Araştırma Makalesi
BibTex RIS Kaynak Göster

Experimental investigation on the control and load characteristics of active wing morphing aircraft concept

Yıl 2025, Cilt: 40 Sayı: 3, 1589 - 1598, 21.08.2025
https://doi.org/10.17341/gazimmfd.1533853

Öz

Recent developments in morphing aircraft research have made researchers re-examine more “morphing” technologies and techniques. The purpose of this study was to explore new concepts of adaptive wings and/or winglets to improve aircraft control and performance. The primary variable investigated involves varying the twist angle of the configurations with the purpose of evaluating the concept using experimental approaches. Another main goal was to evaluate and demonstrate the developed concept in a wind tunnel environment. Both the traditional control surface model and the variable morphing wing model were designed and tested in the wind tunnel Through the wind tunnel results, the adaptive wing structure at -6 degree was found to achieve a drag reduction which resulted in a lift to drag ratio improvement of approximately 22% comparable to the fixed wing structure. Furthermore, it has been observed that the morphing twist structure and the traditional control mechanism showed similar control moment coefficients. This research also aimed to develop an alternative approach for a morphing skin technology.

Kaynakça

  • 1. McRuer D., Graham D., Flight Control Century: Triumphs of the Systems Approach, J. Guid. Control. Dyn., 27 (2), 161–173, 2004.
  • 2. Culick, F. E. C., The Wright Brothers : First Aeronautical Engineers, 41 (6), 8–11, 2003.
  • 3. Jha, A. K., Kudva, J. N., Morphing Aircraft Concepts, Classifications, and Challanges, 5388, 213–224, Jul. 2004.
  • 4. Thill, C., Etches, J., Bond, I., Potter, K., Weaver, P., Morphing skins, 3216, 1–23, 2008.
  • 5. Murray,G., Gandhi, F., Bakis, C., Flexible Matrix Composite Skins for One-dimensional Wing Morphing, J. Intell. Mater. Syst. Struct., 21 (17), 1771–1781, 2010.
  • 6. Olympio, K. R., Gandhi, F., Asheghian, L., Kudva, J., Design of a Flexible Skin for a Shear Morphing Wing, J. Intell. Mater. Syst. Struct., 21 (17), 1755–1770, 2010.
  • 7. Bubert, E.A., Woods, B.K.S., Lee, K., Kothera, C.S., Wereley, N.M., Design and Fabrication of a Passive 1D Morphing Aircraft Skin, J. Intell. Mater. Syst. Struct., 21 (17), 1699–1717, 2010.
  • 8. Dayyani, S. Ziaei-Rad, and M. I. Friswell, The mechanical behavior of composite corrugated core coated with elastomer for morphing skins, J. Compos. Mater., 48 (13), 1623–1636, 2013.
  • 9. Shaw, D., Dayyani, I., Friswell, M. I., Optimisation of composite corrugated skins for buckling in morphing aircraft, Compos. Struct., 119, 227–237, Jan, 2015.
  • 10. Fasel, U., Keidel, D., Baumann, L., Cavolina, G., Eichenhofer, M., Ermanni, P., Composite additive manufacturing of morphing aerospace structures, Manuf. Lett., 23, 85–88, 2020.
  • 11. Bil, C., Massey, K., Abdullah, E.J., Wing morphing control with shape memory alloy actuators, J. Intell. Mater. Syst. Struct., 24, 879–898, 2013.
  • 12. Majid, T., Jo, B.W., Comparative Aerodynamic Performance Analysis of Camber Morphing and Conventional Airfoils, Appl. Sci., 11, 10663, 2021.
  • 13. Joo, J.J., Marks, C.R., Zientarski, L., Culler, A.J., Variable camber compliant wing-design, In Proceedings of the 23rd AIAA/AHS Adaptive Structures Conference, Kissimmee, FL, USA, 5–9 January, p. 1050, 2015.
  • 14. Bishay, P.L., Finden, R., Recinos, S., Alas, C., Lopez, E., Aslanpour, D., Flores, D., Gonzalez, E., Development of an SMA-based camber morphing UAV tail core design, Smart Mater. Struct., 28, 075024, 2019.
  • 15. Fincham, J.H.S., Friswell, M.I., Aerodynamic optimisation of a camber morphing aerofoil, Aerosp. Sci. Technol., 43, 245–255, 2015.
  • 16. Yokozeki, T., Sugiura, A., Hirano, Y., Development and Wind Tunnel Test of Variable Camber Morphing Wing, In Proceedings of the 22nd AIAA/ASME/AHS Adaptive Structures Conference, National Harbor, MD, USA, 13–17 January, 2014.
  • 17. Woods, B.K.S., Friswell, M.I., Preliminary Investigation of a Fishbone Active Camber Concept, In Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Stone Mountain, GA, USA, 555–563, 19–21 September, 2012.
  • 18. Jo, B.W., Majid, T., Aerodynamic Analysis of Camber Morphing Airfoils in Transition via Computational Fluid Dynamics, Biomimetics, 7, 52, 2022.
  • 19. Aly, R., Kaygan, E., Esat, V., Investigation of a Variable Camber Morphing Airfoil via SMA Wire and Corrugated Structures, Int. J. Aeronaut. Space Sci., 2024.
  • 20. Jo, B.W., Majid, T., Enhanced Range and Endurance Evaluation of a Camber Morphing Wing Aircraft, Biomimetics, 8, 34, 2023.
  • 21. Woods, B. K., Bilgen, O., and Friswell, M. I., Wind tunnel testing of the fish bone active camber morphing concept, J. Intell. Mater. Syst. Struct., 25 (7), 772–785, Feb., 2014.
  • 22. Dharmdas, A., Patil, A.Y., Baig, A., Hosmani, O.Z., Mathad, S.N., Patil, M.B., Kumar, R., Kotturshettar, B.B., Fattah, I. M. R., An Experimental and Simulation Study of the Active Camber Morphing Concept on Airfoils Using Bio-Inspired Structures, Biomimetics, 8, 251, 2023. 23. Dai, P., Yan, B., Huang, W., Zhen, Y., Wang, M., Liu, S., Design and aerodynamic performance analysis of a variable-sweep-wing morphing waverider, Aerosp. Sci. Technol., 98, 105703, 2020.
  • 24. Eguea, J.P., Silva, P.G., Catalano, M. F., Fuel efficiency improvement on a business jet using a camber morphing winglet concept. Aerosp. Sci. Technol., 96, 105542, 2020.
  • 25. Albuquerque, P.F., Gamboa, P.V., Silvestre, M.A., Mission-Based Multidisciplinary Aircraft Design Optimization Methodology Tailored for Adaptive Technologies, J. Aircr., 55, 755–770, 2017.
  • 26. Parancheerivilakkathil, M.S., Ajaj, R.M., Khan, K.A., A compliant polymorphing wing for small UAVs. Chin. J. Aeronaut., 33, 2575–2588, 2020.
  • 27. Kaygan, E., Aerodynamic Analysis of Morphing Winglets for Improved Commercial Aircraft Performance, J. Aviat., 4, 31–44, 2020.
  • 28. Kaygan, E., Numerical Analysis of Variable Morphing Wing for Improved Aerodynamic Performance of a Predator MQ-1B, International Journal of Aviation Science and Technology, 03(02), 70-80, 2022.
  • 29. Sadraey M., Aircraft Design: A Systems Engineering Approach, Chapter 12 Design of Control Surfaces, Wiley, 2012.
  • 30. ESDU, Rolling moment derivative, L ξ for plain ailerons at subsonic speeds, 1988.
  • 31. Barlow, J. B., Rae, W. H., Pope, A., Low Speed Wind Tunnel Testing, 3rd Ed., Wiley, New York, 1999.
  • 32. Mueller, T., Burns, T., Experimental Studies of the Eppler 61 Airfoil at Low Reynolds Numbers, AIAA, Paper 82-0345, 1982.
  • 33. Smith, D., Lowenberg, M., Jones, D., Friswell, M., Computational and Experimental Validation of the Active Morphing Concept, J. Aircr., 51 (3), 925–937, 2014.

Aktif kanatlı dönüşen uçak konseptinde kontrol ve yük karakteristiklerinin deneysel olarak incelenmesi

Yıl 2025, Cilt: 40 Sayı: 3, 1589 - 1598, 21.08.2025
https://doi.org/10.17341/gazimmfd.1533853

Öz

Değişken kanatlı(Morphing) uçak araştırmalarındaki son gelişmeler, uyumlu geçişli sistemlere, yani ayrı hareketli parçalar olmadan şekil değişikliğine veya kanat profilindeki ani değişikliklere yönelik araştırmaların tekrardan tetiklenmesine neden olmuştur. Bu çalışmanın amacı, uçak kontrolü ve performansını artırmak için uyarlanabilir kanat ve/veya kanatçık kavramlarına ilişkin yeni kavramları keşfetmekti. Araştırılan birincil değişken, deneysel yaklaşımlar kullanarak konsepti değerlendirmek için tek bir amaç doğrultusunda konfigürasyonların bükülme açısının değiştirilmesini içeriyor. Bir diğer temel amaç ise geliştirilen konsepti rüzgar tüneli ortamında değerlendirmek ve göstermekti. Hem geleneksel kontrol yüzeyi modeli hemde değişebilen kanatçık modelleri tasarlanıp rüzgar tünelinde denenmiştir. Yapılan deneyler sonrasında uçak kanadının -6 derecelik bir büküm(twist) açısına ulaştığı zaman ve normal düz kanat profili ile yapılan karşılaştırmada yaklaşık %22’lik bir performans artışı göze çarpmaktadır. Bununla birlikte farklı twist açılarında geleneksel yöntemlerin kullanıldığı kontrol yüzey kullanımlarıyla benzer bir moment katsayıları elde edilmiştir. Bu araştırma aynı zamanda değişen bir yüzey kaplama için alternatif bir yaklaşım geliştirmeyi de amaçlamıştır.

Kaynakça

  • 1. McRuer D., Graham D., Flight Control Century: Triumphs of the Systems Approach, J. Guid. Control. Dyn., 27 (2), 161–173, 2004.
  • 2. Culick, F. E. C., The Wright Brothers : First Aeronautical Engineers, 41 (6), 8–11, 2003.
  • 3. Jha, A. K., Kudva, J. N., Morphing Aircraft Concepts, Classifications, and Challanges, 5388, 213–224, Jul. 2004.
  • 4. Thill, C., Etches, J., Bond, I., Potter, K., Weaver, P., Morphing skins, 3216, 1–23, 2008.
  • 5. Murray,G., Gandhi, F., Bakis, C., Flexible Matrix Composite Skins for One-dimensional Wing Morphing, J. Intell. Mater. Syst. Struct., 21 (17), 1771–1781, 2010.
  • 6. Olympio, K. R., Gandhi, F., Asheghian, L., Kudva, J., Design of a Flexible Skin for a Shear Morphing Wing, J. Intell. Mater. Syst. Struct., 21 (17), 1755–1770, 2010.
  • 7. Bubert, E.A., Woods, B.K.S., Lee, K., Kothera, C.S., Wereley, N.M., Design and Fabrication of a Passive 1D Morphing Aircraft Skin, J. Intell. Mater. Syst. Struct., 21 (17), 1699–1717, 2010.
  • 8. Dayyani, S. Ziaei-Rad, and M. I. Friswell, The mechanical behavior of composite corrugated core coated with elastomer for morphing skins, J. Compos. Mater., 48 (13), 1623–1636, 2013.
  • 9. Shaw, D., Dayyani, I., Friswell, M. I., Optimisation of composite corrugated skins for buckling in morphing aircraft, Compos. Struct., 119, 227–237, Jan, 2015.
  • 10. Fasel, U., Keidel, D., Baumann, L., Cavolina, G., Eichenhofer, M., Ermanni, P., Composite additive manufacturing of morphing aerospace structures, Manuf. Lett., 23, 85–88, 2020.
  • 11. Bil, C., Massey, K., Abdullah, E.J., Wing morphing control with shape memory alloy actuators, J. Intell. Mater. Syst. Struct., 24, 879–898, 2013.
  • 12. Majid, T., Jo, B.W., Comparative Aerodynamic Performance Analysis of Camber Morphing and Conventional Airfoils, Appl. Sci., 11, 10663, 2021.
  • 13. Joo, J.J., Marks, C.R., Zientarski, L., Culler, A.J., Variable camber compliant wing-design, In Proceedings of the 23rd AIAA/AHS Adaptive Structures Conference, Kissimmee, FL, USA, 5–9 January, p. 1050, 2015.
  • 14. Bishay, P.L., Finden, R., Recinos, S., Alas, C., Lopez, E., Aslanpour, D., Flores, D., Gonzalez, E., Development of an SMA-based camber morphing UAV tail core design, Smart Mater. Struct., 28, 075024, 2019.
  • 15. Fincham, J.H.S., Friswell, M.I., Aerodynamic optimisation of a camber morphing aerofoil, Aerosp. Sci. Technol., 43, 245–255, 2015.
  • 16. Yokozeki, T., Sugiura, A., Hirano, Y., Development and Wind Tunnel Test of Variable Camber Morphing Wing, In Proceedings of the 22nd AIAA/ASME/AHS Adaptive Structures Conference, National Harbor, MD, USA, 13–17 January, 2014.
  • 17. Woods, B.K.S., Friswell, M.I., Preliminary Investigation of a Fishbone Active Camber Concept, In Proceedings of the ASME 2012 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Stone Mountain, GA, USA, 555–563, 19–21 September, 2012.
  • 18. Jo, B.W., Majid, T., Aerodynamic Analysis of Camber Morphing Airfoils in Transition via Computational Fluid Dynamics, Biomimetics, 7, 52, 2022.
  • 19. Aly, R., Kaygan, E., Esat, V., Investigation of a Variable Camber Morphing Airfoil via SMA Wire and Corrugated Structures, Int. J. Aeronaut. Space Sci., 2024.
  • 20. Jo, B.W., Majid, T., Enhanced Range and Endurance Evaluation of a Camber Morphing Wing Aircraft, Biomimetics, 8, 34, 2023.
  • 21. Woods, B. K., Bilgen, O., and Friswell, M. I., Wind tunnel testing of the fish bone active camber morphing concept, J. Intell. Mater. Syst. Struct., 25 (7), 772–785, Feb., 2014.
  • 22. Dharmdas, A., Patil, A.Y., Baig, A., Hosmani, O.Z., Mathad, S.N., Patil, M.B., Kumar, R., Kotturshettar, B.B., Fattah, I. M. R., An Experimental and Simulation Study of the Active Camber Morphing Concept on Airfoils Using Bio-Inspired Structures, Biomimetics, 8, 251, 2023. 23. Dai, P., Yan, B., Huang, W., Zhen, Y., Wang, M., Liu, S., Design and aerodynamic performance analysis of a variable-sweep-wing morphing waverider, Aerosp. Sci. Technol., 98, 105703, 2020.
  • 24. Eguea, J.P., Silva, P.G., Catalano, M. F., Fuel efficiency improvement on a business jet using a camber morphing winglet concept. Aerosp. Sci. Technol., 96, 105542, 2020.
  • 25. Albuquerque, P.F., Gamboa, P.V., Silvestre, M.A., Mission-Based Multidisciplinary Aircraft Design Optimization Methodology Tailored for Adaptive Technologies, J. Aircr., 55, 755–770, 2017.
  • 26. Parancheerivilakkathil, M.S., Ajaj, R.M., Khan, K.A., A compliant polymorphing wing for small UAVs. Chin. J. Aeronaut., 33, 2575–2588, 2020.
  • 27. Kaygan, E., Aerodynamic Analysis of Morphing Winglets for Improved Commercial Aircraft Performance, J. Aviat., 4, 31–44, 2020.
  • 28. Kaygan, E., Numerical Analysis of Variable Morphing Wing for Improved Aerodynamic Performance of a Predator MQ-1B, International Journal of Aviation Science and Technology, 03(02), 70-80, 2022.
  • 29. Sadraey M., Aircraft Design: A Systems Engineering Approach, Chapter 12 Design of Control Surfaces, Wiley, 2012.
  • 30. ESDU, Rolling moment derivative, L ξ for plain ailerons at subsonic speeds, 1988.
  • 31. Barlow, J. B., Rae, W. H., Pope, A., Low Speed Wind Tunnel Testing, 3rd Ed., Wiley, New York, 1999.
  • 32. Mueller, T., Burns, T., Experimental Studies of the Eppler 61 Airfoil at Low Reynolds Numbers, AIAA, Paper 82-0345, 1982.
  • 33. Smith, D., Lowenberg, M., Jones, D., Friswell, M., Computational and Experimental Validation of the Active Morphing Concept, J. Aircr., 51 (3), 925–937, 2014.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Makine Mühendisliği (Diğer), Malzeme Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Erdoğan Kaygan 0000-0003-3319-3657

Alvin Gatto 0000-0003-4443-0451

Erken Görünüm Tarihi 12 Mayıs 2025
Yayımlanma Tarihi 21 Ağustos 2025
Gönderilme Tarihi 19 Ağustos 2024
Kabul Tarihi 25 Aralık 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 40 Sayı: 3

Kaynak Göster

APA Kaygan, E., & Gatto, A. (2025). Aktif kanatlı dönüşen uçak konseptinde kontrol ve yük karakteristiklerinin deneysel olarak incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 40(3), 1589-1598. https://doi.org/10.17341/gazimmfd.1533853
AMA Kaygan E, Gatto A. Aktif kanatlı dönüşen uçak konseptinde kontrol ve yük karakteristiklerinin deneysel olarak incelenmesi. GUMMFD. Ağustos 2025;40(3):1589-1598. doi:10.17341/gazimmfd.1533853
Chicago Kaygan, Erdoğan, ve Alvin Gatto. “Aktif kanatlı dönüşen uçak konseptinde kontrol ve yük karakteristiklerinin deneysel olarak incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40, sy. 3 (Ağustos 2025): 1589-98. https://doi.org/10.17341/gazimmfd.1533853.
EndNote Kaygan E, Gatto A (01 Ağustos 2025) Aktif kanatlı dönüşen uçak konseptinde kontrol ve yük karakteristiklerinin deneysel olarak incelenmesi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40 3 1589–1598.
IEEE E. Kaygan ve A. Gatto, “Aktif kanatlı dönüşen uçak konseptinde kontrol ve yük karakteristiklerinin deneysel olarak incelenmesi”, GUMMFD, c. 40, sy. 3, ss. 1589–1598, 2025, doi: 10.17341/gazimmfd.1533853.
ISNAD Kaygan, Erdoğan - Gatto, Alvin. “Aktif kanatlı dönüşen uçak konseptinde kontrol ve yük karakteristiklerinin deneysel olarak incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 40/3 (Ağustos2025), 1589-1598. https://doi.org/10.17341/gazimmfd.1533853.
JAMA Kaygan E, Gatto A. Aktif kanatlı dönüşen uçak konseptinde kontrol ve yük karakteristiklerinin deneysel olarak incelenmesi. GUMMFD. 2025;40:1589–1598.
MLA Kaygan, Erdoğan ve Alvin Gatto. “Aktif kanatlı dönüşen uçak konseptinde kontrol ve yük karakteristiklerinin deneysel olarak incelenmesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, c. 40, sy. 3, 2025, ss. 1589-98, doi:10.17341/gazimmfd.1533853.
Vancouver Kaygan E, Gatto A. Aktif kanatlı dönüşen uçak konseptinde kontrol ve yük karakteristiklerinin deneysel olarak incelenmesi. GUMMFD. 2025;40(3):1589-98.