Araştırma Makalesi
BibTex RIS Kaynak Göster

Fotovoltaik Bir Güneş Panelinin Termal Performansını Arttırmak için Deneysel ve Sayısal Uygulamalar

Yıl 2025, Cilt: 4 Sayı: 2, 226 - 244, 26.06.2025
https://doi.org/10.62520/fujece.1517038

Öz

Son zamanlarda küresel ısınmanın etkileri, fosil yakıtlara alternatif olarak yenilenebilir enerji kaynaklarına olan ilgiyi artırmaktadır. Bu kaynaklar içerisinde güneş enerjisi, potansiyeli sebebiyle ayrı bir öneme sahiptir. Fotovoltaik (PV) paneller güneş enerjisini elektrik enerjisine dönüştürür. Fotovoltaik panellerle elektrik üretmenin en büyük sorunlarından biri, panel yüzeyine gelen enerjinin yaklaşık %80'inin ısıya dönüşmesidir. Bu dönüşüm sırasında PV panel yüzeyinde meydana gelen sıcaklık artışı panel verimliliğini olumsuz etkilemektedir. Dolayısıyla, panellerin verimli çalışabilmesi için soğutulması, çözülmesi gereken bir problem haline gelmektedir. Bu çalışmada; Kahramanmaraş iklim koşullarında monokristal PV panelin pasif soğutma üzerindeki etkilerini incelemek için sayısal analiz yöntemleri geliştirilmiştir. Öncelikle incelenecek olan fotovoltaik güneş panelinin performansı deneysel olarak araştırılmıştır. Yapılan deneylerde ortalama panel yüzey sıcaklığı 43.54°C , güneş ışınımı ve panel güçü sırasıyla 785 W/m2, 36.32 W bulunmuştur. Daha sonra sayısal analiz için ANSYS-Fluent yazılımı kullanılmıştır. Yapılan hesaplamalı akışkanlar dinamiği (HAD) analizleri için en uygun çözüm ağı yapısını belirlemek üzere deneysel veriler kullanılmış ve Ansys programında yüzey sıcaklığı için yapılan PV panelin HAD modeli 2.44% hatayla model oluşturulmuştur. HAD modeline deneysel çalışma senaryolarında çeşitli kanat boyutları ve kanatlar arasında ki mesafenin PV panel yüzeyinde ki soğutma ya olan etkili incelenmiştir. HAD analizleri sonucunda kanat geometrisine nazaran, kanatlar arasında ki mesafede ki yaklaşık %40 lik (5mm) artışta kanat uç sıcaklığında yaklaşık 4°C bir azalma elde edilmiştir.

Etik Beyan

Hazırlanan makalede herhangi bir kişi/kurumla çıkar çatışması bulunmamaktadır.

Kaynakça

  • A. Shukla, K. Kant, A. Sharma, and P. H. Biwole, "Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review," Sol. Energy Mater. Sol. Cells, vol. 160, pp. 275–286, Nov. 2016.
  • F. Ekinci, A. Yavuzdeğer, H. Nazlıgül, B. Esenboğa, B. D. Mert, and T. Demirdelen, "Experimental investigation on solar PV panel dust cleaning with solution method," Sol. Energy, vol. 237, pp. 1–10, Apr. 2022.
  • R. Stropnik and U. Stritih, "Increasing the efficiency of PV panel with the use of PCM," Renew. Energy, vol. 97, pp. 671–679, Jun. 2016.
  • A. Yigit, N. Arslanoglu, and H. Gul, "Transient thermal modeling and performance analysis of photovoltaic panels," Environ. Prog. Sustain. Energy, vol. 42, no. 4, Nov. 2022.
  • E. Cuce, P. M. Cuce, and T. Bali, "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters," Appl. Energy, vol. 111, pp. 374–382, Jun. 2013.
  • P. Dwivedi, K. Sudhakar, A. Soni, E. Solomin, and I. Kirpichnikova, "Advanced cooling techniques of P.V. modules: A state of art," Case Stud. Therm. Eng., vol. 21, p. 100674, Jun. 2020.
  • G. Ömeroğlu, "Fotovoltaik - Termal (PV / T) Sistemin Sayısal (CFD) ve Deneysel Analizi," Fırat Univ. Müh. Bilim. Derg., vol. 30, no. 1, pp. 161–167, Mar. 2018.
  • S. K. Marudaipillai, B. K. Ramaraj, R. K. Kottala, and M. Lakshmanan, "Experimental study on thermal management and performance improvement of solar PV panel cooling using form stable phase change material," Energy Sources Part A, vol. 45, no. 1, pp. 160–177, Aug. 2020.
  • S. V. Hudișteanu et al., "Enhancement of PV panel power production by passive cooling using heat sinks with perforated fins," Appl. Sci., vol. 11, no. 23, p. 11323, Nov. 2021.
  • W. Hammad et al., "Thermal management of grid‐tied PV system: A novel active and passive cooling design‐based approach," IET Renew. Power Gener., vol. 15, no. 12, pp. 2715–2725, May 2021.
  • F. Al-Amri, F. Saeed, and M. A. Mujeebu, "Novel dual-function racking structure for passive cooling of solar PV panels – thermal performance analysis," Renew. Energy, vol. 198, pp. 100–113, Aug. 2022.
  • A. Q. Jakhrani, A. R. Jatoi, and S. H. Jakhrani, "Analysis and fabrication of an active cooling system for reducing photovoltaic module temperature," Eng. Technol. Appl. Sci. Res., vol. 7, no. 5, pp. 1980–1986, Oct. 2017.
  • A. M. A. Soliman, H. Hassan, and S. Ookawara, "An experimental study of the performance of the solar cell with heat sink cooling system," Energy Procedia, vol. 162, pp. 127–135, Apr. 2019.
  • A. Monavari, J. Jamaati, and M. Bahiraei, "Thermohydraulic performance of a nanofluid in a microchannel heat sink: Use of different microchannels for change in process intensity," J. Taiwan Inst. Chem. Eng., vol. 125, pp. 1–14, Jun. 2021.
  • M. Bahiraei et al., "Irreversibility characteristics of a modified microchannel heat sink operated with nanofluid considering different shapes of nanoparticles," Int. J. Heat Mass Transf., vol. 151, p. 119359, Jan. 2020.
  • R. C. Adhikari, D. H. Wood, and M. Pahlevani, "Optimizing rectangular fins for natural convection cooling using CFD," Therm. Sci. Eng. Prog., vol. 17, p. 100484, Mar. 2020.
  • R. M. Elavarasan et al., "An experimental investigation on coalescing the potentiality of PCM, fins and water to achieve sturdy cooling effect on PV panels," Appl. Energy, vol. 356, p. 122371, Nov. 2023.
  • M. Krstic et al., "Passive cooling of photovoltaic panel by aluminum heat sinks and numerical simulation," Ain Shams Eng. J., vol. 15, no. 1, p. 102330, Jun. 2023.
  • T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of Heat and Mass Transfer. New York, NY, USA: Wiley, 2012.
  • C.-F. Yang et al., "Develop asymmetric, interference-free and excellent heat-dissipation CPU cooler," Case Stud. Therm. Eng., vol. 60, p. 104730, Jun. 2024.
  • A. M. Elbreki et al., "Experimental and economic analysis of passive cooling PV module using fins and planar reflector," Case Stud. Therm. Eng., vol. 23, p. 100801, Dec. 2020.
  • Z. Khattak and H. M. Ali, "Air cooled heat sink geometries subjected to forced flow: A critical review," Int. J. Heat Mass Transf., vol. 130, pp. 141–161, Oct. 2018.
  • Y. Sheikh et al., "Enhancing PV solar panel efficiency through integration with a passive Multi-layered PCMs cooling system: A numerical study," Int. J. Thermofluids, vol. 23, p. 100748, Jul. 2024.
  • N. Soares et al., "Can movable PCM-filled TES units be used to improve the performance of PV panels? Overview and experimental case-study," Energy Build., vol. 210, p. 109743, Dec. 2019.
  • Z. M. Alaas, "The effects of temperature on photovoltaic and different mitigation techniques: a review," IEEE Access, p. 1, Jan. 2024.
  • Q. Yang et al., "Enhancing concentrated photovoltaic power generation efficiency and stability through liquid air energy storage and cooling utilization," Sol. Energy, vol. 280, p. 112875, Aug. 2024.
  • S. Kumari et al., "Efficiency enhancement of photovoltaic panel by heat harvesting techniques," Energy Sustain. Dev., vol. 73, pp. 303–314, Mar. 2023.
  • L. Assiya, D. Aziz, and H. Ahmed, "Comparative study of P&O and INC MPPT algorithms for DC-DC Converter Based PV System on MATLAB/SIMULINK," in Proc. IEEE Int. Conf. Electron., Control, Optim. Comput. Sci. (ICECOCS), Dec. 2020, pp. 1–5.
  • S. A. Mohamed and M. A. E. Sattar, "A comparative study of P&O and INC maximum power point tracking techniques for grid-connected PV systems," SN Appl. Sci., vol. 1, no. 2, Jan. 2019.
  • M. A. Mahmood, K. Ishfaq, and M. Khraisheh, "Inconel-718 processing windows by directed energy deposition: a framework combining computational fluid dynamics and machine learning models with experimental validation," Int. J. Adv. Manuf. Technol., vol. 130, no. 7–8, pp. 3997–4011, Jan. 2024.
  • P. A. D. Cruz et al., "Computational Fluid Dynamics (CFD) analysis of the heat transfer and fluid flow of copper (II) oxide-water nanofluid in a shell and tube heat exchanger," Digit. Chem. Eng., vol. 3, p. 100014, Feb. 2022.
  • X. Y. Zhang et al., "Experimental investigation and CFD modelling analysis of finned-tube PCM heat exchanger for space heating," Appl. Therm. Eng., vol. 244, p. 122731, Feb. 2024.
  • A. Pavlovic et al., "Thermal behavior of Monocrystalline silicon Solar cells: A Numerical and Experimental Investigation on the Module Encapsulation Materials," DOAJ, Jul. 2021.
  • F. Ghafoorian et al., "Self-Starting improvement and performance enhancement in Darrieus VAWTs using auxiliary blades and deflectors," Machines, vol. 12, no. 11, p. 806, Nov. 2024.
  • H. İ. Yamaç, A. Koca, and T. Yılmaz, "Using computational fluid dynamics for wave generation and evaluation of results in numerical wave tank modelling," Fırat Univ. J. Exp. Comput. Eng., vol. 1, no. 1, pp. 31–42, Jan. 2022.
  • D. Kumar and B. Premachandran, "Effect of atmospheric wind on natural convection based solar air heaters," Int. J. Therm. Sci., vol. 138, pp. 263–275, Jan. 2019.
  • T. T. Göksu, "Investigation of the effect of geometrical parameters and fluid properties of heat sinks on cooling by RSM method," Fırat Univ. J. Exp. Comput. Eng., vol. 3, no. 2, pp. 185–203, May 2024.
  • N. A. Nalis et al., "Effects of Fin Height, Fin Thickness and Reynolds number on heat transfer enhancement of Flat-Plate thermal Collector: a numerical analysis," CFD Lett., vol. 15, no. 4, pp. 53–63, Feb. 2023.
  • J. Jiang et al., "Evaluating the impacts of fin structures and fin counts on photovoltaic panels integrated with phase change material," Energy, vol. 283, p. 129143, Sep. 2023.

Experimental and Numerical Applications to Increase Thermal Performance of a Photovoltaic Solar Panel

Yıl 2025, Cilt: 4 Sayı: 2, 226 - 244, 26.06.2025
https://doi.org/10.62520/fujece.1517038

Öz

Recently, the impact of global warming has intensified interest in renewable energy sources as alternatives to fossil fuels. Among these resources, solar energy stands out due to its potential. Photovoltaic (PV) panels play a crucial role in converting solar energy into electrical energy. However, one of the biggest challenges in generating electricity with PV panels is that approximately 80% of the energy from the panel surface is transformed into heat. This temperature increase on the PV panel surface negatively affects its efficiency, making it essential to find effective cooling solutions. In this study, we developed numerical analysis methods to investigate the effects of monocrystalline PV panels on passive cooling under the climatic conditions of Kahramanmaraş. First, we performed experimental investigations to assess the performance of the photovoltaic solar panels. The experiments revealed an average panel surface temperature of 43.54°C, with solar radiation and panel power measuring 785 W/m² and 36.32 W, respectively. We then employed ANSYS Fluent software for numerical analysis. The experimental data were utilized to determine the most suitable solution network structure for computational fluid dynamics (CFD) analyses, resulting in a CFD model of the PV panel with a surface temperature error of just 2.44%. The CFD model was used to examine how different fin sizes and distances between fins affected cooling on the PV panel surface. The CFD analysis indicated that increasing the distance between the fins by approximately 40% (5 mm) led to a reduction of about 4°C in fin tip temperature compared to the original fin geometry

Etik Beyan

“There is no conflict of interest with any person/institution in the prepared article”

Kaynakça

  • A. Shukla, K. Kant, A. Sharma, and P. H. Biwole, "Cooling methodologies of photovoltaic module for enhancing electrical efficiency: A review," Sol. Energy Mater. Sol. Cells, vol. 160, pp. 275–286, Nov. 2016.
  • F. Ekinci, A. Yavuzdeğer, H. Nazlıgül, B. Esenboğa, B. D. Mert, and T. Demirdelen, "Experimental investigation on solar PV panel dust cleaning with solution method," Sol. Energy, vol. 237, pp. 1–10, Apr. 2022.
  • R. Stropnik and U. Stritih, "Increasing the efficiency of PV panel with the use of PCM," Renew. Energy, vol. 97, pp. 671–679, Jun. 2016.
  • A. Yigit, N. Arslanoglu, and H. Gul, "Transient thermal modeling and performance analysis of photovoltaic panels," Environ. Prog. Sustain. Energy, vol. 42, no. 4, Nov. 2022.
  • E. Cuce, P. M. Cuce, and T. Bali, "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters," Appl. Energy, vol. 111, pp. 374–382, Jun. 2013.
  • P. Dwivedi, K. Sudhakar, A. Soni, E. Solomin, and I. Kirpichnikova, "Advanced cooling techniques of P.V. modules: A state of art," Case Stud. Therm. Eng., vol. 21, p. 100674, Jun. 2020.
  • G. Ömeroğlu, "Fotovoltaik - Termal (PV / T) Sistemin Sayısal (CFD) ve Deneysel Analizi," Fırat Univ. Müh. Bilim. Derg., vol. 30, no. 1, pp. 161–167, Mar. 2018.
  • S. K. Marudaipillai, B. K. Ramaraj, R. K. Kottala, and M. Lakshmanan, "Experimental study on thermal management and performance improvement of solar PV panel cooling using form stable phase change material," Energy Sources Part A, vol. 45, no. 1, pp. 160–177, Aug. 2020.
  • S. V. Hudișteanu et al., "Enhancement of PV panel power production by passive cooling using heat sinks with perforated fins," Appl. Sci., vol. 11, no. 23, p. 11323, Nov. 2021.
  • W. Hammad et al., "Thermal management of grid‐tied PV system: A novel active and passive cooling design‐based approach," IET Renew. Power Gener., vol. 15, no. 12, pp. 2715–2725, May 2021.
  • F. Al-Amri, F. Saeed, and M. A. Mujeebu, "Novel dual-function racking structure for passive cooling of solar PV panels – thermal performance analysis," Renew. Energy, vol. 198, pp. 100–113, Aug. 2022.
  • A. Q. Jakhrani, A. R. Jatoi, and S. H. Jakhrani, "Analysis and fabrication of an active cooling system for reducing photovoltaic module temperature," Eng. Technol. Appl. Sci. Res., vol. 7, no. 5, pp. 1980–1986, Oct. 2017.
  • A. M. A. Soliman, H. Hassan, and S. Ookawara, "An experimental study of the performance of the solar cell with heat sink cooling system," Energy Procedia, vol. 162, pp. 127–135, Apr. 2019.
  • A. Monavari, J. Jamaati, and M. Bahiraei, "Thermohydraulic performance of a nanofluid in a microchannel heat sink: Use of different microchannels for change in process intensity," J. Taiwan Inst. Chem. Eng., vol. 125, pp. 1–14, Jun. 2021.
  • M. Bahiraei et al., "Irreversibility characteristics of a modified microchannel heat sink operated with nanofluid considering different shapes of nanoparticles," Int. J. Heat Mass Transf., vol. 151, p. 119359, Jan. 2020.
  • R. C. Adhikari, D. H. Wood, and M. Pahlevani, "Optimizing rectangular fins for natural convection cooling using CFD," Therm. Sci. Eng. Prog., vol. 17, p. 100484, Mar. 2020.
  • R. M. Elavarasan et al., "An experimental investigation on coalescing the potentiality of PCM, fins and water to achieve sturdy cooling effect on PV panels," Appl. Energy, vol. 356, p. 122371, Nov. 2023.
  • M. Krstic et al., "Passive cooling of photovoltaic panel by aluminum heat sinks and numerical simulation," Ain Shams Eng. J., vol. 15, no. 1, p. 102330, Jun. 2023.
  • T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of Heat and Mass Transfer. New York, NY, USA: Wiley, 2012.
  • C.-F. Yang et al., "Develop asymmetric, interference-free and excellent heat-dissipation CPU cooler," Case Stud. Therm. Eng., vol. 60, p. 104730, Jun. 2024.
  • A. M. Elbreki et al., "Experimental and economic analysis of passive cooling PV module using fins and planar reflector," Case Stud. Therm. Eng., vol. 23, p. 100801, Dec. 2020.
  • Z. Khattak and H. M. Ali, "Air cooled heat sink geometries subjected to forced flow: A critical review," Int. J. Heat Mass Transf., vol. 130, pp. 141–161, Oct. 2018.
  • Y. Sheikh et al., "Enhancing PV solar panel efficiency through integration with a passive Multi-layered PCMs cooling system: A numerical study," Int. J. Thermofluids, vol. 23, p. 100748, Jul. 2024.
  • N. Soares et al., "Can movable PCM-filled TES units be used to improve the performance of PV panels? Overview and experimental case-study," Energy Build., vol. 210, p. 109743, Dec. 2019.
  • Z. M. Alaas, "The effects of temperature on photovoltaic and different mitigation techniques: a review," IEEE Access, p. 1, Jan. 2024.
  • Q. Yang et al., "Enhancing concentrated photovoltaic power generation efficiency and stability through liquid air energy storage and cooling utilization," Sol. Energy, vol. 280, p. 112875, Aug. 2024.
  • S. Kumari et al., "Efficiency enhancement of photovoltaic panel by heat harvesting techniques," Energy Sustain. Dev., vol. 73, pp. 303–314, Mar. 2023.
  • L. Assiya, D. Aziz, and H. Ahmed, "Comparative study of P&O and INC MPPT algorithms for DC-DC Converter Based PV System on MATLAB/SIMULINK," in Proc. IEEE Int. Conf. Electron., Control, Optim. Comput. Sci. (ICECOCS), Dec. 2020, pp. 1–5.
  • S. A. Mohamed and M. A. E. Sattar, "A comparative study of P&O and INC maximum power point tracking techniques for grid-connected PV systems," SN Appl. Sci., vol. 1, no. 2, Jan. 2019.
  • M. A. Mahmood, K. Ishfaq, and M. Khraisheh, "Inconel-718 processing windows by directed energy deposition: a framework combining computational fluid dynamics and machine learning models with experimental validation," Int. J. Adv. Manuf. Technol., vol. 130, no. 7–8, pp. 3997–4011, Jan. 2024.
  • P. A. D. Cruz et al., "Computational Fluid Dynamics (CFD) analysis of the heat transfer and fluid flow of copper (II) oxide-water nanofluid in a shell and tube heat exchanger," Digit. Chem. Eng., vol. 3, p. 100014, Feb. 2022.
  • X. Y. Zhang et al., "Experimental investigation and CFD modelling analysis of finned-tube PCM heat exchanger for space heating," Appl. Therm. Eng., vol. 244, p. 122731, Feb. 2024.
  • A. Pavlovic et al., "Thermal behavior of Monocrystalline silicon Solar cells: A Numerical and Experimental Investigation on the Module Encapsulation Materials," DOAJ, Jul. 2021.
  • F. Ghafoorian et al., "Self-Starting improvement and performance enhancement in Darrieus VAWTs using auxiliary blades and deflectors," Machines, vol. 12, no. 11, p. 806, Nov. 2024.
  • H. İ. Yamaç, A. Koca, and T. Yılmaz, "Using computational fluid dynamics for wave generation and evaluation of results in numerical wave tank modelling," Fırat Univ. J. Exp. Comput. Eng., vol. 1, no. 1, pp. 31–42, Jan. 2022.
  • D. Kumar and B. Premachandran, "Effect of atmospheric wind on natural convection based solar air heaters," Int. J. Therm. Sci., vol. 138, pp. 263–275, Jan. 2019.
  • T. T. Göksu, "Investigation of the effect of geometrical parameters and fluid properties of heat sinks on cooling by RSM method," Fırat Univ. J. Exp. Comput. Eng., vol. 3, no. 2, pp. 185–203, May 2024.
  • N. A. Nalis et al., "Effects of Fin Height, Fin Thickness and Reynolds number on heat transfer enhancement of Flat-Plate thermal Collector: a numerical analysis," CFD Lett., vol. 15, no. 4, pp. 53–63, Feb. 2023.
  • J. Jiang et al., "Evaluating the impacts of fin structures and fin counts on photovoltaic panels integrated with phase change material," Energy, vol. 283, p. 129143, Sep. 2023.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Üretimi, Dönüşüm ve Depolama (Kimyasal ve Elektiksel hariç), Makine Mühendisliğinde Optimizasyon Teknikleri, Makine Mühendisliğinde Sayısal Yöntemler
Bölüm Araştırma Makalesi
Yazarlar

Murat Catalkaya 0000-0002-4143-4679

Yayımlanma Tarihi 26 Haziran 2025
Gönderilme Tarihi 16 Temmuz 2024
Kabul Tarihi 30 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 4 Sayı: 2

Kaynak Göster

APA Catalkaya, M. (2025). Experimental and Numerical Applications to Increase Thermal Performance of a Photovoltaic Solar Panel. Firat University Journal of Experimental and Computational Engineering, 4(2), 226-244. https://doi.org/10.62520/fujece.1517038
AMA Catalkaya M. Experimental and Numerical Applications to Increase Thermal Performance of a Photovoltaic Solar Panel. FUJECE. Haziran 2025;4(2):226-244. doi:10.62520/fujece.1517038
Chicago Catalkaya, Murat. “Experimental and Numerical Applications to Increase Thermal Performance of a Photovoltaic Solar Panel”. Firat University Journal of Experimental and Computational Engineering 4, sy. 2 (Haziran 2025): 226-44. https://doi.org/10.62520/fujece.1517038.
EndNote Catalkaya M (01 Haziran 2025) Experimental and Numerical Applications to Increase Thermal Performance of a Photovoltaic Solar Panel. Firat University Journal of Experimental and Computational Engineering 4 2 226–244.
IEEE M. Catalkaya, “Experimental and Numerical Applications to Increase Thermal Performance of a Photovoltaic Solar Panel”, FUJECE, c. 4, sy. 2, ss. 226–244, 2025, doi: 10.62520/fujece.1517038.
ISNAD Catalkaya, Murat. “Experimental and Numerical Applications to Increase Thermal Performance of a Photovoltaic Solar Panel”. Firat University Journal of Experimental and Computational Engineering 4/2 (Haziran 2025), 226-244. https://doi.org/10.62520/fujece.1517038.
JAMA Catalkaya M. Experimental and Numerical Applications to Increase Thermal Performance of a Photovoltaic Solar Panel. FUJECE. 2025;4:226–244.
MLA Catalkaya, Murat. “Experimental and Numerical Applications to Increase Thermal Performance of a Photovoltaic Solar Panel”. Firat University Journal of Experimental and Computational Engineering, c. 4, sy. 2, 2025, ss. 226-44, doi:10.62520/fujece.1517038.
Vancouver Catalkaya M. Experimental and Numerical Applications to Increase Thermal Performance of a Photovoltaic Solar Panel. FUJECE. 2025;4(2):226-44.