Given a normed space, one can define a new $n$-norm using a semi-inner product $g$ on the space, different from the $n$-norm defined by G\"{a}hler. In this paper, we are interested in the new $n$-norm which is defined using such a functional $g$ on the space $\ell^p$ of $p$-summable sequences, where $1\le p<\infty$. We prove particularly that the new $n$-norm is equivalent with the one defined previously by Gunawan on $\ell^p$.
[8] S. Gahler, Untersuchungen über verallgemeinerte m-metrische raume. I”, Math. Nachr., 40 (1969), 165–189.
[9] S. Gahler, Untersuchungen über verallgemeinerte m-metrische raume. II”, Math. Nachr., 40 (1969), 229–264.
[10] S. Gahler, Untersuchungen über verallgemeinerte m-metrische raume. III, Math. Nachr., 41 (1970), 23–26.
[11] S. Ekariani, H. Gunawan, M. Idris, A contractive mapping theorem on the n-normed space of p-summable, J. Math. Anal., 41 (2013), 1–7.
[12] S. M. Gozali, H. Gunawan, O. Neswan, On n-norms and bounded n-linear functionals in a Hilbert space, Ann. Funct. Anal., 1 (2010), 72–79.
[13] H. Gunawan, On n-inner products, n-norms, and the Cauchy-Schwarz inequality, Sci. Math. Japon., 55 (2002), 53–60.
[14] H. Gunawan, H. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (2001), 631–639.
[15] H. Gunawan, W. Setya-Budhi, M. Mashadi, S.Gemawati, On volumes of n-dimensional parallelepipeds in `p spaces, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat., 16 (2005), 48–54.
[16] H. Gunawan, The space of p-summable sequences and its natural n-norms, Bull. Austral. Math. Soc., 64 (2001), 137–147.
[17] Ş. Konca, M. Idris, Equivalence among three 2-norms on the space of p-summable sequences, J. Inequal. Spec. Funct., 7(4), (2016) 218–224.
[18] A. Mutaqin, H. Gunawan, Equivalence of n-norms on the space of p-summable sequences, J. Indones. Math. Soc., 16 (2010), 39–49.
[19] R. A. Wibawa-Kusumah, H. Gunawan, Two equivalent n-norms on the space of p-summable sequences, Period. Math. Hungar., 67–1 (2013), 63–69.
[20] P. M. Milicic, On the Gram-Schmidt projection in normed spaces, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat., 4 (1993), 89–96.
[21] S. Kurepa, On the Buniakowsky-Cauchy-Schwarz inequality, Glas. Mat. III Ser., 21(1) (1966), 147–158.
[22] F. R. Gantmacher, The Theory of Matrices, AMS Chelsea Publishing, 1, 2000.
[8] S. Gahler, Untersuchungen über verallgemeinerte m-metrische raume. I”, Math. Nachr., 40 (1969), 165–189.
[9] S. Gahler, Untersuchungen über verallgemeinerte m-metrische raume. II”, Math. Nachr., 40 (1969), 229–264.
[10] S. Gahler, Untersuchungen über verallgemeinerte m-metrische raume. III, Math. Nachr., 41 (1970), 23–26.
[11] S. Ekariani, H. Gunawan, M. Idris, A contractive mapping theorem on the n-normed space of p-summable, J. Math. Anal., 41 (2013), 1–7.
[12] S. M. Gozali, H. Gunawan, O. Neswan, On n-norms and bounded n-linear functionals in a Hilbert space, Ann. Funct. Anal., 1 (2010), 72–79.
[13] H. Gunawan, On n-inner products, n-norms, and the Cauchy-Schwarz inequality, Sci. Math. Japon., 55 (2002), 53–60.
[14] H. Gunawan, H. Mashadi, On n-normed spaces, Int. J. Math. Math. Sci. 27 (2001), 631–639.
[15] H. Gunawan, W. Setya-Budhi, M. Mashadi, S.Gemawati, On volumes of n-dimensional parallelepipeds in `p spaces, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat., 16 (2005), 48–54.
[16] H. Gunawan, The space of p-summable sequences and its natural n-norms, Bull. Austral. Math. Soc., 64 (2001), 137–147.
[17] Ş. Konca, M. Idris, Equivalence among three 2-norms on the space of p-summable sequences, J. Inequal. Spec. Funct., 7(4), (2016) 218–224.
[18] A. Mutaqin, H. Gunawan, Equivalence of n-norms on the space of p-summable sequences, J. Indones. Math. Soc., 16 (2010), 39–49.
[19] R. A. Wibawa-Kusumah, H. Gunawan, Two equivalent n-norms on the space of p-summable sequences, Period. Math. Hungar., 67–1 (2013), 63–69.
[20] P. M. Milicic, On the Gram-Schmidt projection in normed spaces, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat., 4 (1993), 89–96.
[21] S. Kurepa, On the Buniakowsky-Cauchy-Schwarz inequality, Glas. Mat. III Ser., 21(1) (1966), 147–158.
[22] F. R. Gantmacher, The Theory of Matrices, AMS Chelsea Publishing, 1, 2000.
Nur, M., & Gunawan, H. (2019). Three Equivalent n-Norms on the Space of p-Summable Sequences. Fundamental Journal of Mathematics and Applications, 2(2), 123-129. https://doi.org/10.33401/fujma.635754
AMA
Nur M, Gunawan H. Three Equivalent n-Norms on the Space of p-Summable Sequences. Fundam. J. Math. Appl. December 2019;2(2):123-129. doi:10.33401/fujma.635754
Chicago
Nur, Muh, and Hendra Gunawan. “Three Equivalent N-Norms on the Space of P-Summable Sequences”. Fundamental Journal of Mathematics and Applications 2, no. 2 (December 2019): 123-29. https://doi.org/10.33401/fujma.635754.
EndNote
Nur M, Gunawan H (December 1, 2019) Three Equivalent n-Norms on the Space of p-Summable Sequences. Fundamental Journal of Mathematics and Applications 2 2 123–129.
IEEE
M. Nur and H. Gunawan, “Three Equivalent n-Norms on the Space of p-Summable Sequences”, Fundam. J. Math. Appl., vol. 2, no. 2, pp. 123–129, 2019, doi: 10.33401/fujma.635754.
ISNAD
Nur, Muh - Gunawan, Hendra. “Three Equivalent N-Norms on the Space of P-Summable Sequences”. Fundamental Journal of Mathematics and Applications 2/2 (December 2019), 123-129. https://doi.org/10.33401/fujma.635754.
JAMA
Nur M, Gunawan H. Three Equivalent n-Norms on the Space of p-Summable Sequences. Fundam. J. Math. Appl. 2019;2:123–129.
MLA
Nur, Muh and Hendra Gunawan. “Three Equivalent N-Norms on the Space of P-Summable Sequences”. Fundamental Journal of Mathematics and Applications, vol. 2, no. 2, 2019, pp. 123-9, doi:10.33401/fujma.635754.
Vancouver
Nur M, Gunawan H. Three Equivalent n-Norms on the Space of p-Summable Sequences. Fundam. J. Math. Appl. 2019;2(2):123-9.