Yıl 2019, Cilt 03 , Sayı 1, Sayfalar 1 - 6 2019-08-31

A Fuzzy Modelling Approach to NSE Criterion on Robust Design

Onur KÖKSOY [1] , Melis ZEYBEK [2]


Dual response methodology is a natural and effective tool for a reliable and robust operation process or product in modern quality engineering. Therefore, many of quality improvement techniques based on dual response methodology focus on being on target and reducing system variability. This paper presents a fuzzy modelling approach based on the Nash-Sutcliffe efficiency for a dual response problem. The proposed approach aims to determine a set of operating conditions that maximize the degree of satisfaction due to the Nash-Sutcliffe efficiency in a quality improvement context. Additionally, the proposed approach is illustrated with a well-known design of experiment by comparing existing methods.

Fuzzy modelling, Response surface methodology, Robust design, Nash-Sutcliffe efficiency
  • [1] G.E.P. Box and K.B. Wilson, On the Experimental Attainment of Optimum Conditions, J. Roy. Statist. Soc. Ser. B Metho. 13 (1951) 1-45.
  • [2] G.G. Vining and R.H. Myers, Combining Taguchi and Response Surface Philosophies: A Dual Response Approach, J. Qual. Technol. 22 (1990) 38-45.
  • [3] E. Del Castillo and D.C. Montgomery, A Nonlinear Programming Solution to the Dual Response Problem, J. Qual. Technol. 25 (1993) 199-204.
  • [4] D.K.J. Lin and W. Tu, Dual Response Surface Optimization, J. Qual. Technol. 27 (1995) 34-39.
  • [5] K. Kim and D.K.J. Lin, Dual Response Surface Optimization: A Fuzzy Modeling Approach, J. Qual. Technol. 30 (1998) 1-10.
  • [6] M. Zeybek and O. Köksoy, A Fuzzy Modelling Approach to Robust Design via Loss Functions, Turkish Journal of Forecasting. 01 (2017) 40-45.
  • [7] A.C. Shoemaker, K.L, Tsui, and C.F.J. Wu, Economical Experimentation Methods for Robust Parameter Design, Technometrics. 33 (1991) 415-427.
  • [8] K.A. Copeland and P.R. Nelson, Dual Response Optimization via Direct Function Minimization, J. Qual. Technol. 28 (1996) 331-336.
  • [9] J.M. Lucas, How to Achieve a Robust Process Using Response Surface Methodology, J. Qual. Technol. 26 (1994). 248-260.
  • [10] O. Köksoy and N. Doganaksoy, Joint Optimization of Mean and Standard Deviation in Response Surface Experimentation, J. Qual. Technol. 35 (2003) 239-252.
  • [11] O. Köksoy, Multiresponse Robust Design: Mean Square Error (MSE criterion), Appl. Math. Comput. 175 (2006) 1716-1729.
  • [12] A.H. Murphy, Skill Scores Based on the Mean Square Error and Their Relationships to the Correlation Coefficient, Mon Weather Rev. 116 (1988) 2417-2424.
  • [13] S. Weglarzyk, The Interdependence and Applicability of Some Statistical Quality Measures for Hydrological Models, J Hydrol. 206 (1998) 98-103.
  • [14] H.V. Gupta, H. Kling, K.K. Yilmaz and G.F. Martinez, Decomposition of the Mean Squared Error and NSE Performance Criteria: Implications for Improving Hydrological Modelling, J Hydrol. 377 (2009) 80-91.
  • [15] H.J. Zimmermann, Fuzzy Sets, Decision Making, and Expert Systems, Kluwer Academic Publishers, Boston, M.A. (1987).
  • [16] C.W. Kirkwood, Strategic Decision Making, Duxbury Press, Belmont, C.A. (1996).
  • [17] H. Moskowitz and K. Kim, On Assessing the H Value in Fuzzy Linear Regression, Fuzzy Sets Syst. 58 (1993) 303-327.
  • [18] G.E.P. Box and N.R. Draper, Empirical Model Building and Response Surfaces, John&Sons, New York, N.Y. (1987).
Birincil Dil en
Konular Matematik
Yayınlanma Tarihi Ağustos
Bölüm Articles
Yazarlar

Yazar: Onur KÖKSOY
Kurum: Ege University, Department of Statistics
Ülke: Turkey


Yazar: Melis ZEYBEK (Sorumlu Yazar)
Kurum: Ege University, Department of Statistics
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 31 Ağustos 2019

Bibtex @konferans bildirisi { forecasting482111, journal = {Turkish Journal of Forecasting}, issn = {}, eissn = {2618-6594}, address = {Giresun Üniversitesi Fen Edebiyat Fakültesi İstatistik Bölümü, Güre Yerleşkesi, 28100 Merkez, Giresun}, publisher = {Giresun Üniversitesi}, year = {2019}, volume = {03}, pages = {1 - 6}, doi = {}, title = {A Fuzzy Modelling Approach to NSE Criterion on Robust Design}, key = {cite}, author = {Köksoy, Onur and Zeybek, Melis} }
APA Köksoy, O , Zeybek, M . (2019). A Fuzzy Modelling Approach to NSE Criterion on Robust Design . Turkish Journal of Forecasting , 03 (1) , 1-6 . Retrieved from https://dergipark.org.tr/tr/pub/forecasting/issue/50239/482111
MLA Köksoy, O , Zeybek, M . "A Fuzzy Modelling Approach to NSE Criterion on Robust Design" . Turkish Journal of Forecasting 03 (2019 ): 1-6 <https://dergipark.org.tr/tr/pub/forecasting/issue/50239/482111>
Chicago Köksoy, O , Zeybek, M . "A Fuzzy Modelling Approach to NSE Criterion on Robust Design". Turkish Journal of Forecasting 03 (2019 ): 1-6
RIS TY - JOUR T1 - A Fuzzy Modelling Approach to NSE Criterion on Robust Design AU - Onur Köksoy , Melis Zeybek Y1 - 2019 PY - 2019 N1 - DO - T2 - Turkish Journal of Forecasting JF - Journal JO - JOR SP - 1 EP - 6 VL - 03 IS - 1 SN - -2618-6594 M3 - UR - Y2 - 2019 ER -
EndNote %0 Turkish Journal of Forecasting A Fuzzy Modelling Approach to NSE Criterion on Robust Design %A Onur Köksoy , Melis Zeybek %T A Fuzzy Modelling Approach to NSE Criterion on Robust Design %D 2019 %J Turkish Journal of Forecasting %P -2618-6594 %V 03 %N 1 %R %U
ISNAD Köksoy, Onur , Zeybek, Melis . "A Fuzzy Modelling Approach to NSE Criterion on Robust Design". Turkish Journal of Forecasting 03 / 1 (Ağustos 2019): 1-6 .
AMA Köksoy O , Zeybek M . A Fuzzy Modelling Approach to NSE Criterion on Robust Design. TJF. 2019; 03(1): 1-6.
Vancouver Köksoy O , Zeybek M . A Fuzzy Modelling Approach to NSE Criterion on Robust Design. Turkish Journal of Forecasting. 2019; 03(1): 1-6.