (2016). Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma. International Journal of Nanomedicine, 5003-5014.
  • Liu, R., Pei, Q., Shou, T., Zhang, W., Hu, J., & Li, W. (2019). Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells. International Journal of Nanomedicine, 4091-4103.
  • Liu, Y., Deng, A. J., Ma, L., Zhang, H. J., Zhang, Z. H., Wu, L. Q., ... & Qin, H. L. (2015). Chemical constituents of the roots of Macleaya microcarpa and activation efficacy of benzophenanthridine alkaloids for the transcription of xbp1 gene. Yao xue xue bao=Acta Pharmaceutica Sinica, 50(2), 207-210.
  • Malik, U. U., Siddiqui, I. A., Ilyas, A., Hashim, Z., Staunton, L., Kwasnik, A., ... & Zarina, S. (2020). Identification of differentially expressed proteins from smokeless tobacco addicted patients suffering from Oral squamous cell carcinoma. Pathology & Oncology Research, 26, 1489-1497.
  • Mani, S. T., Jayakumar, P., Pavithra, M. E., Saranya, K., Rathinavel, T., & Ammashi, S. (2023). Green synthesis and characterization of silver nanoparticles from Eclipta alba and its activity against triple-negative breast cancer cell line (MDA-MB-231). Molecular Biotechnology, 1-11.
  • Manzan, A. C. C., Toniolo, F. S., Bredow, E., & Povh, N. P. (2003). Extraction of essential oil and pigments from Curcuma longa [L.] by steam distillation and extraction with volatile solvents. Journal of Agricultural and Food Chemistry, 51(23), 6802-6807.
  • Marconett, C. N., Morgenstern, T. J., San Roman, A. K., Sundar, S. N., Singhal, A. K., & Firestone, G. L. (2010). BZL101, a phytochemical extract from the Scutellaria barbata plant, disrupts proliferation of human breast and prostate cancer cells through distinct mechanisms dependent on the cancer cell phenotype. Cancer Biology & Therapy, 10(4), 397-405.
  • Mehrotra, S., Goyal, V., Dimkpa, C. O., & Chhokar, V. (2024). Green synthesis and characterization of ginger-derived silver nanoparticles and evaluation of their antioxidant, antibacterial, and anticancer activities. Plants, 13(9), 1255.
  • Mirabelli, P., Coppola, L., & Salvatore, M. (2019). Cancer cell lines are useful model systems for medical research. Cancers, 11(8), 1098.
  • Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346-356.
  • Moga, M. A., Dimienescu, O. G., Bălan, A., Dima, L., Toma, S. I., Bîgiu, N. F., & Blidaru, A. (2021). Pharmacological and therapeutic properties of Punica granatum phytochemicals: possible roles in breast cancer. Molecules, 26(4), 1054.
  • Moghaddam, N. A., Eskandari, A., Khodadadi, B., Hafezi, Y., Paduvilan, J. K., & Yaraki, M. T. (2024). Green synthesis of bimetallic AgZnO Nanoparticles: Synergistic anticancer effects through regulation of gene expression for lung cancer treatment. Results in Engineering, 102329.
  • Molnár, Z., Bódai, V., Szakacs, G., Erdélyi, B., Fogarassy, Z., Sáfrán, G., ... & Lagzi, I. (2018). Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Scientific Reports, 8(1), 3943.
  • Mongy, Y., & Shalaby, T. (2024). Green synthesis of zinc oxide nanoparticles using Rhus coriaria extract and their anticancer activity against triple-negative breast cancer cells. Scientific Reports, 14(1), 13470.
  • Montiel Schneider, M. G., Martín, M. J., Otarola, J., Vakarelska, E., Simeonov, V., Lassalle, V., & Nedyalkova, M. (2022). Biomedical applications of iron oxide nanoparticles: Current insights progress and perspectives. Pharmaceutics, 14(1), 204.
  • Mousa, A. B., Moawad, R., Abdallah, Y., Abdel-Rasheed, M., & Zaher, A. M. A. (2023). Zinc oxide nanoparticles promise anticancer and antibacterial activity in ovarian cancer. Pharmaceutical Research, 40(10), 2281-2290.
  • Mousavi, B., Tafvizi, F., & Zaker Bostanabad, S. (2018). Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artificial Cells, Nanomedicine, and Biotechnology, 46(sup1), 499-510.
  • Movahedi, A., Basir, R., Rahmat, A., Charaffedine, M., & Othman, F. (2014). Remarkable anticancer activity of Teucrium polium on hepatocellular carcinogenic rats. Evidence‐Based Complementary and Alternative Medicine, 2014(1), 726724.
  • Mukjerjee, S., & Karati, D. (2022). A mechanistic view on phytochemistry, pharmacognostic properties, and pharmacological activities of phytocompounds present in Zingiber officinale: A comprehensive review. Pharmacological Research-Modern Chinese Medicine, 5, 100173.
  • Muslim, A. M., & Naji, I. S. (2024). Green synthesis of CuO nanoparticles mediated Rhazya stricta plant leaves extract characterization and evaluation of their antibacterial and anticancer activity (in vitro study). Iraqi Journal of Physics, 22(3), 93-105.
  • Nachvak, S. M., Soleimani, D., Rahimi, M., Azizi, A., Moradinazar, M., Rouhani, M. H., ... & Miryan, M. (2023). Ginger as an anticolorectal cancer spice: A systematic review of in vitro to clinical evidence. Food Science & Nutrition, 11(2), 651-660.
  • Nazaripour, E., Mousazadeh, F., Moghadam, M. D., Najafi, K., Borhani, F., Sarani, M., ... & Khatami, M. (2021). Biosynthesis of lead oxide and cerium oxide nanoparticles and their cytotoxic activities against colon cancer cell line. Inorganic Chemistry Communications, 131, 108800.
  • Nematollahi-Mahani, S. N., Rezazadeh-Kermani, M., Mehrabani, M., & Nakhaee, N. (2007). Cytotoxic effects of Teucrium polium. On some established cell lines. Pharmaceutical Biology, 45(4), 295-298.
  • Nguyen, N. T. T., Nguyen, T. T. T., Nguyen, D. T. C., & Van Tran, T. (2023). Green synthesis of ZnFe2O4 nanoparticles using plant extracts and their applications: A review. Science of The Total Environment, 872, 162212.
  • Norris, C. B., Joseph, P. R., Mackiewicz, M. R., & Reed, S. M. (2010). Minimizing formaldehyde use in the synthesis of gold−silver core−shell nanoparticles. Chemistry of Materials, 22(12), 3637-3645.
  • Osman, A. M. E., Taj Eldin, I. M., Elhag, A. M., Elhassan, M. M. A., & Ahmed, E. M. M. (2020). In-vitro anticancer and cytotoxic activity of ginger extract on human breast cell lines. Khartoum Journal of Pharmaceutical Sciences, 1(1), 26-29.
  • Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., Ayaz, M., Saravanan, M., ... & Mukherjee, S. (2018). Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied Microbiology and Biotechnology, 102, 6799-6814.
  • Ozcelik, S. (2023). Investigation of antimicrobial effects of zinc-based nanoparticles on food-borne pathogens. Frontiers in Life Sciences and Related Technologies, 4(3), 132-137.
  • Pal, G., Rai, P., & Pandey, A. (2019). Green synthesis of nanoparticles: A greener approach for a cleaner future. In Green Synthesis, Characterization and Applications of Nanoparticles (pp. 1-26). Elsevier.
  • Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712-1720.
  • Pandey, P. A., Bell, G. R., Rourke, J. P., Sanchez, A. M., Elkin, M. D., Hickey, B. J., & Wilson, N. R. (2011). Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal-graphene interactions. Small, 7(22), 3202-3210.
  • Pandian, N., & Chidambaram, S. (2017). Antimicrobial, cytotoxicty and anti cancer activity of silver nanoparticles from Glycyrrhiza glabra. International Journal of Pharmaceutical Sciences and Research, 8(4), 1633.
  • Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., ... & Shin, H. S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16, 1-33.
  • Pattanayak, M., & Nayak, P. L. (2013). Ecofriendly green synthesis of iron nanoparticles from various plants and spices extract. International Journal of Plant, Animal and Environmental Sciences, 3(1), 68-78.
  • Pattanayak, P., Behera, P., Das, D., & Panda, S. K. (2010). Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacognosy reviews, 4(7), 95.
  • Perumal, P., Sathakkathulla, N. A., Kumaran, K., Ravikumar, R., Selvaraj, J. J., Nagendran, V., ... & Rathinasamy, S. (2024). Green synthesis of zinc oxide nanoparticles using aqueous extract of shilajit and their anticancer activity against HeLa cells. Scientific Reports, 14(1), 2204.
  • Plengsuriyakarn, T., Viyanant, V., Eursitthichai, V., Tesana, S., Chaijaroenkul, W., Itharat, A., & Na-Bangchang, K. (2012). Cytotoxicity, toxicity, and anticancer activity of Zingiber officinale Roscoe against cholangiocarcinoma. Asian Pacific Journal of Cancer Prevention, 13(9), 4597-4606.
  • Qureshi, S. A., Rais, S., Usmani, R., Zaidi, S. S. M., Jehan, M., Lateef, T., & Azmi, M. B. (2016). Centratherum anthelminticum seeds reverse the carbon tetrachloride-induced hepatotoxicity in rats. African journal of Pharmacy and Pharmacology, 10(26), 533-539.
  • Rajeshkumar, S., Kumar, S. V., Ramaiah, A., Agarwal, H., Lakshmi, T., & Roopan, S. M. (2018). Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and microbial technology, 117, 91-95.
  • Rajput, N. (2015). Methods of preparation of nanoparticles-a review. International Journal of Advances in Engineering & Technology, 7(6), 1806.
  • Ramya, B., Khusro, A., Indra, V., Agastian, P., Almutairi, M. H., & Almutairi, B. O. (2024). Green synthesis of silver nanoparticles using Justicia adhatoda leaves extract and its anticancer effect on human lung carcinoma via induced apoptosis mechanism. Results in Chemistry, 7, 101472.
  • Razavi, M., Salahinejad, E., Fahmy, M., Yazdimamaghani, M., Vashaee, D., & Tayebi, L. (2015). Green chemical and biological synthesis of nanoparticles and their biomedical applications. Green processes for nanotechnology: From Inorganic to Bioinspired Nanomaterials, 207-235.
  • Revathi, S., Sutikno, S., Hasan, A. F., Altemimi, A. B., ALKaisy, Q. H., Phillips, A. J., ... & Abedelmaksoud, T. G. (2024). Green synthesis and characterization of silver nanoparticles (AgNP) using Acacia nilotica plant extract and their anti-bacterial activity. Food Chemistry Advances, 4, 100680.
  • Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M., & Bruni, R. (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry, 91(4), 621-632.
  • Sadrolhosseini, A. R., Mahdi, M. A., Alizadeh, F., & Rashid, S. A. (2019). Laser ablation technique for synthesis of metal nanoparticle in liquid. Laser Technology and its Applications, 63-83.
  • Sahin, B., Aygun, A., Gunduz, H., Sahin, K., Demir, E., Akocak, S., & Sen, F. (2018). Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids and Surfaces B: Biointerfaces, 163, 119-124.
  • Sakhr, K., & El Khatib, S. (2020). Physiochemical properties and medicinal, nutritional and industrial applications of Lebanese Sumac (Syrian Sumac-Rhus coriaria): A review. Heliyon, 6(1).
  • Salehi, S., Shandiz, S. A. S., Ghanbar, F., Darvish, M. R., Ardestani, M. S., Mirzaie, A., & Jafari, M. (2016). Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. International Journal of Nanomedicine, 1835-1846.
  • Sekar, V., Balakrishnan, C., Kathirvel, P., Swamiappan, S., Alshehri, M. A., Sayed, S., & Panneerselvam, C. (2022). Ultra-sonication-enhanced green synthesis of silver nanoparticles using Barleria buxifolia leaf extract and their possible application. Artificial Cells, Nanomedicine, and Biotechnology, 50(1), 177-187.
  • Senthilkumar, A., Karuvantevida, N., Rastrelli, L., Kurup, S. S., & Cheruth, A. J. (2018). Traditional uses, pharmacological efficacy, and phytochemistry of Moringa peregrina (Forssk.) Fiori. -a review. Frontiers in Pharmacology, 9, 465.
  • Shanmugam, K. R., Shanmugam, B., Venkatasubbaiah, G., Ravi, S., & Reddy, K. S. (2022). Recent Updates on the Bioactive Compounds of Ginger (Zingiber officinale) on Cancer: A Study with Special Emphasis of Gingerol and Its Anticancer Potential: Effect of Ginger and Its Compounds in Cancer Subjects. In Handbook of Oxidative Stress in Cancer: Therapeutic Aspects (pp. 1-18). Singapore: Springer Nature Singapore.
  • Sharangi, A. B. (2009). Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)–A review. Food Research International, 42(5-6), 529-535.
  • Sharma, B., Purkayastha, D. D., Hazra, S., Gogoi, L., Bhattacharjee, C. R., Ghosh, N. N., & Rout, J. (2014). Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Materials Letters, 116, 94-97.
  • Shochah, Q. R., & Jabir, F. A. (2024). Green synthesis of Au/ZnO nanoparticles for anticancer activity and oxidative stress against MCF-7 cell lines. Biomass Conversion and Biorefinery, 14(14), 15283-15296.
  • Simakin, A. V., Voronov, V. V., Kirichenko, N. A., & Shafeev, G. A. (2004). Nanoparticles produced by laser ablation of solids in liquid environment. Applied Physics A, 79, 1127-1132.
  • Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology, 16, 1-24.
  • Takemoto, T., Nishimoto, N., Nakai, S., Takagi, N., Hayashi, S., Odashima, S., & Wada, Y. (1983). Pfaffic acid, a novel nortriterpene from Pfaffia paniculata Kuntze. Tetrahedron Letters, 24(10), 1057-1060.
  • Ullah, I., Khalil, A. T., Zia, A., Hassan, I., & Shinwari, Z. K. (2024). Insight into the molecular mechanism, cytotoxic, and anticancer activities of phyto‐reduced silver nanoparticles in MCF‐7 breast cancer cell lines. Microscopy Research and Technique, 87(7), 1627-1639.
  • Ullah, I., Rauf, A., Khalil, A. A., Luqman, M., Islam, M. R., Hemeg, H. A., ... & Quradha, M. M. (2024). Peganum harmala L. extract‐based Gold (Au) and Silver (Ag) nanoparticles (NPs): Green synthesis, characterization, and assessment of antibacterial and antifungal properties. Food Science & Nutrition.
  • Ullah, M., Ali, M. E., & Abd Hamid, S. B. (2014). Surfactant-assisted ball milling: a novel route to novel materials with controlled nanostructure-a review. Reviews on Advanced Materials Science, 37.
  • Umamaheswari, A., Prabu, S. L., John, S. A., & Puratchikody, A. (2021). Green synthesis of zinc oxide nanoparticles using leaf extracts of Raphanus sativus var. Longipinnatus and evaluation of their anticancer property in A549 cell lines. Biotechnology Reports, 29, e00595.
  • Vijayakumar, S., Chen, J., Sánchez, Z. I. G., Tungare, K., Bhori, M., Durán-Lara, E. F., & Anbu, P. (2023). Moringa oleifera gum capped MgO nanoparticles: Synthesis, characterization, cyto-and ecotoxicity assessment. International Journal of Biological Macromolecules, 233, 123514.
  • Vyas, P., Yadav, D. K., & Khandelwal, P. (2019). Tectona grandis (teak)–A review on its phytochemical and therapeutic potential. Natural Product Research, 33(16), 2338-2354.
  • Wang, L., Xu, J., Yan, Y., Liu, H., Karunakaran, T., & Li, F. (2019). Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC‐1). Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 1617-1627.
  • Xia, T., Dong, X., Jiang, Y., Lin, L., Dong, Z., Shen, Y., ... & Qin, L. (2019). Metabolomics profiling reveals rehmanniae radix preparata extract protects against glucocorticoid-induced osteoporosis mainly via intervening steroid hormone biosynthesis. Molecules, 24(2), 253.
  • Yalcin, B., Akcan, D., Yalcin, I. E., Alphan, M. C., Senturk, K., Ozyigit, I. I., & Arda, L. (2020). Effect of Mg doping on morphology, photocatalytic activity and related biological properties of Zn1-xMgxO nanoparticles. Turkish Journal of Chemistry, 44(4), 1177-1199.
  • Yalcin, B., Arda, L., Yalcin, I. E., Senturk, K., Alphan, M. C., Akcan, D., & Ozyigit, I. I. (2023). Exploration of the improving effect of Cd-doping on structural, photocatalytic, and biological properties of ZnO nanoparticles. Journal of Nanoparticle Research, 25(7), 146.
  • Yang, N., Zhao, Y., Wang, Z., Liu, Y., & Zhang, Y. (2017). Scutellarin suppresses growth and causes apoptosis of human colorectal cancer cells by regulating the p53 pathway. Molecular Medicine Reports, 15(2), 929-935.
  • Yesil-Celiktas, O., Sevimli, C., Bedir, E., & Vardar-Sukan, F. (2010). Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods for Human Nutrition, 65, 158-163.
  • Younis, H. M., Hussein, H. A., Khaphi, F. L., & Saeed, Z. K. (2023). Green biosynthesis of silver and gold nanoparticles using Teak (Tectona grandis) leaf extract and its anticancer and antimicrobial activity. Heliyon, 9(11).
  • Zhang, L., Ren, B., Zhang, J., Liu, L., Liu, J., Jiang, G., ... & Li, W. (2017). Anti-tumor effect of Scutellaria barbata D. Don extracts on ovarian cancer and its phytochemicals characterisation. Journal of Ethnopharmacology, 206, 184-192.
  • Zhou, R., Xu, L., Ye, M., Liao, M., Du, H., & Chen, H. (2014). Formononetin inhibits migration and invasion of MDA-MB-231 and 4T1 breast cancer cells by suppressing MMP-2 and MMP-9 through PI3K/AKT signaling pathways. Hormone and Metabolic Research, 46(11), 753-760.

Effect of metallic nanoparticles on cancer cell lines: A review on plant-based biosynthesis

Yıl 2024, , 231 - 243, 30.12.2024
https://doi.org/10.51753/flsrt.1498193

Öz

The green synthesis method is an environmentally friendly, cost-efficient, and safe method for the production of metallic nanoparticles (MNPs). This method mainly relies on the use of plants and microorganisms as well. While plant-based MNPs are produced via the green synthesis method, the secondary metabolites of plants have the ability to enrich some functional properties of these MNPs. As a result of this, plant-based MNPs can be cytotoxic to some cancer cell lines. This review regarding the effect of plant-based MNPs anticancer activities on various cancer cell lines provides a summary of research articles in this area. Additionally, this review reports secondary metabolites of the plants used to synthesize MNPs. Thus, this article provides an overview of which plant species are being used and which metallic nanoparticles are being studied for anti-cancer activities on which cancer cell lines. This review aims to provide a general perspective for researchers in the field to study novel combinations of plants, metals, and cancer types.

Kaynakça

  • Abbai, R., Mathiyalagan, R., Markus, J., Kim, Y. J., Wang, C., Singh, P., ... & Yang, D. C. (2016). Green synthesis of multifunctional silver and gold nanoparticles from the oriental herbal adaptogen: Siberian ginseng. International Journal of Nanomedicine, 3131-3143.
  • Abdollahzadeh, H., Pazhang, Y., Zamani, A., & Sharafi, Y. (2024). Green synthesis of copper oxide nanoparticles using walnut shell and their size dependent anticancer effects on breast and colorectal cancer cell lines. Scientific Reports, 14(1), 20323.
  • Ahmeda, A., Zangeneh, A., & Zangeneh, M. M. (2020). Green synthesis and chemical characterization of gold nanoparticle synthesized using Camellia sinensis leaf aqueous extract for the treatment of acute myeloid leukemia in comparison to daunorubicin in a leukemic mouse model. Applied Organometallic Chemistry, 34(3), e5290.
  • Akhter, M. S., Rahman, M. A., Ripon, R., Mubarak, M., Akter, M., Mahbub, S., ... & Sikder, M. T. (2024). A systematic review on green synthesis of silver nanoparticles using plants extract and their bio-medical applications. Heliyon, 10(11), e29766.
  • Al Baloushi, K. S. Y., Senthilkumar, A., Kandhan, K., Subramanian, R., Kizhakkayil, J., Ramachandran, T., ... & Jaleel, A. (2024). Green synthesis and characterization of silver nanoparticles using Moringa peregrina and their toxicity on MCF-7 and Caco-2 Human Cancer Cells. International Journal of Nanomedicine, 3891-3905.
  • Alkhathlan, A. H., Al-Abdulkarim, H. A., Khan, M., Khan, M., Alkholief, M., Alshamsan, A., ... & Siddiqui, M. R. H. (2021). Evaluation of the anticancer activity of phytomolecules conjugated gold nanoparticles synthesized by aqueous extracts of Zingiber officinale (ginger) and Nigella sativa L. seeds (black cumin). Materials, 14(12), 3368.
  • Almukaynizi, F. B., Daghestani, M. H., Awad, M. A., Althomali, A., Merghani, N. M., Bukhari, W. I., ... & Bhat, R. S. (2022). Cytotoxicity of green-synthesized silver nanoparticles by Adansonia digitata fruit extract against HTC116 and SW480 human colon cancer cell lines. Green Processing and Synthesis, 11(1), 411-422.
  • Al-Radadi, N. S. (2021). Facile one-step green synthesis of gold nanoparticles (AuNp) using licorice root extract: Antimicrobial and anticancer study against HepG2 cell line. Arabian Journal of Chemistry, 14(2), 102956.
  • Alsamri, H., Athamneh, K., Pintus, G., Eid, A. H., & Iratni, R. (2021). Pharmacological and antioxidant activities of Rhus coriaria L.(Sumac). Antioxidants, 10(1), 73.
  • Althubiti, A. A., Alsudir, S. A., Alfahad, A. J., Alshehri, A. A., Bakr, A. A., Alamer, A. A., ... & Tawfik, E. A. (2023). Green synthesis of silver nanoparticles using Jacobaea maritima and the evaluation of their antibacterial and anticancer activities. International Journal of Molecular Sciences, 24(22), 16512.
  • Amina, M., Al Musayeib, N. M., Alarfaj, N. A., El-Tohamy, M. F., Oraby, H. F., Al Hamoud, G. A., ... & Moubayed, N. M. (2020). Biogenic green synthesis of MgO nanoparticles using Saussurea costus biomasses for a comprehensive detection of their antimicrobial, cytotoxicity against MCF-7 breast cancer cells and photocatalysis potentials. PLoS One, 15(8), e0237567.
  • Arulvasu, C., Prabhu, D., Manikandan, R., Srinivasan, P., Dinesh, D., Babu, G., & Sellamuthu, S. (2010). Induction of apoptosis by the aqueous and ethanolic leaf extract of Vitex negundo L. in MCF-7 human breast cancer cells. International Journal of Drug Discovery, 2(1), 1-7.
  • Asadollahi, K., Abassi, N., Afshar, N., Alipour, M., & Asadollahi, P. (2010). Investigation of the effects of Prosopis farcta plant extract on rat’s aorta. Journal of Medicinal Plants Research, 4(2), 142-7.
  • Ashokkumar, M., Palanisamy, K., Ganesh Kumar, A., Muthusamy, C., & Senthil Kumar, K. J. (2024). Green synthesis of silver and copper nanoparticles and their composites using Ocimum sanctum leaf extract displayed enhanced antibacterial, antioxidant and anticancer potentials. Artificial Cells, Nanomedicine, and Biotechnology, 52(1), 438-448.
  • Balmuri, S. R., Selvaraj, U., Kumar, V. V., Anthony, S. P., Tsatsakis, A. M., Golokhvast, K. S., & Raman, T. (2017). Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: implications for mitigating cadmium toxicity in environment. Environmental Research, 152, 141-149.
  • Banne, S. V., Patil, M. S., Kulkarni, R. M., & Patil, S. J. (2017). Synthesis and characterization of silver nano particles for EDM applications. Materials Today: Proceedings, 4(11), 12054-12060.
  • Barani, M., Mir, A., Roostaee, M., Sargazi, G., & Adeli-Sardou, M. (2024). Green synthesis of copper oxide nanoparticles via Moringa peregrina extract incorporated in graphene oxide: evaluation of antibacterial and anticancer efficacy. Bioprocess and Biosystems Engineering, 47(11), 1915-1928.
  • Batool, A., Azizullah, A., Ullah, K., Shad, S., Khan, F. U., Seleiman, M. F., ... & Zeb, U. (2024). Green synthesis of Zn-doped TIO2 nanoparticles from Zanthoxylum armatum. BMC Plant Biology, 24(1), 820.
  • Bhardwaj, M., & Alia, A. (2019). Commiphora wightii (Arn.) Bhandari. Review of its botany, medicinal uses, pharmacological activities and phytochemistry. Journal of Drug Delivery and Therapeutics, 9(4-s), 613-621.
  • Carrapico, A., Martins, M. R., Caldeira, A. T., Mirão, J., & Dias, L. (2023). Biosynthesis of metal and metal oxide nanoparticles using microbial cultures: Mechanisms, antimicrobial activity and applications to cultural heritage. Microorganisms, 11(2), 378.
  • Chen, C. C., Kao, C. P., Chiu, M. M., & Wang, S. H. (2017). The anti-cancer effects and mechanisms of Scutellaria barbata D. Don on CL1-5 lung cancer cells. Oncotarget, 8(65), 109340.
  • Chen, J., Li, Y., Fang, G., Cao, Z., Shang, Y., Alfarraj, S., ... & Duan, X. (2021). Green synthesis, characterization, cytotoxicity, antioxidant, and anti-human ovarian cancer activities of Curcumae kwangsiensis leaf aqueous extract green-synthesized gold nanoparticles. Arabian Journal of Chemistry, 14(3), 103000.
  • Cruz, D. M., Mostafavi, E., Vernet-Crua, A., Barabadi, H., Shah, V., Cholula-Díaz, J. L., ... & Webster, T. J. (2020). Green nanotechnology-based zinc oxide (ZnO) nanomaterials for biomedical applications: a review. Journal of Physics: Materials, 3(3), 034005.
  • Dai, J., & Mumper, R. J. (2010). Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 15(10), 7313-7352.
  • Davydov, M., & Krikorian, A. D. (2000). Eleutherococcus senticosus (Rupr. & Maxim.) Maxim. (Araliaceae) as an adaptogen: a closer look. Journal of Ethnopharmacology, 72(3), 345-393.
  • Demir, C., Aygun, A., Gunduz, M. K., Altınok, B. Y., Karahan, T., Meydan, I., ... & Sen, F. (2024). Production of plant-based ZnO NPs by green synthesis; anticancer activities and photodegradation of methylene red dye under sunlight. Biomass Conversion and Biorefinery, 1-16.
  • Dikshit, P. K., Kumar, J., Das, A. K., Sadhu, S., Sharma, S., Singh, S., ... & Kim, B. S. (2021). Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts, 11(8), 902.
  • Ebell, M. H., Culp, M. B., & Radke, T. J. (2016). A systematic review of symptoms for the diagnosis of ovarian cancer. American Journal of Preventive Medicine, 50(3), 384-394.
  • Elagbar, Z. A., Shakya, A. K., Barhoumi, L. M., & Al‐Jaber, H. I. (2020). Phytochemical diversity and pharmacological properties of Rhus coriaria. Chemistry & Biodiversity, 17(4), e1900561.
  • Escárcega-González, C. E., Garza-Cervantes, J. A., Vázquez-Rodríguez, A., & Morones-Ramírez, J. R. (2018). Bacterial exopolysaccharides as reducing and/or stabilizing agents during synthesis of metal nanoparticles with biomedical applications. International Journal of Polymer Science, 2018(1), 7045852.
  • Franco, D., Calabrese, G., Guglielmino, S. P. P., & Conoci, S. (2022). Metal-based nanoparticles: Antibacterial mechanisms and biomedical application. Microorganisms, 10(9), 1778.
  • Gade, A., Gaikwad, S., Duran, N., & Rai, M. (2014). Green synthesis of silver nanoparticles by Phoma glomerata. Micron, 59, 52-59.
  • Genc, D., & Celik, I. (2024). Investigation of the effects of Eremurus spectabilis Bieb. lyophilized and nanoparticle extracts on the cellular and enzymatic immune system in experimentally-induced hepatocellular carcinogenesis in rats. Frontiers in Life Sciences and Related Technologies, 5(2), 95-100.
  • Gharari, Z., Hanachi, P., Sadeghinia, H., & Walker, T. R. (2023). Eco-friendly green synthesis and characterization of silver nanoparticles by Scutellaria multicaulis leaf extract and its biological activities. Pharmaceuticals, 16(7), 992.
  • Ghobashy, M. M., Alkhursani, S. A., Alqahtani, H. A., El-damhougy, T. K., & Madani, M. (2024). Gold nanoparticles in microelectronics advancements and biomedical applications. Materials Science and Engineering: B, 301, 117191.
  • Ghorbani, H. R. (2014). A review of methods for synthesis of Al nanoparticles. Oriental Journal of Chemistry, 30(4), 1941-1949.
  • Gour, A., & Jain, N. K. (2019). Advances in green synthesis of nanoparticles. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 844-851.
  • Grace, M. H., & Khattab, A. M. (1998). Chemical constituents and molluscicidal activity of Senecio cineraria DC. Grancharova, T., Simeonova, S., Pilicheva, B., & Zagorchev, P. (2024). Gold nanoparticles in Parkinson’s disease therapy: A focus on plant-based green synthesis. Cureus, 16(2).
  • Gupta, R., Sharma, A. K., Dobhal, M. P., Sharma, M. C., & Gupta, R. S. (2011). Antidiabetic and antioxidant potential of β‐sitosterol in streptozotocin‐induced experimental hyperglycemia. Journal of Diabetes, 3(1), 29-37.
  • Gutiérrez, R. M. P., & Perez, R. L. (2004). Raphanus sativus (Radish): Their chemistry and biology. The Scientific World Journal, 4(1), 811-837.
  • Haji, S. H., Ali, F. A., & Aka, S. T. H. (2022). Synergistic antibacterial activity of silver nanoparticles biosynthesized by carbapenem-resistant Gram-negative bacilli. Scientific Reports, 12(1), 15254.
  • Hashemi, S. F., Tasharrofi, N., & Saber, M. M. (2020). Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. Journal of Molecular Structure, 1208, 127889.
  • Herlekar, M., Barve, S., & Kumar, R. (2014). Plant‐mediated green synthesis of iron nanoparticles. Journal of Nanoparticles, 2014(1), 140614.
  • Husain, J. H., Arumugam, D., Nawabjohn, M. S., Kumaran, S., & Pandurangan, A. K. (2024). Green synthesis of silver nanoparticles using Centratherum anthelminticum extract against breast cancer cells. Asian Pacific Journal of Cancer Prevention: APJCP, 25(8), 2711.
  • Iqbal, S., Fakhar-e-Alam, M., Akbar, F., Shafiq, M., Atif, M., Amin, N., ... & Farooq, W. A. (2019). Application of silver oxide nanoparticles for the treatment of cancer. Journal of Molecular Structure, 1189, 203-209.
  • Jaggi, R. K., Madaan, R., & Singh, B. (2003). Anticonvulsant potential of holy basil, Ocimum sanctum Linn., and its cultures. Indian Journal of Experimental Biology, 41, 1329-1333.
  • Jeevanandam, J., Kiew, S. F., Boakye-Ansah, S., Lau, S. Y., Barhoum, A., Danquah, M. K., & Rodrigues, J. (2022). Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale, 14(7), 2534-2571.
  • Johnson, J. J. (2011). Carnosol: a promising anti-cancer and anti-inflammatory agent. Cancer Letters, 305(1), 1-7.
  • Kabiri, F., Aghaei, S. S., Pourbabaee, A. A., Soleimani, M., & Komeili Movahhed, T. (2023). Antibiofilm and cytotoxic potential of extracellular biosynthesized gold nanoparticles using actinobacteria Amycolatopsis sp. KMN. Preparative Biochemistry & Biotechnology, 53(3), 265-278.
  • Kamatou, G. P. P., Vermaak, I., & Viljoen, A. M. (2011). An updated review of Adansonia digitata: A commercially important African tree. South African Journal of Botany, 77(4), 908-919.
  • Kan, X., Zhang, W., You, R., Niu, Y., Guo, J., & Xue, J. (2017). Scutellaria barbata D. Don extract inhibits the tumor growth through down-regulating of Treg cells and manipulating Th1/Th17 immune response in hepatoma H22-bearing mice. BMC Complementary and Alternative Medicine, 17, 1-10.
  • Karahan, H., Tetik, N., & Colgecen, H. (2023). Phytofabrication of silver nanoparticles using callus extracts of natural tetraploid Trifolium pratense L. and its bioactivities. Frontiers in Life Sciences and Related Technologies, 18-28.
  • Khan, I., Saeed, K., & Khan, I. (2019). Nanoparticles: Properties, applications and toxicities. Arabian journal of chemistry, 12(7), 908-931.
  • Khdary, N. H., Alangari, A. A., Katubi, K. M., Alanazi, M., Alhassan, A., Alzahrani, S. D., ... & Alanazi, I. O. (2023). Synthesis of Gingerol-Metals Complex and in-vitro Cytotoxic Activity on Human Colon Cancer Cell Line. Cancer Management and Research, 87-98.
  • Khorrami, S., Zarrabi, A., Khaleghi, M., Danaei, M., & Mozafari, M. R. (2018). Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. International Journal of Nanomedicine, 8013-8024.
  • Khursheed, R., Dua, K., Vishwas, S., Gulati, M., Jha, N. K., Aldhafeeri, G. M., ... & Singh, S. K. (2022). Biomedical applications of metallic nanoparticles in cancer: Current status and future perspectives. Biomedicine & Pharmacotherapy, 150, 112951.
  • Kim, J. Y., Jo, O. H., Choe, C. M., & Cho, H. B. (2006). Rhizoma Rehmanniae induced apoptosis in human cervical carcinoma HeLa cells. The Journal of Korean Obstetrics and Gynecology, 19(1), 69-80.
  • Lahiri, D., Nag, M., Sheikh, H. I., Sarkar, T., Edinur, H. A., Pati, S., & Ray, R. R. (2021). Microbiologically-synthesized nanoparticles and their role in silencing the biofilm signaling cascade. Frontiers in Microbiology, 12, 636588.
  • Lambertini, E., Piva, R., Khan, M. T. H., Lampronti, I., Bianchi, N., Borgatti, M., & Gambari, R. (2004). Effects of extracts from Bangladeshi medicinal plants on in vitro proliferation of human breast cancer cell lines and expression of estrogen receptor α gene. International Journal of Oncology, 24(2), 419-423.
  • Lee, S. R., Kim, M. S., Kim, S., Hwang, K. W., & Park, S. Y. (2017). Constituents from Scutellaria barbata inhibiting nitric oxide production in LPS‐stimulated microglial cells. Chemistry & Biodiversity, 14(11), e1700231.
  • Liu, P., Jin, H., Guo, Z., Ma, J., Zhao, J., Li, D., ... & Gu, N. (2016). Silver nanoparticles outperform gold nanoparticles in radiosensitizing U251 cells in vitro and in an intracranial mouse model of glioma. International Journal of Nanomedicine, 5003-5014.
  • Liu, R., Pei, Q., Shou, T., Zhang, W., Hu, J., & Li, W. (2019). Apoptotic effect of green synthesized gold nanoparticles from Curcuma wenyujin extract against human renal cell carcinoma A498 cells. International Journal of Nanomedicine, 4091-4103.
  • Liu, Y., Deng, A. J., Ma, L., Zhang, H. J., Zhang, Z. H., Wu, L. Q., ... & Qin, H. L. (2015). Chemical constituents of the roots of Macleaya microcarpa and activation efficacy of benzophenanthridine alkaloids for the transcription of xbp1 gene. Yao xue xue bao=Acta Pharmaceutica Sinica, 50(2), 207-210.
  • Malik, U. U., Siddiqui, I. A., Ilyas, A., Hashim, Z., Staunton, L., Kwasnik, A., ... & Zarina, S. (2020). Identification of differentially expressed proteins from smokeless tobacco addicted patients suffering from Oral squamous cell carcinoma. Pathology & Oncology Research, 26, 1489-1497.
  • Mani, S. T., Jayakumar, P., Pavithra, M. E., Saranya, K., Rathinavel, T., & Ammashi, S. (2023). Green synthesis and characterization of silver nanoparticles from Eclipta alba and its activity against triple-negative breast cancer cell line (MDA-MB-231). Molecular Biotechnology, 1-11.
  • Manzan, A. C. C., Toniolo, F. S., Bredow, E., & Povh, N. P. (2003). Extraction of essential oil and pigments from Curcuma longa [L.] by steam distillation and extraction with volatile solvents. Journal of Agricultural and Food Chemistry, 51(23), 6802-6807.
  • Marconett, C. N., Morgenstern, T. J., San Roman, A. K., Sundar, S. N., Singhal, A. K., & Firestone, G. L. (2010). BZL101, a phytochemical extract from the Scutellaria barbata plant, disrupts proliferation of human breast and prostate cancer cells through distinct mechanisms dependent on the cancer cell phenotype. Cancer Biology & Therapy, 10(4), 397-405.
  • Mehrotra, S., Goyal, V., Dimkpa, C. O., & Chhokar, V. (2024). Green synthesis and characterization of ginger-derived silver nanoparticles and evaluation of their antioxidant, antibacterial, and anticancer activities. Plants, 13(9), 1255.
  • Mirabelli, P., Coppola, L., & Salvatore, M. (2019). Cancer cell lines are useful model systems for medical research. Cancers, 11(8), 1098.
  • Mittal, A. K., Chisti, Y., & Banerjee, U. C. (2013). Synthesis of metallic nanoparticles using plant extracts. Biotechnology Advances, 31(2), 346-356.
  • Moga, M. A., Dimienescu, O. G., Bălan, A., Dima, L., Toma, S. I., Bîgiu, N. F., & Blidaru, A. (2021). Pharmacological and therapeutic properties of Punica granatum phytochemicals: possible roles in breast cancer. Molecules, 26(4), 1054.
  • Moghaddam, N. A., Eskandari, A., Khodadadi, B., Hafezi, Y., Paduvilan, J. K., & Yaraki, M. T. (2024). Green synthesis of bimetallic AgZnO Nanoparticles: Synergistic anticancer effects through regulation of gene expression for lung cancer treatment. Results in Engineering, 102329.
  • Molnár, Z., Bódai, V., Szakacs, G., Erdélyi, B., Fogarassy, Z., Sáfrán, G., ... & Lagzi, I. (2018). Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Scientific Reports, 8(1), 3943.
  • Mongy, Y., & Shalaby, T. (2024). Green synthesis of zinc oxide nanoparticles using Rhus coriaria extract and their anticancer activity against triple-negative breast cancer cells. Scientific Reports, 14(1), 13470.
  • Montiel Schneider, M. G., Martín, M. J., Otarola, J., Vakarelska, E., Simeonov, V., Lassalle, V., & Nedyalkova, M. (2022). Biomedical applications of iron oxide nanoparticles: Current insights progress and perspectives. Pharmaceutics, 14(1), 204.
  • Mousa, A. B., Moawad, R., Abdallah, Y., Abdel-Rasheed, M., & Zaher, A. M. A. (2023). Zinc oxide nanoparticles promise anticancer and antibacterial activity in ovarian cancer. Pharmaceutical Research, 40(10), 2281-2290.
  • Mousavi, B., Tafvizi, F., & Zaker Bostanabad, S. (2018). Green synthesis of silver nanoparticles using Artemisia turcomanica leaf extract and the study of anti-cancer effect and apoptosis induction on gastric cancer cell line (AGS). Artificial Cells, Nanomedicine, and Biotechnology, 46(sup1), 499-510.
  • Movahedi, A., Basir, R., Rahmat, A., Charaffedine, M., & Othman, F. (2014). Remarkable anticancer activity of Teucrium polium on hepatocellular carcinogenic rats. Evidence‐Based Complementary and Alternative Medicine, 2014(1), 726724.
  • Mukjerjee, S., & Karati, D. (2022). A mechanistic view on phytochemistry, pharmacognostic properties, and pharmacological activities of phytocompounds present in Zingiber officinale: A comprehensive review. Pharmacological Research-Modern Chinese Medicine, 5, 100173.
  • Muslim, A. M., & Naji, I. S. (2024). Green synthesis of CuO nanoparticles mediated Rhazya stricta plant leaves extract characterization and evaluation of their antibacterial and anticancer activity (in vitro study). Iraqi Journal of Physics, 22(3), 93-105.
  • Nachvak, S. M., Soleimani, D., Rahimi, M., Azizi, A., Moradinazar, M., Rouhani, M. H., ... & Miryan, M. (2023). Ginger as an anticolorectal cancer spice: A systematic review of in vitro to clinical evidence. Food Science & Nutrition, 11(2), 651-660.
  • Nazaripour, E., Mousazadeh, F., Moghadam, M. D., Najafi, K., Borhani, F., Sarani, M., ... & Khatami, M. (2021). Biosynthesis of lead oxide and cerium oxide nanoparticles and their cytotoxic activities against colon cancer cell line. Inorganic Chemistry Communications, 131, 108800.
  • Nematollahi-Mahani, S. N., Rezazadeh-Kermani, M., Mehrabani, M., & Nakhaee, N. (2007). Cytotoxic effects of Teucrium polium. On some established cell lines. Pharmaceutical Biology, 45(4), 295-298.
  • Nguyen, N. T. T., Nguyen, T. T. T., Nguyen, D. T. C., & Van Tran, T. (2023). Green synthesis of ZnFe2O4 nanoparticles using plant extracts and their applications: A review. Science of The Total Environment, 872, 162212.
  • Norris, C. B., Joseph, P. R., Mackiewicz, M. R., & Reed, S. M. (2010). Minimizing formaldehyde use in the synthesis of gold−silver core−shell nanoparticles. Chemistry of Materials, 22(12), 3637-3645.
  • Osman, A. M. E., Taj Eldin, I. M., Elhag, A. M., Elhassan, M. M. A., & Ahmed, E. M. M. (2020). In-vitro anticancer and cytotoxic activity of ginger extract on human breast cell lines. Khartoum Journal of Pharmaceutical Sciences, 1(1), 26-29.
  • Ovais, M., Khalil, A. T., Islam, N. U., Ahmad, I., Ayaz, M., Saravanan, M., ... & Mukherjee, S. (2018). Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Applied Microbiology and Biotechnology, 102, 6799-6814.
  • Ozcelik, S. (2023). Investigation of antimicrobial effects of zinc-based nanoparticles on food-borne pathogens. Frontiers in Life Sciences and Related Technologies, 4(3), 132-137.
  • Pal, G., Rai, P., & Pandey, A. (2019). Green synthesis of nanoparticles: A greener approach for a cleaner future. In Green Synthesis, Characterization and Applications of Nanoparticles (pp. 1-26). Elsevier.
  • Pal, S., Tak, Y. K., & Song, J. M. (2007). Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied and Environmental Microbiology, 73(6), 1712-1720.
  • Pandey, P. A., Bell, G. R., Rourke, J. P., Sanchez, A. M., Elkin, M. D., Hickey, B. J., & Wilson, N. R. (2011). Physical vapor deposition of metal nanoparticles on chemically modified graphene: observations on metal-graphene interactions. Small, 7(22), 3202-3210.
  • Pandian, N., & Chidambaram, S. (2017). Antimicrobial, cytotoxicty and anti cancer activity of silver nanoparticles from Glycyrrhiza glabra. International Journal of Pharmaceutical Sciences and Research, 8(4), 1633.
  • Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., ... & Shin, H. S. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology, 16, 1-33.
  • Pattanayak, M., & Nayak, P. L. (2013). Ecofriendly green synthesis of iron nanoparticles from various plants and spices extract. International Journal of Plant, Animal and Environmental Sciences, 3(1), 68-78.
  • Pattanayak, P., Behera, P., Das, D., & Panda, S. K. (2010). Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacognosy reviews, 4(7), 95.
  • Perumal, P., Sathakkathulla, N. A., Kumaran, K., Ravikumar, R., Selvaraj, J. J., Nagendran, V., ... & Rathinasamy, S. (2024). Green synthesis of zinc oxide nanoparticles using aqueous extract of shilajit and their anticancer activity against HeLa cells. Scientific Reports, 14(1), 2204.
  • Plengsuriyakarn, T., Viyanant, V., Eursitthichai, V., Tesana, S., Chaijaroenkul, W., Itharat, A., & Na-Bangchang, K. (2012). Cytotoxicity, toxicity, and anticancer activity of Zingiber officinale Roscoe against cholangiocarcinoma. Asian Pacific Journal of Cancer Prevention, 13(9), 4597-4606.
  • Qureshi, S. A., Rais, S., Usmani, R., Zaidi, S. S. M., Jehan, M., Lateef, T., & Azmi, M. B. (2016). Centratherum anthelminticum seeds reverse the carbon tetrachloride-induced hepatotoxicity in rats. African journal of Pharmacy and Pharmacology, 10(26), 533-539.
  • Rajeshkumar, S., Kumar, S. V., Ramaiah, A., Agarwal, H., Lakshmi, T., & Roopan, S. M. (2018). Biosynthesis of zinc oxide nanoparticles using Mangifera indica leaves and evaluation of their antioxidant and cytotoxic properties in lung cancer (A549) cells. Enzyme and microbial technology, 117, 91-95.
  • Rajput, N. (2015). Methods of preparation of nanoparticles-a review. International Journal of Advances in Engineering & Technology, 7(6), 1806.
  • Ramya, B., Khusro, A., Indra, V., Agastian, P., Almutairi, M. H., & Almutairi, B. O. (2024). Green synthesis of silver nanoparticles using Justicia adhatoda leaves extract and its anticancer effect on human lung carcinoma via induced apoptosis mechanism. Results in Chemistry, 7, 101472.
  • Razavi, M., Salahinejad, E., Fahmy, M., Yazdimamaghani, M., Vashaee, D., & Tayebi, L. (2015). Green chemical and biological synthesis of nanoparticles and their biomedical applications. Green processes for nanotechnology: From Inorganic to Bioinspired Nanomaterials, 207-235.
  • Revathi, S., Sutikno, S., Hasan, A. F., Altemimi, A. B., ALKaisy, Q. H., Phillips, A. J., ... & Abedelmaksoud, T. G. (2024). Green synthesis and characterization of silver nanoparticles (AgNP) using Acacia nilotica plant extract and their anti-bacterial activity. Food Chemistry Advances, 4, 100680.
  • Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M., & Bruni, R. (2005). Comparative evaluation of 11 essential oils of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chemistry, 91(4), 621-632.
  • Sadrolhosseini, A. R., Mahdi, M. A., Alizadeh, F., & Rashid, S. A. (2019). Laser ablation technique for synthesis of metal nanoparticle in liquid. Laser Technology and its Applications, 63-83.
  • Sahin, B., Aygun, A., Gunduz, H., Sahin, K., Demir, E., Akocak, S., & Sen, F. (2018). Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids and Surfaces B: Biointerfaces, 163, 119-124.
  • Sakhr, K., & El Khatib, S. (2020). Physiochemical properties and medicinal, nutritional and industrial applications of Lebanese Sumac (Syrian Sumac-Rhus coriaria): A review. Heliyon, 6(1).
  • Salehi, S., Shandiz, S. A. S., Ghanbar, F., Darvish, M. R., Ardestani, M. S., Mirzaie, A., & Jafari, M. (2016). Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. International Journal of Nanomedicine, 1835-1846.
  • Sekar, V., Balakrishnan, C., Kathirvel, P., Swamiappan, S., Alshehri, M. A., Sayed, S., & Panneerselvam, C. (2022). Ultra-sonication-enhanced green synthesis of silver nanoparticles using Barleria buxifolia leaf extract and their possible application. Artificial Cells, Nanomedicine, and Biotechnology, 50(1), 177-187.
  • Senthilkumar, A., Karuvantevida, N., Rastrelli, L., Kurup, S. S., & Cheruth, A. J. (2018). Traditional uses, pharmacological efficacy, and phytochemistry of Moringa peregrina (Forssk.) Fiori. -a review. Frontiers in Pharmacology, 9, 465.
  • Shanmugam, K. R., Shanmugam, B., Venkatasubbaiah, G., Ravi, S., & Reddy, K. S. (2022). Recent Updates on the Bioactive Compounds of Ginger (Zingiber officinale) on Cancer: A Study with Special Emphasis of Gingerol and Its Anticancer Potential: Effect of Ginger and Its Compounds in Cancer Subjects. In Handbook of Oxidative Stress in Cancer: Therapeutic Aspects (pp. 1-18). Singapore: Springer Nature Singapore.
  • Sharangi, A. B. (2009). Medicinal and therapeutic potentialities of tea (Camellia sinensis L.)–A review. Food Research International, 42(5-6), 529-535.
  • Sharma, B., Purkayastha, D. D., Hazra, S., Gogoi, L., Bhattacharjee, C. R., Ghosh, N. N., & Rout, J. (2014). Biosynthesis of gold nanoparticles using a freshwater green alga, Prasiola crispa. Materials Letters, 116, 94-97.
  • Shochah, Q. R., & Jabir, F. A. (2024). Green synthesis of Au/ZnO nanoparticles for anticancer activity and oxidative stress against MCF-7 cell lines. Biomass Conversion and Biorefinery, 14(14), 15283-15296.
  • Simakin, A. V., Voronov, V. V., Kirichenko, N. A., & Shafeev, G. A. (2004). Nanoparticles produced by laser ablation of solids in liquid environment. Applied Physics A, 79, 1127-1132.
  • Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., & Kumar, P. (2018). ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. Journal of Nanobiotechnology, 16, 1-24.
  • Takemoto, T., Nishimoto, N., Nakai, S., Takagi, N., Hayashi, S., Odashima, S., & Wada, Y. (1983). Pfaffic acid, a novel nortriterpene from Pfaffia paniculata Kuntze. Tetrahedron Letters, 24(10), 1057-1060.
  • Ullah, I., Khalil, A. T., Zia, A., Hassan, I., & Shinwari, Z. K. (2024). Insight into the molecular mechanism, cytotoxic, and anticancer activities of phyto‐reduced silver nanoparticles in MCF‐7 breast cancer cell lines. Microscopy Research and Technique, 87(7), 1627-1639.
  • Ullah, I., Rauf, A., Khalil, A. A., Luqman, M., Islam, M. R., Hemeg, H. A., ... & Quradha, M. M. (2024). Peganum harmala L. extract‐based Gold (Au) and Silver (Ag) nanoparticles (NPs): Green synthesis, characterization, and assessment of antibacterial and antifungal properties. Food Science & Nutrition.
  • Ullah, M., Ali, M. E., & Abd Hamid, S. B. (2014). Surfactant-assisted ball milling: a novel route to novel materials with controlled nanostructure-a review. Reviews on Advanced Materials Science, 37.
  • Umamaheswari, A., Prabu, S. L., John, S. A., & Puratchikody, A. (2021). Green synthesis of zinc oxide nanoparticles using leaf extracts of Raphanus sativus var. Longipinnatus and evaluation of their anticancer property in A549 cell lines. Biotechnology Reports, 29, e00595.
  • Vijayakumar, S., Chen, J., Sánchez, Z. I. G., Tungare, K., Bhori, M., Durán-Lara, E. F., & Anbu, P. (2023). Moringa oleifera gum capped MgO nanoparticles: Synthesis, characterization, cyto-and ecotoxicity assessment. International Journal of Biological Macromolecules, 233, 123514.
  • Vyas, P., Yadav, D. K., & Khandelwal, P. (2019). Tectona grandis (teak)–A review on its phytochemical and therapeutic potential. Natural Product Research, 33(16), 2338-2354.
  • Wang, L., Xu, J., Yan, Y., Liu, H., Karunakaran, T., & Li, F. (2019). Green synthesis of gold nanoparticles from Scutellaria barbata and its anticancer activity in pancreatic cancer cell (PANC‐1). Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 1617-1627.
  • Xia, T., Dong, X., Jiang, Y., Lin, L., Dong, Z., Shen, Y., ... & Qin, L. (2019). Metabolomics profiling reveals rehmanniae radix preparata extract protects against glucocorticoid-induced osteoporosis mainly via intervening steroid hormone biosynthesis. Molecules, 24(2), 253.
  • Yalcin, B., Akcan, D., Yalcin, I. E., Alphan, M. C., Senturk, K., Ozyigit, I. I., & Arda, L. (2020). Effect of Mg doping on morphology, photocatalytic activity and related biological properties of Zn1-xMgxO nanoparticles. Turkish Journal of Chemistry, 44(4), 1177-1199.
  • Yalcin, B., Arda, L., Yalcin, I. E., Senturk, K., Alphan, M. C., Akcan, D., & Ozyigit, I. I. (2023). Exploration of the improving effect of Cd-doping on structural, photocatalytic, and biological properties of ZnO nanoparticles. Journal of Nanoparticle Research, 25(7), 146.
  • Yang, N., Zhao, Y., Wang, Z., Liu, Y., & Zhang, Y. (2017). Scutellarin suppresses growth and causes apoptosis of human colorectal cancer cells by regulating the p53 pathway. Molecular Medicine Reports, 15(2), 929-935.
  • Yesil-Celiktas, O., Sevimli, C., Bedir, E., & Vardar-Sukan, F. (2010). Inhibitory effects of rosemary extracts, carnosic acid and rosmarinic acid on the growth of various human cancer cell lines. Plant Foods for Human Nutrition, 65, 158-163.
  • Younis, H. M., Hussein, H. A., Khaphi, F. L., & Saeed, Z. K. (2023). Green biosynthesis of silver and gold nanoparticles using Teak (Tectona grandis) leaf extract and its anticancer and antimicrobial activity. Heliyon, 9(11).
  • Zhang, L., Ren, B., Zhang, J., Liu, L., Liu, J., Jiang, G., ... & Li, W. (2017). Anti-tumor effect of Scutellaria barbata D. Don extracts on ovarian cancer and its phytochemicals characterisation. Journal of Ethnopharmacology, 206, 184-192.
  • Zhou, R., Xu, L., Ye, M., Liao, M., Du, H., & Chen, H. (2014). Formononetin inhibits migration and invasion of MDA-MB-231 and 4T1 breast cancer cells by suppressing MMP-2 and MMP-9 through PI3K/AKT signaling pathways. Hormone and Metabolic Research, 46(11), 753-760.
Toplam 132 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Hücre Gelişimi, Proliferasyon ve Ölümü, Nanomalzemeler
Bölüm Derlemeler
Yazarlar

Beyzanur Çakar 0000-0001-6315-7572

Özlem Darcansoy İseri 0000-0002-3394-2518

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 10 Haziran 2024
Kabul Tarihi 29 Ekim 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Çakar, B., & Darcansoy İseri, Ö. (2024). Effect of metallic nanoparticles on cancer cell lines: A review on plant-based biosynthesis. Frontiers in Life Sciences and Related Technologies, 5(3), 231-243. https://doi.org/10.51753/flsrt.1498193

Creative Commons License

Frontiers in Life Sciences and Related Technologies is licensed under a Creative Commons Attribution 4.0 International License.