Araştırma Makalesi
BibTex RIS Kaynak Göster

KURKUMİN YÜKLENMİŞ ZEOLİTİK İMİDAZOLAT ÇERÇEVE-8 İLE GIDA PAKETLEME UYGULAMALARI İÇİN AKTİF FİLM GELİŞTİRİLMESİ

Yıl 2022, Cilt: 47 Sayı: 5, 916 - 940, 30.10.2022
https://doi.org/10.15237/gida.GD22067

Öz

Aktif paketleme uygulamaları gıda raf ömrünü uzatarak gıda israfını azaltmayı hedeflemektedir. Geliştirilen paketleme malzemelerinin biyobozunur, sürdürülebilir ve yenilenebilir kaynaklardan olması çevre kirliğinin azaltılması ve doğal kaynakların korunabilmesi için gereklidir. Bu nedenle, bu çalışmada antioksidan ve antimikrobiyal özelliklere sahip doğal bir özüt olan kurkumin, zeolitik imidazol çerçeve-8 (K-ZİF-8) nanokristalleri içerisine kapsüllenmiştir. Tasarlanan aktif paketin destek malzemesi olan kitin nanokompozitler ise kültür mantarından elde edilmiştir. Kitin nanokompozit film içerisine farklı konsantrasyonlarda K-ZİF-8 eklenmiş ve konsantrasyon arttıkça filmlerin biyoaktif özelliklerinin arttığı gözlemlenmiştir. Diğer taraftan K-ZİF-8 eklemenin kitin filmlerin mekanik, bariyer, optik, termal ve morfolojik özelliklerine istatistiksel olarak önemli bir etkisi olmamıştır. Antimikrobiyal test sonuçları filmlerin E.coli bakteri kolonilerine karşı etkili olduğunu ortaya koyarken S.aureus kolonilerine karşı aynı etki gözlemlenememiştir. En yüksek antimikrobiyal etki, toplam fenolik madde miktarı ve antioksidan aktive 10XMÖK değerinde K-ZİF-8 içeren filmde elde edilmiştir. Ancak film dayanıklılık testleri bu filmlerin uzun süre depolamaya uygun olmadığını ortaya koymuştur.

Destekleyen Kurum

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu

Proje Numarası

120O886

Teşekkür

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu’na bu çalışmayı TÜBİTAK 120O886 nolu proje ile maddi olarak desteklendiği için teşekkür ederiz.

Kaynakça

  • Abbas, M., Hussain, T., Arshad, M., Ansari, A. R., Irshad, A., Nisar, J., Hussain, F., Masood, N., Nazir, A., Iqbal, M. (2019). Wound healing potential of curcumin cross-linked chitosan/polyvinyl alcohol. International Journal of Biological Macromolecules, 140. https://doi.org/10.1016/j.ijbiomac.2019.08.153
  • Abdou, E. S., Galhoum, G. F., & Mohamed, E. N. (2018). Curcumin loaded nanoemulsions/pectin coatings for refrigerated chicken fillets. Food Hydrocolloids, 83. https://doi.org/10.1016/j.foodhyd.2018.05.026
  • Asgher M., Qamar S.A., Bilal M., Iqbal H.M.N. (2020) Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials, Food Research International, 137, 109625.
  • ASTM. (2005). Standard test method for water vapor transmission of materials (E 96- 05). Philadelphia, PA, USA.
  • ASTM. (2009). Standard test method for tensile properties of thin plastic sheeting (D 882-09). Philadelphia, PA, USA.
  • ASTM (2010) Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor (D 3985) ) Philadelphia, PA, USA.
  • Adilah, A. N., Jamilah, B., Noranizan, M. A., & Hanani, Z. A. N. (2018). Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life, 16, 1–7. http://doi.org/10.1016/j.fpsl.2018.01.006
  • Ahmadi A., Ahmadi P., Ehsani A. (2020) Development of an active packaging system containing zinc oxide nanoparticles for the extension of chicken fillet shelf-life. Food Science and Nutrition, 00:1-13. https://doi.org/10.1002/fsn3.1812
  • Akhtar, M. J., Jacquot, M., Jasniewski, J., Jacquot, C., Imran, M., Jamshidian, M., vd. (2012). Antioxidant capacity and light-aging study of HPMC films functionalized with natural plant extract. Carbohydrate Polymers, 89(4), 1150–1158. http://doi.org/10.1016/j.carbpol.2012.03.088
  • Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics, 4(6), 807–818. http://doi.org/10.1021/mp700113r
  • Arfat, Y. A., Benjakul, S., Prodpran, T., Sumpavapol, P., & Songtipya, P. (2014). Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocolloids, 41, 265–273. http://doi.org/10.1016/j.foodhyd.2014.04.023
  • Aziz, S. B., Abdullah, O. G., Brza, M. A., Azawy, A. K., & Tahir, D. A. (2019). Effect of carbon nano-dots (CNDs) on structural and optical properties of PMMA polymer composite. Results in Physics, 15. https://doi.org/10.1016/j.rinp.2019.102776
  • Bajpai, S. K., Chand, N., & Ahuja, S. (2015). Investigation of curcumin release from chitosan/cellulose micro crystals (CMC) antimicrobial films. International Journal of Biological Macromolecules, 79. https://doi.org/10.1016/j.ijbiomac.2015.05.012
  • Bernd, A. (2014). Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcumin. Phytochemistry Reviews, 13(1), 183–189. http://doi.org/10.1007/s11101-013-9296-2
  • Bershtein, V. A., Egorov, V. M., Egorova, L. M., & Ryzhov, V. A. (1994). The role of thermal analysis in revealing the common molecular nature of transitions in polymers. Thermochimica Acta, 238(C). https://doi.org/10.1016/S0040-6031(94)85206-5
  • Bhawana, Basniwal, R. K., Buttar, H. S., Jain, V. K., & Jain, N. (2011). Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. Journal of Agricultural and Food Chemistry, 59(5). https://doi.org/10.1021/jf104402t
  • Bojorges, H., Ríos-Corripio, M. A., Hernández-Cázares, A. S., Hidalgo-Contreras, J. V., & Contreras-Oliva, A. (2020). Effect of the application of an edible film with turmeric (Curcuma longa L.) on the oxidative stability of meat. Food Science and Nutrition, 8(8). https://doi.org/10.1002/fsn3.1728
  • Cai, Y., Guan, J., Wang, W., Wang, L., Su, J., & Fang, L. (2021). pH and light-responsive polycaprolactone/curcumin@zif-8 composite films with enhanced antibacterial activity. Journal of Food Science, 86(8). https://doi.org/10.1111/1750-3841.15839
  • Cai, Z., Qu, Z., Lan, Y., Zhao, S., Ma, X., Wan, Q., vd. (2016). Conventional, ultrasound-assisted, and accelerated-solvent extractions of anthocyanins from purple sweet potatoes. Food Chemistry, 197, 266–272. http://doi.org/10.1016/j.foodchem.2015.10.110
  • Cano, A., Cháfer, M., Chiralt, A., & González-Martínez, C. (2016). Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packaging and Shelf Life, 10, 16–24. http://doi.org/10.1016/j.fpsl.2016.07.002
  • Cestari, L. A., Gaiotto, R. C., Antigo, J. L., Scapim, M. R. S., Madrona, G. S., Yamashita, F., vd. (2015). Effect of active packaging on low-sodium restructured chicken steaks. Journal of Food Science and Technology, 52(6), 3376–3382. http://doi.org/10.1007/s13197-014-1357-z
  • Chantarasataporn, P., Tepkasikul, P., Kingcha, Y., Yoksan, R., Pichyangkura, R., Visessanguan, W., & Chirachanchai, S. (2014). Water-based oligochitosan and nanowhisker chitosan as potential food preservatives for shelf-life extension of minced pork. Food Chemistry, 159, 463–470. http://doi.org/10.1016/j.foodchem.2014.03.019
  • Chen, J., Zhang, X., Huang, C., Cai, H., Hu, S., Wan, Q., vd. (2017). Osteogenic activity and antibacterial effect of porous titanium modified with metal‐organic framework films. Journal of Biomedical Materials Research. Part A, 105(3), 834–846. http://doi.org/10.1002/jbm.a.35960
  • Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food.
  • Condat, M., Mazeran, P. E., Malval, J. P., Lalevée, J., Morlet-Savary, F., Renard, E., vd. (2015). Photoinduced curcumin derivative-coatings with antibacterial properties. RSC Advances, 5(104), 85214–85224. http://doi.org/10.1039/C5RA19499G
  • Devarayan, K., & Kim, B.-S. (2015). Reversible and universal pH sensing cellulose nanofibers for health monitor. Sensors and Actuators B: Chemical, 209, 281–286. http://doi.org/10.1016/j.snb.2014.11.120
  • de Oliveira, E. F., Tosati, J. V., Tikekar, R. V., Monteiro, A. R., & Nitin, N. (2018). Antimicrobial activity of curcumin in combination with light against Escherichia coli O157:H7 and Listeria innocua: Applications for fresh produce sanitation. Postharvest Biology and Technology, 137. https://doi.org/10.1016/j.postharvbio.2017.11.014
  • Duan, S., Duan, S., Zhao, X., Su, Z., Wang, C., & Lin, Y. (2020). Layer-by-Layer Decorated Nanoscale ZIF-8 with High Curcumin Loading Effectively Inactivates Gram-Negative and Gram-Positive Bacteria. ACS Applied Bio Materials, 3(6). https://doi.org/10.1021/acsabm.0c00300
  • Dujic, J., Kippenberger, S., Hoffmann, S., Ramirez-Bosca, A., Miquel, J., Diaz-Alperi, J., vd. (2007). Low Concentrations of Curcumin Induce Growth Arrest and Apoptosis in Skin Keratinocytes Only in Combination with UVA or Visible Light. Journal of Investigative Dermatology, 127(8), 1992–2000. http://doi.org/10.1038/sj.jid.5700801
  • Eren, E., & Pekşen, A. (2016). Status and Future Outlook of Cultivated Mushroom Sector in Turkey. Turkish Journal of Agriculture - Food Science and Technology, 4(3), 189–196. http://doi.org/10.24925/turjaf.v4i3.189-196.595
  • European Commission, 2010. Final report: preparatory study on food waste across EU 27. European Commission, Joint Research Centre, Institute for Environment and Sustainability.
  • European Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food.
  • Fazli WAn Nawawi, W. M., Lee, K.-Y., Kontturi, E., Murphy, R. J., & Bismarck, A. (2019). Chitin Nanopaper from Mushroom Extract: Natural Composite of Nanofibers and Glucan from a Single Biobased Source. ACS Sustainable Chemistry & Engineering, 7(7), 6492–6496. http://doi.org/10.1021/acssuschemeng.9b00721
  • Fu D., Ding Y., Guo R. vd. (2022) Polylactic acid/polyvinyl alcohol-quaternary ammonium chitosan double-layer films doped with novel antimicrobial agent CuO@ZIF-8 NPs for fruit preservation, International Journal of Biological Macromolecules, 195:538-46.
  • Gaikwad K.K., Singh S., Lee Y.S. (2017) A pyrogallol-coated modified LDPE film as an oxygen scavenging film for active packaging, 111, 186-95. https://doi.org/10.1016/j.porgcoat.2017.05.016
  • Gan, I., & Chow, W. S. (2018). Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: A review. Food Packaging and Shelf Life, 17, 150–161. http://doi.org/10.1016/j.fpsl.2018.06.012
  • George, S. C., & Thomas, S. (2001). Transport phenomena through polymeric systems. Progress in Polymer Science, 26(6), 985–1017. http://doi.org/10.1016/S0079-6700(00)00036-8
  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. http://doi.org/10.1126/sciadv.1700782
  • Gontard, N., Duchez, C., Cuq, J. L., & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science and Technology, 29(1), 39–50. http://doi.org/10.1111/j.1365-2621.1994.tb02045.x
  • Gortari M.C., Hours R.A. (2013) Biotechnological processes for chitin recovery out of crustacean waste: a mini-review, Electron. J. Biotechnol., 16 (3), 14
  • Gunes, H., Gulen, D., Mutlu, R., Gumus, A., Tas, T., & Topkaya, A. E. (2013). Antibacterial effects of curcumin. Toxicology and Industrial Health, 32(2), 246–250.
  • Guo G., Fu S., Zhou L. Vd. (2011) Preparation of curcumin loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells, Nanoscale, 3, 3825-32.
  • Hafsa, J., Smach, M. A., Ben Khedher, M. R., Charfeddine, B., Limem, K., Majdoub, H., & Rouatbi, S. (2016). Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. Lwt-Food Science and Technology, 68, 356–364.
  • Hai L., E.S. Choi, L. Zhai, P.S. Panicker, J. Kim (2020) Green nanocomposite made with chitin and bamboo nanofibers and its mechanical, thermal and biodegradable properties for food packaging, International Journal of Biological Macromolecules, 144, 491-499.
  • Han, J. H., & Floros, J. D. (1997). Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film and Sheeting, 13(4). https://doi.org/10.1177/875608799701300405
  • Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A Review of Its’ Effects on Human Health. Foods, 6(10), 92. http://doi.org/10.3390/foods6100092
  • Hoop, M., Walde, C. F., Riccò, R., Mushtaq, F., Terzopoulou, A., Chen, X. Z., vd. (2018). Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Applied Materials Today, 11, 13–21. http://doi.org/10.1016/j.apmt.2017.12.014
  • Huang, D., Xin, Q., Ni, Y., Shuai, Y., Wang, S., Li, Y., Ye, H., Lin, L., Ding, X., & Zhang, Y. (2018). Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO2 separation. RSC Advances, 8(11). https://doi.org/10.1039/c7ra09794h
  • Ifuku S., Nogi M., Abe K., Yoshioka M., Morimoto M., Saimoto H., Yano H. (2009) Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells Biomacromolecules, 10 (6), 1584-1588.
  • Ifuku, S.; Nogi, M.; Abe, K.; Yoshioka, M.; Morimoto, M.; Saimoto, H.; Yano, H. (2011)Simple preparation method of chitin nanofibers with a uniform width of 10–20 nm from prawn shell under neutral conditions. Carbohydrate Polymers, 84, 762–764.
  • Ifuku S. (2014) Chitin and Chitosan Nanofibers: Preparation and Chemical Modifications, Molecules, 19, 18367-18380; doi:10.3390/molecules191118367.
  • Ifuku, S., & Saimoto, H. (2012). Chitin nanofibers: preparations, modifications, and applications. Nanoscale, 4(11), 3308–3318. http://doi.org/10.1039/c2nr30383c.
  • Ivshina, T.N.; Artamonova, S.D.; Ivshin, V.P.; Sharnina, F.F. (2009) Isolation of the chitin-glucan complex from the fruiting bodies of mycothallus. Appl. Biochem. Microbiol., 45, 313–318
  • Ji D., Choi S., Kim J. (2018) A Hydrogel‐Film Casting to Fabricate Platelet‐Reinforced Polymer Composite Films Exhibiting Superior Mechanical Properties. Small, 14: 1-8. https://doi.org/10.1002/smll.201801042.
  • Ji D., Kim J. (2019) Bioinspired Design and Fabrication of Polymer Composite Films Consisting of a Strong and Stiff Organic Matrix and Microsized Inorganic Platelets. ACS Nano, 13:3, 2773-85. https://doi.org/10.1021/acsnano.8b06767
  • Jovanovic S.V., Boone C.W., Steenken S., Trinoga M., & Kaskey, R. B. (2001). How Curcumin Works Preferentially with Water Soluble Antioxidants. Journal of the American Chemical Society, 123, 3064–3068. http://doi.org/10.1021/ja003823x
  • Kanatt S.R. ve Chawla S.P. (2018) Shelf life extension of chicken packed in active film developed with mango peel extract, Journal of Food Safety, 38:12385, 1-12. https://doi.org/10.1111/jfs.12385
  • Kanmani, P., & Rhim, J.-W. (2014). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106, 190–199. http://doi.org/10.1016/j.carbpol.2014.02.007
  • Karimi Alavijeh, R., Beheshti, S., Akhbari, K., & Morsali, A. (2018). Investigation of reasons for metal–organic framework’s antibacterial activities. Polyhedron, 156, 257–278. http://doi.org/10.1016/j.poly.2018.09.028
  • Kaur, S., & Dhillon, G. S. (2015). Recent trends in biological extraction of chitin from marine shell wastes: a review. Critical Reviews in Biotechnology, 35(1), 44–61. http://doi.org/10.3109/07388551.2013.798256
  • Kevij H.T., Salami M., Mohammadian M., Khodadi M. (2020) Fabrication and investigation of physicochemical, food simulant release, and antioxidant properties of whey protein isolate-based films activated by loading with curcumin through the pH-driven method, Food Hydrocolloids, 108, 106026.
  • Kim, S. A., Kim, N. H., Lee, S. H., Hwang, I. G., & Rhee, M. S. (2014). Survival of foodborne pathogenic bacteria (Bacillus cereus, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes) and Bacillus cereus spores in fermented alcoholic beverages (beer and refined rice wine). Journal of Food Protection, 77(3), 419–426. http://doi.org/10.4315/0362-028X.JFP-13-234
  • Knowles, T. P. J., Oppenheim, T. W., Buell, A. K., Chirgadze, D. Y., & Welland, M. E. (2010). Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nature Nanotechnology, 5(3), 204–207. http://doi.org/10.1038/nnano.2010.26
  • Ko, J. H., Yin, H., An, J., Chung, D. J., Kim, J. H., Lee, S. B., & Pyun, D. G. (2010). Characterization of cross-linked gelatin nanofibers through electrospinning. Macromolecular Research, 18(2), 137–143. http://doi.org/10.1007/s13233-009-0103-2
  • Kohsari, I., Shariatinia, Z., & Pourmortazavi, S. M. (2016). Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles. International Journal of Biological Macromolecules, 91. https://doi.org/10.1016/j.ijbiomac.2016.06.039
  • Kolev, T. M., Velcheva, E. A., Stamboliyska, B. A., & Spiteller, M. (2005). DFT and experimental studies of the structure and vibrational spectra of curcumin. International Journal of Quantum Chemistry, 102(6). https://doi.org/10.1002/qua.20469
  • Kontturi, E., Laaksonen, P., Linder, M. B., Nonappa, Groechel, A. H., Rojas, O. J., & Ikkala, O. (2018). Advanced Materials through Assembly of Nanocelluloses. Advanced Materials, 30(24). http://doi.org/10.1002/adma.201703779
  • Konuk Takma, D., & Korel, F. (2019). Active packaging films as a carrier of black cumin essential oil: Development and effect on quality and shelf-life of chicken breast meat. Food Packaging and Shelf Life, 19. https://doi.org/10.1016/j.fpsl.2018.11.002
  • Lange, J., & Wyser, Y. (2003). Recent Innovations in Barrier Technologies for Plastic Packaging - A Review. In Packaging Technology and Science (Vol. 16, Issue 4). https://doi.org/10.1002/pts.621
  • Le Corre, D., Bras, J., & Dufresne, A. (2010). Starch Nanoparticles: A Review. Biomacromolecules, 11(5), 1139–1153. http://doi.org/10.1021/bm901428y
  • Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450–1459. http://doi.org/10.1039/B807080F
  • Lee, M. A., Choi, J. H., Choi, Y. S., Han, D. J., Kim, H. Y., Shim, S. Y., Chung, H. K., & Kim, C. J. (2010). The antioxidative properties of mustard leaf (Brassica juncea) kimchi extracts on refrigerated raw ground pork meat against lipid oxidation. Meat Science, 84(3). https://doi.org/10.1016/j.meatsci.2009.10.004
  • Lee, S., Lei, Y., Wang, D., Li, C., Cheng, J., Wang, J., Meng, W., & Liu, M. (2019). The study of zeolitic imidazolate framework (ZIF-8) doped polyvinyl alcohol/starch/methyl cellulose blend film. Polymers, 11(12). https://doi.org/10.3390/polym11121986
  • Li, M. C., Wu, Q., Song, K., Cheng, H. N., Suzuki, S., & Lei, T. (2016). Chitin Nanofibers as Reinforcing and Antimicrobial Agents in Carboxymethyl Cellulose Films: Influence of Partial Deacetylation. ACS Sustainable Chemistry and Engineering, 4(8). https://doi.org/10.1021/acssuschemeng.6b00981
  • Liu, F., Lin, L., Zhang, Y., Sheng, S., Wang, Y., Xu, C., vd. (2019). Two-dimensional nanosheets with high curcumin loading content for multimodal imaging-guided combined chemo-photothermal therapy. Biomaterials, 223, 119470. http://doi.org/10.1016/j.biomaterials.2019.119470
  • Liu, J., Wang, H., Wang, P., Guo, M., Jiang, S., Li, X., & Jiang, S. (2018). Films based on κ-carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocolloids, 83, 134–142. http://doi.org/10.1016/j.foodhyd.2018.05.012
  • Liu, X. F., Guan, Y. L., Yang, D. Z., Li, Z., & Yao, K. De. (2001). Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 79(7). https://doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L
  • Lombo Vidal, O., Tsukui, A., Garrett, R., Miguez Rocha-Leão, M. H., Piler Carvalho, C. W., Pereira Freitas, S., Moraes de Rezende, C., & Simões Larraz Ferreira, M. (2020). Production of bioactive films of carboxymethyl cellulose enriched with green coffee oil and its residues. International Journal of Biological Macromolecules, 146. https://doi.org/10.1016/j.ijbiomac.2019.10.123
  • Lv N., Guo T., Liu B., Wang C., Singh V., vd. (2017) Improvement in Thermal Stability of Sucralose by γ-Cyclodextrin Metal-Organic Frameworks. Pharmaceutical Research, 34:269-78. http://doi.org/10.1007/s11095-016-2059-1
  • Ma Q., Ren Y., Wang L. (2017) Investigation of antioxidant activity and release kinetics of curcumin from tara gum/polyvinyl alcohol active film, Food Hydrocolloids, 70, 286-92.
  • Moradi E., Moosavi M.H., Hosseini S.M, Mirmoghtadaie L. vd. (2020) Prolonging shelf life of chicken breast fillets by using plasma-improved chitosan/low density polyethylene bilayer film containing summer savory essential oil. International Journal of Biological Macromolecules, 156: 321-328. https://doi.org/10.1016/j.ijbiomac.2020.03.226
  • Muppalla S.R., Kanatt S.R., Chawla S.P., Sharma A. (2014) Carboxymethyl cellulose-polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Packaging and Shelf Life, 2:2, 51-58. https://doi.org/10.1016/j.fpsl.2014.07.002
  • Mushi N.E. (2021) A review on native well-preserved chitin nanofibrils for materials of high mechanical performance, International Journal of Biological Macromolecules, 178, 591-606.
  • Musso Y.S., Salgado P.R., Mauri A.N. (2017) Smart edible films based on gelatin and curcumin, Food Hydrocolloids, 66, 8-1.5
  • Nam, Y. S., Park, W. H., Ihm, D., & Hudson, S. M. (2010). Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibers. Carbohydrate Polymers, 80(1). https://doi.org/10.1016/j.carbpol.2009.11.030
  • Nguyen, T. T. T., Nguyen, L. H. T., Mai, N. X. D., Ta, H. K. T., Nguyen, T. L. T., Le, U. C. N., Phan, B. T., Doan, N. N., & Doan, T. L. H. (2021). Mild and large-scale synthesis of nanoscale metal-organic framework used as a potential adenine-based drug nanocarrier. Journal of Drug Delivery Science and Technology, 61. https://doi.org/10.1016/j.jddst.2020.102135
  • Pan, K., Zhong, Q., & Baek, S. J. (2013). Enhanced Dispersibility and Bioactivity of Curcumin by Encapsulation in Casein Nanocapsules. Journal of Agricultural and Food Chemistry, 61(25), 6036–6043. http://doi.org/10.1021/jf400752a
  • Pan, Y., Liu, Y., Zeng, G., Zhao, L., & Lai, Z. (2011). Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 47(7). https://doi.org/10.1039/c0cc05002d
  • Papineau, A. M., Hoover, D. G., Knorr, D., & Farkas, D. F. (1991). Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. Food Biotechnology, 5(1). https://doi.org/10.1080/08905439109549790
  • Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M., & Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 103(27). https://doi.org/10.1073/pnas.0602439103
  • Oliveira, E. F., Tosati, J. V., Tikekar, R. V., Monteiro, A. R., & Nitin, N. (2018). Antimicrobial activity of curcumin in combination with light against Escherichia coli O157:H7 and Listeria innocua: Applications for fresh produce sanitation. Postharvest Biology and Technology, 137, 86–94. http://doi.org/10.1016/j.postharvbio.2017.11.014
  • Qian, L., Lei, D., Duan, X., Zhang, S., Song, W., Hou, C., & Tang, R. (2018). Design and preparation of metal-organic framework papers with enhanced mechanical properties and good antibacterial capacity. Carbohydrate Polymers, 192. https://doi.org/10.1016/j.carbpol.2018.03.049
  • Qiu, S., Xue, M., & Zhu, G. (2014). Metal–organic framework membranes: from synthesis to separation application. Chemical Society Reviews, 43(16), 6116–6140. http://doi.org/10.1039/C4CS00159A
  • Rai, D., Singh, J. K., Roy, N., & Panda, D. (2008). Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. The Biochemical Journal, 410(1), 147–155. http://doi.org/10.1042/BJ20070891
  • Ramos M., Beltran A., Peltzer M., Valente A.J., del Carmen Garrigos M. (2014) Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films, LWT-Food Science and Technology, 58, 470-477.
  • Reis F.S., Martins A., Barros L.,. Ferreira I.C.F.R (2012) Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples, Food and Chemical Toxicology, 50:5, 1201-1207.
  • Riaz Rajoka, M. S., Mehwish, H. M., Wu, Y., Zhao, L., Arfat, Y., Majeed, K., & Anwaar, S. (2020). Chitin/chitosan derivatives and their interactions with microorganisms: a comprehensive review and future perspectives. In Critical Reviews in Biotechnology (Vol. 40, Issue 3). https://doi.org/10.1080/07388551.2020.1713719
  • Roy, S., Rhim, J. W. (2020). Preparation of bioactive functional poly(lactic acid)/curcumin composite film for food packaging application. International Journal of Biological Macromolecules, 162. https://doi.org/10.1016/j.ijbiomac.2020.08.094
  • Salame, M., & Steingiser, S. (1977). Barrier polymers. Polymer-Plastics Technology and Engineering, 8(2). https://doi.org/10.1080/03602557708545034
  • Saldaña, E., Serrano-León, J., Selani, M. M., & Contreras-Castillo, C. J. (2020). Sensory and hedonic impact of the replacement of synthetic antioxidant for pink pepper residue extract in chicken burger. Journal of Food Science and Technology, 57(2), 617–627. http://doi.org/10.1007/s13197-019-04093-x
  • Saravana, P. S., Ho, T. C., Chae, S. J., Cho, Y. J., Park, J. S., Lee, H. J., & Chun, B. S. (2018). Deep eutectic solvent-based extraction and fabrication of chitin films from crustacean waste. Carbohydrate Polymers, 195. https://doi.org/10.1016/j.carbpol.2018.05.018
  • Satam, C. C., & Meredith, J. C. (2021). Increasing efficiency of the homogenization process for production of chitin nanofibers for barrier film applications. Carbohydrate Polymers, 274. https://doi.org/10.1016/j.carbpol.2021.118658
  • Savoie, J.-M.; Minvielle, N.; Largeteau, M. Radical-scavenging properties of extracts from the white button mushroom, Agaricus bisporus. J. Sci. Food Agric. 2008, 88, 970–975.
  • Shankar, S., Wang, L.-F., & Rhim, J.-W. (2017). Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydrate Polymers, 169, 264–271. http://doi.org/10.1016/j.carbpol.2017.04.025
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144–158.
  • Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24(8), 770–775. http://doi.org/10.1016/j.foodhyd.2010.04.003
  • Smaldone, R. A., Forgan, R. S., Furukawa, H., Gassensmith, J. J., Slawin, A. M. Z., Yaghi, O. M., & Stoddart, J. F. (2010). Metal–Organic Frameworks from Edible Natural Products. Angewandte Chemie International Edition, 49(46), 8630–8634. http://doi.org/10.1002/anie.201002343
  • Sommer I., Schwartz H., Solar S., Sontag G. (2009) Effect of γ-Irradiation on Agaritine, γ-Glutaminyl4-hydroxybenzene (GHB), Antioxidant Capacity, and Total Phenolic Content of Mushrooms (Agaricus bisporus), Journal of Agricultural and Food Chemistry, 57, 5790-94.
  • Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science and Technology, 18(2), 84–95.
  • Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. In Journal of Food Science (Vol. 68, Issue 2). https://doi.org/10.1111/j.1365-2621.2003.tb05687.x
  • Takma D.K., Korel F. (2019) Active packaging films as a carrier of black cumin essential oil: Development and effect on quality and shelf-life of chicken breast meat. Food Packaging and Shelf Life, 19: 210-17.
  • Tiwari, A., Singh, A., Garg, N., & Randhawa, J. K. (2017). Curcumin encapsulated zeolitic imidazolate frameworks as stimuli responsive drug delivery system and their interaction with biomimetic environment. Scientific Reports, 7(1), 12598–12. http://doi.org/ccm
  • Tudryn, G. J., Smith, L. C., Freitag, J., Bucinell, R., & Schadler, L. S. (2017). Processing and Morphology Impacts on Mechanical Properties of Fungal Based Biopolymer Composites. Journal of Polymers and the Environment, 26(4), 1473–1483. http://doi.org/10.1007/s10924-017-1047-9
  • Tyagi, P., Singh, M., Kumari, H., Kumari, A., & Mukhopadhyay, K. (2015). Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0121313
  • Valentini, L., Bon, S. B., & Pugno, N. M. (2018). Combining Living Microorganisms with Regenerated Silk Provides Nanofibril-Based Thin Films with Heat-Responsive Wrinkled States for Smart Food Packaging. Nanomaterials, 8(7). http://doi.org/10.3390/nano8070518
  • Vidal O.L., Tsukui A., Garrett R. vd. (2020) Production of bioactive films of carboxymethyl cellulose enriched with green coffee oil and its residues, International Journal of Biological Macromolecules, 146, 730-38.
  • Wang, L., Mu, R. J., Li, Y., Lin, L., Lin, Z., & Pang, J. (2019). Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nanofibril films. LWT, 113. https://doi.org/10.1016/j.lwt.2019.108293
  • Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., vd. (2003). One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials, 15(5), 353–389. http://doi.org/10.1002/adma.200390087
  • Yang, L., Tang, B., & Wu, P. (2015). Metal-organic framework-graphene oxide composites: A facile method to highly improve the proton conductivity of PEMs operated under low humidity. Journal of Materials Chemistry A, 3(31). https://doi.org/10.1039/c5ta03507d
  • Yang, Y., Zan, J., Yang, W., Qi, F., He, C., Huang, S., vd. (2020). Metal organic frameworks as a compatible reinforcement in a biopolymer bone scaffold. Materials Chemistry Frontiers, 4(3), 973–984. http://doi.org/10.1039/C9QM00772E
  • Yildirim, S., Röcker, B., Pettersen, M. K., Nygaard, J. N., Ayhan, Z., Rutkaite, R., vd. (2018). Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165–199. http://doi.org/10.1111/1541-4337.12322
  • Yuan, Y., Zhang, S., Ma, M., Wang, D., & Xu, Y. (2022). Encapsulation and delivery of curcumin in cellulose nanocrystals nanoparticles using pH-driven method. LWT, 155. https://doi.org/10.1016/j.lwt.2021.112863
  • Zhang, J., Huang, X., Zou, X., Shi, J., Zhai, X., Liu, L., Li, Z., Holmes, M., Gong, Y., Povey, M., & Xiao, J. (2021). A visual indicator based on curcumin with high stability for monitoring the freshness of freshwater shrimp, Macrobrachium rosenbergii. Journal of Food Engineering, 292. https://doi.org/10.1016/j.jfoodeng.2020.110290
  • Zhang, Y., Jia, Y., Li, M., & Hou, L. (2018). Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28015-7
  • Zheng, M., Liu, S., Guan, X., & Xie, Z. (2015). One-Step Synthesis of Nanoscale Zeolitic Imidazolate Frameworks with High Curcumin Loading for Treatment of Cervical Cancer. ACS Applied Materials & Interfaces, 7(40), 22181–22187. http://doi.org/10.1021/acsami.5b04315 Zivanovic, S.; Buescher, R.; Kim, S.K. (2003) Mushroom texture, cell wall composition, color, and ultrastructure as affected by pH and temperature. Journal of Food Science, 68, 1860–1865.

DEVELOPMENT OF ACTIVE FILM FOR FOOD PACKAGING APPLICATIONS WITH CURCUMIN-LOADED ZEOLITIC IMIDAZOLATE FRAMEWORK-8

Yıl 2022, Cilt: 47 Sayı: 5, 916 - 940, 30.10.2022
https://doi.org/10.15237/gida.GD22067

Öz

Active packaging aims to reduce food waste by extending food shelf life. Packaging materials developed from biodegradable, sustainable and renewable resources are required to reduce environmental pollution and conserve natural resources. Therefore, curcumin, a natural extract with antioxidant and antimicrobial properties, was encapsulated into zeolitic imidazole framework-8 nanocrystals (K-ZIF-8) in this study. Chitin nanocomposites, support materials of the designed active package, were extracted from the cultivated mushroom. Bioactive properties of the films improved as the amount of K-ZIF-8 increased. Addition of K-ZIF-8 did not have a significant effect on mechanical, barrier, optical, thermal and morphological properties of chitin films. Antimicrobial test revealed that chitin-based nanocomposite films were effective against E.coli, but not against S.aureus. The highest antimicrobial effect, total phenolic content and antioxidant activity was obtained in the film containing 10XMIC equivalent of K-ZIF-8 concentration. However, film durability tests indicated that these films are not suitable for long-term storage.

Proje Numarası

120O886

Kaynakça

  • Abbas, M., Hussain, T., Arshad, M., Ansari, A. R., Irshad, A., Nisar, J., Hussain, F., Masood, N., Nazir, A., Iqbal, M. (2019). Wound healing potential of curcumin cross-linked chitosan/polyvinyl alcohol. International Journal of Biological Macromolecules, 140. https://doi.org/10.1016/j.ijbiomac.2019.08.153
  • Abdou, E. S., Galhoum, G. F., & Mohamed, E. N. (2018). Curcumin loaded nanoemulsions/pectin coatings for refrigerated chicken fillets. Food Hydrocolloids, 83. https://doi.org/10.1016/j.foodhyd.2018.05.026
  • Asgher M., Qamar S.A., Bilal M., Iqbal H.M.N. (2020) Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials, Food Research International, 137, 109625.
  • ASTM. (2005). Standard test method for water vapor transmission of materials (E 96- 05). Philadelphia, PA, USA.
  • ASTM. (2009). Standard test method for tensile properties of thin plastic sheeting (D 882-09). Philadelphia, PA, USA.
  • ASTM (2010) Standard test method for oxygen gas transmission rate through plastic film and sheeting using a coulometric sensor (D 3985) ) Philadelphia, PA, USA.
  • Adilah, A. N., Jamilah, B., Noranizan, M. A., & Hanani, Z. A. N. (2018). Utilization of mango peel extracts on the biodegradable films for active packaging. Food Packaging and Shelf Life, 16, 1–7. http://doi.org/10.1016/j.fpsl.2018.01.006
  • Ahmadi A., Ahmadi P., Ehsani A. (2020) Development of an active packaging system containing zinc oxide nanoparticles for the extension of chicken fillet shelf-life. Food Science and Nutrition, 00:1-13. https://doi.org/10.1002/fsn3.1812
  • Akhtar, M. J., Jacquot, M., Jasniewski, J., Jacquot, C., Imran, M., Jamshidian, M., vd. (2012). Antioxidant capacity and light-aging study of HPMC films functionalized with natural plant extract. Carbohydrate Polymers, 89(4), 1150–1158. http://doi.org/10.1016/j.carbpol.2012.03.088
  • Anand, P., Kunnumakkara, A. B., Newman, R. A., & Aggarwal, B. B. (2007). Bioavailability of curcumin: problems and promises. Molecular Pharmaceutics, 4(6), 807–818. http://doi.org/10.1021/mp700113r
  • Arfat, Y. A., Benjakul, S., Prodpran, T., Sumpavapol, P., & Songtipya, P. (2014). Properties and antimicrobial activity of fish protein isolate/fish skin gelatin film containing basil leaf essential oil and zinc oxide nanoparticles. Food Hydrocolloids, 41, 265–273. http://doi.org/10.1016/j.foodhyd.2014.04.023
  • Aziz, S. B., Abdullah, O. G., Brza, M. A., Azawy, A. K., & Tahir, D. A. (2019). Effect of carbon nano-dots (CNDs) on structural and optical properties of PMMA polymer composite. Results in Physics, 15. https://doi.org/10.1016/j.rinp.2019.102776
  • Bajpai, S. K., Chand, N., & Ahuja, S. (2015). Investigation of curcumin release from chitosan/cellulose micro crystals (CMC) antimicrobial films. International Journal of Biological Macromolecules, 79. https://doi.org/10.1016/j.ijbiomac.2015.05.012
  • Bernd, A. (2014). Visible light and/or UVA offer a strong amplification of the anti-tumor effect of curcumin. Phytochemistry Reviews, 13(1), 183–189. http://doi.org/10.1007/s11101-013-9296-2
  • Bershtein, V. A., Egorov, V. M., Egorova, L. M., & Ryzhov, V. A. (1994). The role of thermal analysis in revealing the common molecular nature of transitions in polymers. Thermochimica Acta, 238(C). https://doi.org/10.1016/S0040-6031(94)85206-5
  • Bhawana, Basniwal, R. K., Buttar, H. S., Jain, V. K., & Jain, N. (2011). Curcumin nanoparticles: Preparation, characterization, and antimicrobial study. Journal of Agricultural and Food Chemistry, 59(5). https://doi.org/10.1021/jf104402t
  • Bojorges, H., Ríos-Corripio, M. A., Hernández-Cázares, A. S., Hidalgo-Contreras, J. V., & Contreras-Oliva, A. (2020). Effect of the application of an edible film with turmeric (Curcuma longa L.) on the oxidative stability of meat. Food Science and Nutrition, 8(8). https://doi.org/10.1002/fsn3.1728
  • Cai, Y., Guan, J., Wang, W., Wang, L., Su, J., & Fang, L. (2021). pH and light-responsive polycaprolactone/curcumin@zif-8 composite films with enhanced antibacterial activity. Journal of Food Science, 86(8). https://doi.org/10.1111/1750-3841.15839
  • Cai, Z., Qu, Z., Lan, Y., Zhao, S., Ma, X., Wan, Q., vd. (2016). Conventional, ultrasound-assisted, and accelerated-solvent extractions of anthocyanins from purple sweet potatoes. Food Chemistry, 197, 266–272. http://doi.org/10.1016/j.foodchem.2015.10.110
  • Cano, A., Cháfer, M., Chiralt, A., & González-Martínez, C. (2016). Development and characterization of active films based on starch-PVA, containing silver nanoparticles. Food Packaging and Shelf Life, 10, 16–24. http://doi.org/10.1016/j.fpsl.2016.07.002
  • Cestari, L. A., Gaiotto, R. C., Antigo, J. L., Scapim, M. R. S., Madrona, G. S., Yamashita, F., vd. (2015). Effect of active packaging on low-sodium restructured chicken steaks. Journal of Food Science and Technology, 52(6), 3376–3382. http://doi.org/10.1007/s13197-014-1357-z
  • Chantarasataporn, P., Tepkasikul, P., Kingcha, Y., Yoksan, R., Pichyangkura, R., Visessanguan, W., & Chirachanchai, S. (2014). Water-based oligochitosan and nanowhisker chitosan as potential food preservatives for shelf-life extension of minced pork. Food Chemistry, 159, 463–470. http://doi.org/10.1016/j.foodchem.2014.03.019
  • Chen, J., Zhang, X., Huang, C., Cai, H., Hu, S., Wan, Q., vd. (2017). Osteogenic activity and antibacterial effect of porous titanium modified with metal‐organic framework films. Journal of Biomedical Materials Research. Part A, 105(3), 834–846. http://doi.org/10.1002/jbm.a.35960
  • Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food.
  • Condat, M., Mazeran, P. E., Malval, J. P., Lalevée, J., Morlet-Savary, F., Renard, E., vd. (2015). Photoinduced curcumin derivative-coatings with antibacterial properties. RSC Advances, 5(104), 85214–85224. http://doi.org/10.1039/C5RA19499G
  • Devarayan, K., & Kim, B.-S. (2015). Reversible and universal pH sensing cellulose nanofibers for health monitor. Sensors and Actuators B: Chemical, 209, 281–286. http://doi.org/10.1016/j.snb.2014.11.120
  • de Oliveira, E. F., Tosati, J. V., Tikekar, R. V., Monteiro, A. R., & Nitin, N. (2018). Antimicrobial activity of curcumin in combination with light against Escherichia coli O157:H7 and Listeria innocua: Applications for fresh produce sanitation. Postharvest Biology and Technology, 137. https://doi.org/10.1016/j.postharvbio.2017.11.014
  • Duan, S., Duan, S., Zhao, X., Su, Z., Wang, C., & Lin, Y. (2020). Layer-by-Layer Decorated Nanoscale ZIF-8 with High Curcumin Loading Effectively Inactivates Gram-Negative and Gram-Positive Bacteria. ACS Applied Bio Materials, 3(6). https://doi.org/10.1021/acsabm.0c00300
  • Dujic, J., Kippenberger, S., Hoffmann, S., Ramirez-Bosca, A., Miquel, J., Diaz-Alperi, J., vd. (2007). Low Concentrations of Curcumin Induce Growth Arrest and Apoptosis in Skin Keratinocytes Only in Combination with UVA or Visible Light. Journal of Investigative Dermatology, 127(8), 1992–2000. http://doi.org/10.1038/sj.jid.5700801
  • Eren, E., & Pekşen, A. (2016). Status and Future Outlook of Cultivated Mushroom Sector in Turkey. Turkish Journal of Agriculture - Food Science and Technology, 4(3), 189–196. http://doi.org/10.24925/turjaf.v4i3.189-196.595
  • European Commission, 2010. Final report: preparatory study on food waste across EU 27. European Commission, Joint Research Centre, Institute for Environment and Sustainability.
  • European Commission Regulation (EU) No 10/2011 of 14 January 2011 on plastic materials and articles intended to come into contact with food.
  • Fazli WAn Nawawi, W. M., Lee, K.-Y., Kontturi, E., Murphy, R. J., & Bismarck, A. (2019). Chitin Nanopaper from Mushroom Extract: Natural Composite of Nanofibers and Glucan from a Single Biobased Source. ACS Sustainable Chemistry & Engineering, 7(7), 6492–6496. http://doi.org/10.1021/acssuschemeng.9b00721
  • Fu D., Ding Y., Guo R. vd. (2022) Polylactic acid/polyvinyl alcohol-quaternary ammonium chitosan double-layer films doped with novel antimicrobial agent CuO@ZIF-8 NPs for fruit preservation, International Journal of Biological Macromolecules, 195:538-46.
  • Gaikwad K.K., Singh S., Lee Y.S. (2017) A pyrogallol-coated modified LDPE film as an oxygen scavenging film for active packaging, 111, 186-95. https://doi.org/10.1016/j.porgcoat.2017.05.016
  • Gan, I., & Chow, W. S. (2018). Antimicrobial poly(lactic acid)/cellulose bionanocomposite for food packaging application: A review. Food Packaging and Shelf Life, 17, 150–161. http://doi.org/10.1016/j.fpsl.2018.06.012
  • George, S. C., & Thomas, S. (2001). Transport phenomena through polymeric systems. Progress in Polymer Science, 26(6), 985–1017. http://doi.org/10.1016/S0079-6700(00)00036-8
  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. http://doi.org/10.1126/sciadv.1700782
  • Gontard, N., Duchez, C., Cuq, J. L., & Guilbert, S. (1994). Edible composite films of wheat gluten and lipids: water vapour permeability and other physical properties. International Journal of Food Science and Technology, 29(1), 39–50. http://doi.org/10.1111/j.1365-2621.1994.tb02045.x
  • Gortari M.C., Hours R.A. (2013) Biotechnological processes for chitin recovery out of crustacean waste: a mini-review, Electron. J. Biotechnol., 16 (3), 14
  • Gunes, H., Gulen, D., Mutlu, R., Gumus, A., Tas, T., & Topkaya, A. E. (2013). Antibacterial effects of curcumin. Toxicology and Industrial Health, 32(2), 246–250.
  • Guo G., Fu S., Zhou L. Vd. (2011) Preparation of curcumin loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) nanofibers and their in vitro antitumor activity against Glioma 9L cells, Nanoscale, 3, 3825-32.
  • Hafsa, J., Smach, M. A., Ben Khedher, M. R., Charfeddine, B., Limem, K., Majdoub, H., & Rouatbi, S. (2016). Physical, antioxidant and antimicrobial properties of chitosan films containing Eucalyptus globulus essential oil. Lwt-Food Science and Technology, 68, 356–364.
  • Hai L., E.S. Choi, L. Zhai, P.S. Panicker, J. Kim (2020) Green nanocomposite made with chitin and bamboo nanofibers and its mechanical, thermal and biodegradable properties for food packaging, International Journal of Biological Macromolecules, 144, 491-499.
  • Han, J. H., & Floros, J. D. (1997). Casting antimicrobial packaging films and measuring their physical properties and antimicrobial activity. Journal of Plastic Film and Sheeting, 13(4). https://doi.org/10.1177/875608799701300405
  • Hewlings, S. J., & Kalman, D. S. (2017). Curcumin: A Review of Its’ Effects on Human Health. Foods, 6(10), 92. http://doi.org/10.3390/foods6100092
  • Hoop, M., Walde, C. F., Riccò, R., Mushtaq, F., Terzopoulou, A., Chen, X. Z., vd. (2018). Biocompatibility characteristics of the metal organic framework ZIF-8 for therapeutical applications. Applied Materials Today, 11, 13–21. http://doi.org/10.1016/j.apmt.2017.12.014
  • Huang, D., Xin, Q., Ni, Y., Shuai, Y., Wang, S., Li, Y., Ye, H., Lin, L., Ding, X., & Zhang, Y. (2018). Synergistic effects of zeolite imidazole framework@graphene oxide composites in humidified mixed matrix membranes on CO2 separation. RSC Advances, 8(11). https://doi.org/10.1039/c7ra09794h
  • Ifuku S., Nogi M., Abe K., Yoshioka M., Morimoto M., Saimoto H., Yano H. (2009) Preparation of chitin nanofibers with a uniform width as α-chitin from crab shells Biomacromolecules, 10 (6), 1584-1588.
  • Ifuku, S.; Nogi, M.; Abe, K.; Yoshioka, M.; Morimoto, M.; Saimoto, H.; Yano, H. (2011)Simple preparation method of chitin nanofibers with a uniform width of 10–20 nm from prawn shell under neutral conditions. Carbohydrate Polymers, 84, 762–764.
  • Ifuku S. (2014) Chitin and Chitosan Nanofibers: Preparation and Chemical Modifications, Molecules, 19, 18367-18380; doi:10.3390/molecules191118367.
  • Ifuku, S., & Saimoto, H. (2012). Chitin nanofibers: preparations, modifications, and applications. Nanoscale, 4(11), 3308–3318. http://doi.org/10.1039/c2nr30383c.
  • Ivshina, T.N.; Artamonova, S.D.; Ivshin, V.P.; Sharnina, F.F. (2009) Isolation of the chitin-glucan complex from the fruiting bodies of mycothallus. Appl. Biochem. Microbiol., 45, 313–318
  • Ji D., Choi S., Kim J. (2018) A Hydrogel‐Film Casting to Fabricate Platelet‐Reinforced Polymer Composite Films Exhibiting Superior Mechanical Properties. Small, 14: 1-8. https://doi.org/10.1002/smll.201801042.
  • Ji D., Kim J. (2019) Bioinspired Design and Fabrication of Polymer Composite Films Consisting of a Strong and Stiff Organic Matrix and Microsized Inorganic Platelets. ACS Nano, 13:3, 2773-85. https://doi.org/10.1021/acsnano.8b06767
  • Jovanovic S.V., Boone C.W., Steenken S., Trinoga M., & Kaskey, R. B. (2001). How Curcumin Works Preferentially with Water Soluble Antioxidants. Journal of the American Chemical Society, 123, 3064–3068. http://doi.org/10.1021/ja003823x
  • Kanatt S.R. ve Chawla S.P. (2018) Shelf life extension of chicken packed in active film developed with mango peel extract, Journal of Food Safety, 38:12385, 1-12. https://doi.org/10.1111/jfs.12385
  • Kanmani, P., & Rhim, J.-W. (2014). Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydrate Polymers, 106, 190–199. http://doi.org/10.1016/j.carbpol.2014.02.007
  • Karimi Alavijeh, R., Beheshti, S., Akhbari, K., & Morsali, A. (2018). Investigation of reasons for metal–organic framework’s antibacterial activities. Polyhedron, 156, 257–278. http://doi.org/10.1016/j.poly.2018.09.028
  • Kaur, S., & Dhillon, G. S. (2015). Recent trends in biological extraction of chitin from marine shell wastes: a review. Critical Reviews in Biotechnology, 35(1), 44–61. http://doi.org/10.3109/07388551.2013.798256
  • Kevij H.T., Salami M., Mohammadian M., Khodadi M. (2020) Fabrication and investigation of physicochemical, food simulant release, and antioxidant properties of whey protein isolate-based films activated by loading with curcumin through the pH-driven method, Food Hydrocolloids, 108, 106026.
  • Kim, S. A., Kim, N. H., Lee, S. H., Hwang, I. G., & Rhee, M. S. (2014). Survival of foodborne pathogenic bacteria (Bacillus cereus, Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, Staphylococcus aureus, and Listeria monocytogenes) and Bacillus cereus spores in fermented alcoholic beverages (beer and refined rice wine). Journal of Food Protection, 77(3), 419–426. http://doi.org/10.4315/0362-028X.JFP-13-234
  • Knowles, T. P. J., Oppenheim, T. W., Buell, A. K., Chirgadze, D. Y., & Welland, M. E. (2010). Nanostructured films from hierarchical self-assembly of amyloidogenic proteins. Nature Nanotechnology, 5(3), 204–207. http://doi.org/10.1038/nnano.2010.26
  • Ko, J. H., Yin, H., An, J., Chung, D. J., Kim, J. H., Lee, S. B., & Pyun, D. G. (2010). Characterization of cross-linked gelatin nanofibers through electrospinning. Macromolecular Research, 18(2), 137–143. http://doi.org/10.1007/s13233-009-0103-2
  • Kohsari, I., Shariatinia, Z., & Pourmortazavi, S. M. (2016). Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles. International Journal of Biological Macromolecules, 91. https://doi.org/10.1016/j.ijbiomac.2016.06.039
  • Kolev, T. M., Velcheva, E. A., Stamboliyska, B. A., & Spiteller, M. (2005). DFT and experimental studies of the structure and vibrational spectra of curcumin. International Journal of Quantum Chemistry, 102(6). https://doi.org/10.1002/qua.20469
  • Kontturi, E., Laaksonen, P., Linder, M. B., Nonappa, Groechel, A. H., Rojas, O. J., & Ikkala, O. (2018). Advanced Materials through Assembly of Nanocelluloses. Advanced Materials, 30(24). http://doi.org/10.1002/adma.201703779
  • Konuk Takma, D., & Korel, F. (2019). Active packaging films as a carrier of black cumin essential oil: Development and effect on quality and shelf-life of chicken breast meat. Food Packaging and Shelf Life, 19. https://doi.org/10.1016/j.fpsl.2018.11.002
  • Lange, J., & Wyser, Y. (2003). Recent Innovations in Barrier Technologies for Plastic Packaging - A Review. In Packaging Technology and Science (Vol. 16, Issue 4). https://doi.org/10.1002/pts.621
  • Le Corre, D., Bras, J., & Dufresne, A. (2010). Starch Nanoparticles: A Review. Biomacromolecules, 11(5), 1139–1153. http://doi.org/10.1021/bm901428y
  • Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal–organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450–1459. http://doi.org/10.1039/B807080F
  • Lee, M. A., Choi, J. H., Choi, Y. S., Han, D. J., Kim, H. Y., Shim, S. Y., Chung, H. K., & Kim, C. J. (2010). The antioxidative properties of mustard leaf (Brassica juncea) kimchi extracts on refrigerated raw ground pork meat against lipid oxidation. Meat Science, 84(3). https://doi.org/10.1016/j.meatsci.2009.10.004
  • Lee, S., Lei, Y., Wang, D., Li, C., Cheng, J., Wang, J., Meng, W., & Liu, M. (2019). The study of zeolitic imidazolate framework (ZIF-8) doped polyvinyl alcohol/starch/methyl cellulose blend film. Polymers, 11(12). https://doi.org/10.3390/polym11121986
  • Li, M. C., Wu, Q., Song, K., Cheng, H. N., Suzuki, S., & Lei, T. (2016). Chitin Nanofibers as Reinforcing and Antimicrobial Agents in Carboxymethyl Cellulose Films: Influence of Partial Deacetylation. ACS Sustainable Chemistry and Engineering, 4(8). https://doi.org/10.1021/acssuschemeng.6b00981
  • Liu, F., Lin, L., Zhang, Y., Sheng, S., Wang, Y., Xu, C., vd. (2019). Two-dimensional nanosheets with high curcumin loading content for multimodal imaging-guided combined chemo-photothermal therapy. Biomaterials, 223, 119470. http://doi.org/10.1016/j.biomaterials.2019.119470
  • Liu, J., Wang, H., Wang, P., Guo, M., Jiang, S., Li, X., & Jiang, S. (2018). Films based on κ-carrageenan incorporated with curcumin for freshness monitoring. Food Hydrocolloids, 83, 134–142. http://doi.org/10.1016/j.foodhyd.2018.05.012
  • Liu, X. F., Guan, Y. L., Yang, D. Z., Li, Z., & Yao, K. De. (2001). Antibacterial action of chitosan and carboxymethylated chitosan. Journal of Applied Polymer Science, 79(7). https://doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L
  • Lombo Vidal, O., Tsukui, A., Garrett, R., Miguez Rocha-Leão, M. H., Piler Carvalho, C. W., Pereira Freitas, S., Moraes de Rezende, C., & Simões Larraz Ferreira, M. (2020). Production of bioactive films of carboxymethyl cellulose enriched with green coffee oil and its residues. International Journal of Biological Macromolecules, 146. https://doi.org/10.1016/j.ijbiomac.2019.10.123
  • Lv N., Guo T., Liu B., Wang C., Singh V., vd. (2017) Improvement in Thermal Stability of Sucralose by γ-Cyclodextrin Metal-Organic Frameworks. Pharmaceutical Research, 34:269-78. http://doi.org/10.1007/s11095-016-2059-1
  • Ma Q., Ren Y., Wang L. (2017) Investigation of antioxidant activity and release kinetics of curcumin from tara gum/polyvinyl alcohol active film, Food Hydrocolloids, 70, 286-92.
  • Moradi E., Moosavi M.H., Hosseini S.M, Mirmoghtadaie L. vd. (2020) Prolonging shelf life of chicken breast fillets by using plasma-improved chitosan/low density polyethylene bilayer film containing summer savory essential oil. International Journal of Biological Macromolecules, 156: 321-328. https://doi.org/10.1016/j.ijbiomac.2020.03.226
  • Muppalla S.R., Kanatt S.R., Chawla S.P., Sharma A. (2014) Carboxymethyl cellulose-polyvinyl alcohol films with clove oil for active packaging of ground chicken meat. Food Packaging and Shelf Life, 2:2, 51-58. https://doi.org/10.1016/j.fpsl.2014.07.002
  • Mushi N.E. (2021) A review on native well-preserved chitin nanofibrils for materials of high mechanical performance, International Journal of Biological Macromolecules, 178, 591-606.
  • Musso Y.S., Salgado P.R., Mauri A.N. (2017) Smart edible films based on gelatin and curcumin, Food Hydrocolloids, 66, 8-1.5
  • Nam, Y. S., Park, W. H., Ihm, D., & Hudson, S. M. (2010). Effect of the degree of deacetylation on the thermal decomposition of chitin and chitosan nanofibers. Carbohydrate Polymers, 80(1). https://doi.org/10.1016/j.carbpol.2009.11.030
  • Nguyen, T. T. T., Nguyen, L. H. T., Mai, N. X. D., Ta, H. K. T., Nguyen, T. L. T., Le, U. C. N., Phan, B. T., Doan, N. N., & Doan, T. L. H. (2021). Mild and large-scale synthesis of nanoscale metal-organic framework used as a potential adenine-based drug nanocarrier. Journal of Drug Delivery Science and Technology, 61. https://doi.org/10.1016/j.jddst.2020.102135
  • Pan, K., Zhong, Q., & Baek, S. J. (2013). Enhanced Dispersibility and Bioactivity of Curcumin by Encapsulation in Casein Nanocapsules. Journal of Agricultural and Food Chemistry, 61(25), 6036–6043. http://doi.org/10.1021/jf400752a
  • Pan, Y., Liu, Y., Zeng, G., Zhao, L., & Lai, Z. (2011). Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 47(7). https://doi.org/10.1039/c0cc05002d
  • Papineau, A. M., Hoover, D. G., Knorr, D., & Farkas, D. F. (1991). Antimicrobial effect of water-soluble chitosans with high hydrostatic pressure. Food Biotechnology, 5(1). https://doi.org/10.1080/08905439109549790
  • Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M., & Yaghi, O. M. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America, 103(27). https://doi.org/10.1073/pnas.0602439103
  • Oliveira, E. F., Tosati, J. V., Tikekar, R. V., Monteiro, A. R., & Nitin, N. (2018). Antimicrobial activity of curcumin in combination with light against Escherichia coli O157:H7 and Listeria innocua: Applications for fresh produce sanitation. Postharvest Biology and Technology, 137, 86–94. http://doi.org/10.1016/j.postharvbio.2017.11.014
  • Qian, L., Lei, D., Duan, X., Zhang, S., Song, W., Hou, C., & Tang, R. (2018). Design and preparation of metal-organic framework papers with enhanced mechanical properties and good antibacterial capacity. Carbohydrate Polymers, 192. https://doi.org/10.1016/j.carbpol.2018.03.049
  • Qiu, S., Xue, M., & Zhu, G. (2014). Metal–organic framework membranes: from synthesis to separation application. Chemical Society Reviews, 43(16), 6116–6140. http://doi.org/10.1039/C4CS00159A
  • Rai, D., Singh, J. K., Roy, N., & Panda, D. (2008). Curcumin inhibits FtsZ assembly: an attractive mechanism for its antibacterial activity. The Biochemical Journal, 410(1), 147–155. http://doi.org/10.1042/BJ20070891
  • Ramos M., Beltran A., Peltzer M., Valente A.J., del Carmen Garrigos M. (2014) Release and antioxidant activity of carvacrol and thymol from polypropylene active packaging films, LWT-Food Science and Technology, 58, 470-477.
  • Reis F.S., Martins A., Barros L.,. Ferreira I.C.F.R (2012) Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples, Food and Chemical Toxicology, 50:5, 1201-1207.
  • Riaz Rajoka, M. S., Mehwish, H. M., Wu, Y., Zhao, L., Arfat, Y., Majeed, K., & Anwaar, S. (2020). Chitin/chitosan derivatives and their interactions with microorganisms: a comprehensive review and future perspectives. In Critical Reviews in Biotechnology (Vol. 40, Issue 3). https://doi.org/10.1080/07388551.2020.1713719
  • Roy, S., Rhim, J. W. (2020). Preparation of bioactive functional poly(lactic acid)/curcumin composite film for food packaging application. International Journal of Biological Macromolecules, 162. https://doi.org/10.1016/j.ijbiomac.2020.08.094
  • Salame, M., & Steingiser, S. (1977). Barrier polymers. Polymer-Plastics Technology and Engineering, 8(2). https://doi.org/10.1080/03602557708545034
  • Saldaña, E., Serrano-León, J., Selani, M. M., & Contreras-Castillo, C. J. (2020). Sensory and hedonic impact of the replacement of synthetic antioxidant for pink pepper residue extract in chicken burger. Journal of Food Science and Technology, 57(2), 617–627. http://doi.org/10.1007/s13197-019-04093-x
  • Saravana, P. S., Ho, T. C., Chae, S. J., Cho, Y. J., Park, J. S., Lee, H. J., & Chun, B. S. (2018). Deep eutectic solvent-based extraction and fabrication of chitin films from crustacean waste. Carbohydrate Polymers, 195. https://doi.org/10.1016/j.carbpol.2018.05.018
  • Satam, C. C., & Meredith, J. C. (2021). Increasing efficiency of the homogenization process for production of chitin nanofibers for barrier film applications. Carbohydrate Polymers, 274. https://doi.org/10.1016/j.carbpol.2021.118658
  • Savoie, J.-M.; Minvielle, N.; Largeteau, M. Radical-scavenging properties of extracts from the white button mushroom, Agaricus bisporus. J. Sci. Food Agric. 2008, 88, 970–975.
  • Shankar, S., Wang, L.-F., & Rhim, J.-W. (2017). Preparation and properties of carbohydrate-based composite films incorporated with CuO nanoparticles. Carbohydrate Polymers, 169, 264–271. http://doi.org/10.1016/j.carbpol.2017.04.025
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. American Journal of Enology and Viticulture, 16(3), 144–158.
  • Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids, 24(8), 770–775. http://doi.org/10.1016/j.foodhyd.2010.04.003
  • Smaldone, R. A., Forgan, R. S., Furukawa, H., Gassensmith, J. J., Slawin, A. M. Z., Yaghi, O. M., & Stoddart, J. F. (2010). Metal–Organic Frameworks from Edible Natural Products. Angewandte Chemie International Edition, 49(46), 8630–8634. http://doi.org/10.1002/anie.201002343
  • Sommer I., Schwartz H., Solar S., Sontag G. (2009) Effect of γ-Irradiation on Agaritine, γ-Glutaminyl4-hydroxybenzene (GHB), Antioxidant Capacity, and Total Phenolic Content of Mushrooms (Agaricus bisporus), Journal of Agricultural and Food Chemistry, 57, 5790-94.
  • Sorrentino, A., Gorrasi, G., & Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science and Technology, 18(2), 84–95.
  • Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. In Journal of Food Science (Vol. 68, Issue 2). https://doi.org/10.1111/j.1365-2621.2003.tb05687.x
  • Takma D.K., Korel F. (2019) Active packaging films as a carrier of black cumin essential oil: Development and effect on quality and shelf-life of chicken breast meat. Food Packaging and Shelf Life, 19: 210-17.
  • Tiwari, A., Singh, A., Garg, N., & Randhawa, J. K. (2017). Curcumin encapsulated zeolitic imidazolate frameworks as stimuli responsive drug delivery system and their interaction with biomimetic environment. Scientific Reports, 7(1), 12598–12. http://doi.org/ccm
  • Tudryn, G. J., Smith, L. C., Freitag, J., Bucinell, R., & Schadler, L. S. (2017). Processing and Morphology Impacts on Mechanical Properties of Fungal Based Biopolymer Composites. Journal of Polymers and the Environment, 26(4), 1473–1483. http://doi.org/10.1007/s10924-017-1047-9
  • Tyagi, P., Singh, M., Kumari, H., Kumari, A., & Mukhopadhyay, K. (2015). Bactericidal activity of curcumin I is associated with damaging of bacterial membrane. PLoS ONE, 10(3). https://doi.org/10.1371/journal.pone.0121313
  • Valentini, L., Bon, S. B., & Pugno, N. M. (2018). Combining Living Microorganisms with Regenerated Silk Provides Nanofibril-Based Thin Films with Heat-Responsive Wrinkled States for Smart Food Packaging. Nanomaterials, 8(7). http://doi.org/10.3390/nano8070518
  • Vidal O.L., Tsukui A., Garrett R. vd. (2020) Production of bioactive films of carboxymethyl cellulose enriched with green coffee oil and its residues, International Journal of Biological Macromolecules, 146, 730-38.
  • Wang, L., Mu, R. J., Li, Y., Lin, L., Lin, Z., & Pang, J. (2019). Characterization and antibacterial activity evaluation of curcumin loaded konjac glucomannan and zein nanofibril films. LWT, 113. https://doi.org/10.1016/j.lwt.2019.108293
  • Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., vd. (2003). One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials, 15(5), 353–389. http://doi.org/10.1002/adma.200390087
  • Yang, L., Tang, B., & Wu, P. (2015). Metal-organic framework-graphene oxide composites: A facile method to highly improve the proton conductivity of PEMs operated under low humidity. Journal of Materials Chemistry A, 3(31). https://doi.org/10.1039/c5ta03507d
  • Yang, Y., Zan, J., Yang, W., Qi, F., He, C., Huang, S., vd. (2020). Metal organic frameworks as a compatible reinforcement in a biopolymer bone scaffold. Materials Chemistry Frontiers, 4(3), 973–984. http://doi.org/10.1039/C9QM00772E
  • Yildirim, S., Röcker, B., Pettersen, M. K., Nygaard, J. N., Ayhan, Z., Rutkaite, R., vd. (2018). Active Packaging Applications for Food. Comprehensive Reviews in Food Science and Food Safety, 17(1), 165–199. http://doi.org/10.1111/1541-4337.12322
  • Yuan, Y., Zhang, S., Ma, M., Wang, D., & Xu, Y. (2022). Encapsulation and delivery of curcumin in cellulose nanocrystals nanoparticles using pH-driven method. LWT, 155. https://doi.org/10.1016/j.lwt.2021.112863
  • Zhang, J., Huang, X., Zou, X., Shi, J., Zhai, X., Liu, L., Li, Z., Holmes, M., Gong, Y., Povey, M., & Xiao, J. (2021). A visual indicator based on curcumin with high stability for monitoring the freshness of freshwater shrimp, Macrobrachium rosenbergii. Journal of Food Engineering, 292. https://doi.org/10.1016/j.jfoodeng.2020.110290
  • Zhang, Y., Jia, Y., Li, M., & Hou, L. (2018). Influence of the 2-methylimidazole/zinc nitrate hexahydrate molar ratio on the synthesis of zeolitic imidazolate framework-8 crystals at room temperature. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28015-7
  • Zheng, M., Liu, S., Guan, X., & Xie, Z. (2015). One-Step Synthesis of Nanoscale Zeolitic Imidazolate Frameworks with High Curcumin Loading for Treatment of Cervical Cancer. ACS Applied Materials & Interfaces, 7(40), 22181–22187. http://doi.org/10.1021/acsami.5b04315 Zivanovic, S.; Buescher, R.; Kim, S.K. (2003) Mushroom texture, cell wall composition, color, and ultrastructure as affected by pH and temperature. Journal of Food Science, 68, 1860–1865.
Toplam 125 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Ecem Kaya Bu kişi benim 0000-0003-1183-2841

Leyla Nesrin Kahyaoğlu 0000-0003-3548-4378

Proje Numarası 120O886
Yayımlanma Tarihi 30 Ekim 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 47 Sayı: 5

Kaynak Göster

APA Kaya, E., & Kahyaoğlu, L. N. (2022). KURKUMİN YÜKLENMİŞ ZEOLİTİK İMİDAZOLAT ÇERÇEVE-8 İLE GIDA PAKETLEME UYGULAMALARI İÇİN AKTİF FİLM GELİŞTİRİLMESİ. Gıda, 47(5), 916-940. https://doi.org/10.15237/gida.GD22067
AMA Kaya E, Kahyaoğlu LN. KURKUMİN YÜKLENMİŞ ZEOLİTİK İMİDAZOLAT ÇERÇEVE-8 İLE GIDA PAKETLEME UYGULAMALARI İÇİN AKTİF FİLM GELİŞTİRİLMESİ. GIDA. Ekim 2022;47(5):916-940. doi:10.15237/gida.GD22067
Chicago Kaya, Ecem, ve Leyla Nesrin Kahyaoğlu. “KURKUMİN YÜKLENMİŞ ZEOLİTİK İMİDAZOLAT ÇERÇEVE-8 İLE GIDA PAKETLEME UYGULAMALARI İÇİN AKTİF FİLM GELİŞTİRİLMESİ”. Gıda 47, sy. 5 (Ekim 2022): 916-40. https://doi.org/10.15237/gida.GD22067.
EndNote Kaya E, Kahyaoğlu LN (01 Ekim 2022) KURKUMİN YÜKLENMİŞ ZEOLİTİK İMİDAZOLAT ÇERÇEVE-8 İLE GIDA PAKETLEME UYGULAMALARI İÇİN AKTİF FİLM GELİŞTİRİLMESİ. Gıda 47 5 916–940.
IEEE E. Kaya ve L. N. Kahyaoğlu, “KURKUMİN YÜKLENMİŞ ZEOLİTİK İMİDAZOLAT ÇERÇEVE-8 İLE GIDA PAKETLEME UYGULAMALARI İÇİN AKTİF FİLM GELİŞTİRİLMESİ”, GIDA, c. 47, sy. 5, ss. 916–940, 2022, doi: 10.15237/gida.GD22067.
ISNAD Kaya, Ecem - Kahyaoğlu, Leyla Nesrin. “KURKUMİN YÜKLENMİŞ ZEOLİTİK İMİDAZOLAT ÇERÇEVE-8 İLE GIDA PAKETLEME UYGULAMALARI İÇİN AKTİF FİLM GELİŞTİRİLMESİ”. Gıda 47/5 (Ekim 2022), 916-940. https://doi.org/10.15237/gida.GD22067.
JAMA Kaya E, Kahyaoğlu LN. KURKUMİN YÜKLENMİŞ ZEOLİTİK İMİDAZOLAT ÇERÇEVE-8 İLE GIDA PAKETLEME UYGULAMALARI İÇİN AKTİF FİLM GELİŞTİRİLMESİ. GIDA. 2022;47:916–940.
MLA Kaya, Ecem ve Leyla Nesrin Kahyaoğlu. “KURKUMİN YÜKLENMİŞ ZEOLİTİK İMİDAZOLAT ÇERÇEVE-8 İLE GIDA PAKETLEME UYGULAMALARI İÇİN AKTİF FİLM GELİŞTİRİLMESİ”. Gıda, c. 47, sy. 5, 2022, ss. 916-40, doi:10.15237/gida.GD22067.
Vancouver Kaya E, Kahyaoğlu LN. KURKUMİN YÜKLENMİŞ ZEOLİTİK İMİDAZOLAT ÇERÇEVE-8 İLE GIDA PAKETLEME UYGULAMALARI İÇİN AKTİF FİLM GELİŞTİRİLMESİ. GIDA. 2022;47(5):916-40.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/