Derleme
BibTex RIS Kaynak Göster

OZON UYGULAMASININ TAHIL VE ÜRÜNLERİ ÜZERİNDEKİ ETKİLERİ

Yıl 2023, Cilt: 48 Sayı: 2, 285 - 304, 15.04.2023
https://doi.org/10.15237/gida.GD22117

Öz

Ozon (O3), kimyasal ve mikrobiyal detoksifikasyon amacıyla gıda endüstrisinin farklı alanlarında (taze meyve ve sebzeler, süt ürünleri, meyve suyu işleme endüstrisi, tahıl ve tahıl ürünleri endüstrisi, suların sterilizasyonu ve ambalajlama teknolojisi) yaygın olarak kullanılan ve genellikle güvenli olarak kabul edilen (GRAS) kuvvetli bir oksidan bileşik olup yeşil teknoloji potansiyeline sahiptir. Ozon uygulaması ile gıdaların mikrobiyolojik kalitesi iyileştirilerek raf ömrü uzamakta, ayrıca gıdalardaki mikotoksinler etkili bir şekilde azaltılmakta veya tamamıyla elemine edilebilmektedir. Ayrıca uygulama parametrelerine bağlı olarak tahılın önemli makro ve mikro bileşenlerinden protein, nişasta, renk, mineral madde, biyoaktif bileşenler, yağ, asitlik ve çimlenme kabiliyeti üzerinde olumlu/olumsuz birtakım değişikliklere neden olmakta ve son ürün özelliklerini etkilemektedir. Bu derleme çalışmasının amacı ozonun uygulama parametrelerine bağlı olarak tahılda meydana getirdiği fiziksel, kimyasal, fizikokimyasal ve tekstürel özelliklerindeki değişikliklerin bazı literatür verileri ile açıklanmasıdır.

Kaynakça

  • Afsah‐Hejri, L., Hajeb, P., Ehsani, R. J. (2020). Application of ozone for degradation of mycotoxins in food: A review. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1777-1808. https://doi.org/10.1111/1541-4337.12594
  • Alegbeleye, O., Odeyemi, O. A., Strateva, M., Stratev, D. (2022). Microbial spoilage of vegetables, fruits and cereals. Applied Food Research, 2(1), 100122. https://doi.org/10.1016/j.afres.2022.100122
  • Arda, B., Onbaşı, E., Öztürk, A., Cınar, A. (2021). Ozon Gazının Ant fungal Ajan Olarak Etkinliğinin Belirlenmesi. Gıda ve Yem Bilimi, 2(26), 40-48. ISSN 1303-3107
  • Ashogbon, A. O. (2021). Dual modification of various starches: Synthesis, properties and applications. Food Chemistry, 342, 128325. https://doi.org/10.1016/j.foodchem.2020.128325
  • Bai, Y.-P., Zhou, H.-M. (2021). Impact of aqueous ozone mixing on microbiological, quality and physicochemical characteristics of semi-dried buckwheat noodles. Food Chemistry, 336, 127709. https://doi.org/10.1016/j.foodchem.2020.127709
  • Botondi, R., Barone, M., Grasso, C. (2021). A Review into the Effectiveness of Ozone Technology for Improving the Safety and Preserving the Quality of Fresh-Cut Fruits and Vegetables. Foods, 10(4), 748. https://doi.org/10.3390/foods10040748
  • Castanha, N., Matta Junior, M. D. da, Augusto, P. E. D. (2017). Potato starch modification using the ozone technology. Food Hydrocolloids, 66, 343-356. https://doi.org/10.1016/j.foodhyd.2016.12.001
  • Castanha, N., Miano, A. C., Jones, O. G., Reuhs, B. L., Campanella, O. H., Augusto, P. E. D. (2020). Starch modification by ozone: Correlating molecular structure and gel properties in different starch sources. Food Hydrocolloids, 108, 106027. https://doi.org/10.1016/j.foodhyd.2020.106027
  • Chakka, A. K., Sriraksha, M. S., Ravishankar, C. N. (2021). Sustainability of emerging green non-thermal technologies in the food industry with food safety perspective: A review. LWT, 151, 112140. https://doi.org/10.1016/j.lwt.2021.112140
  • Chan, H., Leh, C. P., Bhat, R., Senan, C., Williams, P. A., Karim, A. A. (2011). Molecular structure, rheological and thermal characteristics of ozone-oxidized starch. Food Chemistry, 126(3), 1019-1024. https://doi.org/10.1016/j.foodchem.2010.11.113
  • Chhem-Kieth, S., Holm Rasmussen, L., Rosenfjeld, M., Larsen Andersen, M. (2022). Effects of vegetables and fruit with varying physical damage, fungal infection, and soil contamination on stability of aqueous ozone. Food Bioscience, 102157. https://doi.org/10.1016/j.fbio.2022.102157
  • Chittrakorn, S., Earls, D., MacRitchie, F. (2014). Ozonation as an alternative to chlorination for soft wheat flours. Journal of Cereal Science, 60(1), 217-221. https://doi.org/10.1016/j.jcs.2014.02.013
  • Çatal, H., İbanoğlu, Ş. (2012). Structure, Physico-chemical and Microbiological Properties of Ozone-oxidized Wheat, Corn, Potato and Rice Starches. Journal of Food Science and Engineering, 2(4). https://doi.org/10.17265/2159-5828/2012.04.002
  • Çatal, H., İbanoğlu, Ş. (2014). Effect of aqueous ozonation on the pasting, flow and gelatinization properties of wheat starch. LWT - Food Science and Technology, 59(1), 577-582. https://doi.org/10.1016/j.lwt.2014.04.025
  • Çetinkaya, N., Pazarlar, S., Paylan, İ. C. (2022). Ozone treatment inactivates common bacteria and fungi associated with selected crop seeds and ornamental bulbs. Saudi Journal of Biological Sciences, 29(12), 103480. https://doi.org/10.1016/j.sjbs.2022.103480
  • da Luz, S. R., Almeida Villanova, F., Tuchtenhagen Rockembach, C., Dietrich Ferreira, C., José Dallagnol, L., Luis Fernandes Monks, J., de Oliveira, M. (2022). Reduced of mycotoxin levels in parboiled rice by using ozone and its effects on technological and chemical properties. Food Chemistry, 372, 131174. https://doi.org/10.1016/j.foodchem.2021.131174
  • Demi̇r, M. K., Elgün, A., Elgün, S. M. (2011). Farklı tip unlara ozon uygulamasının,un,hamur ve ekmek kalitesi üzerine etkisi. GIDA, 36(4), Art. 4.
  • Desvignes, C., Chaurand, M., Dubois, M., Sadoudi, A., Abecassis, J., Lullien-Pellerin, V. (2008). Changes in common wheat grain milling behavior and tissue mechanical properties following ozone treatment. Journal of Cereal Science, 47(2), 245-251. https://doi.org/10.1016/j.jcs.2007.04.004
  • Devu, S. S., Dileepmon, R., Kothakota, A., Venkatesh, T., Pandiselvam, R., Garg, R., Jambrak, A., Mediboyina, M. K., Kumar, M., Rajkumar, Raghunathan, R., Mousavi Khaneghah, A. (2022). Recent advancements in baking technologies to mitigate formation of toxic compounds: A comprehensive review. Food Control, 135, 108707. https://doi.org/10.1016/j.foodcont.2021.108707
  • Dubois, M., Coste, C., Despres, A. G., Efstathiou, T., Nio, C., Dumont, E. (2006). Safety of Oxygreen, an ozoen treatment on wheat grains, Part 2. Is there a substantianol equivalance between Oxygreen-treated wheat grains and untreated wheat grains. Food Additives & Contaminants, 23, 1-15.
  • Elgün, M. S., Bilgiçli, N. (2019). Buğday Ununa Ozon Gazı Uygulamasının Un ve Ekmek Kalitesine Etkisi. Akademik Gıda, 329-341. https://doi.org/10.24323/akademik-gida.647710
  • Epelle, E. I., Macfarlane, A., Cusack, M., Burns, A., Thissera, B., Mackay, W., Rateb, M. E., Yaseen, M. (2022). Bacterial and fungal disinfection via ozonation in air. Journal of Microbiological Methods, 194, 106431. https://doi.org/10.1016/j.mimet.2022.106431
  • Gavahian, M., Sarangapani, C., Misra, N. N. (2021). Cold plasma for mitigating agrochemical and pesticide residue in food and water: Similarities with ozone and ultraviolet technologies. Food Research International, 141, 110138. https://doi.org/10.1016/j.foodres.2021.110138
  • Guo, Y., Zhao, L., Ma, Q., Ji, C. (2021). Novel strategies for degradation of aflatoxins in food and feed: A review. Food Research International, 140, 109878. https://doi.org/10.1016/j.foodres.2020.109878
  • Hamad, G. M., Mehany, T., Simal-Gandara, J., Abou-Alella, S., Esua, O. J., Abdel-Wahhab, M. A., Hafez, E. E. (2023). A review of recent innovative strategies for controlling mycotoxins in foods. Food Control, 144, 109350. https://doi.org/10.1016/j.foodcont.2022.109350
  • Hashemi Moosavi, M., Mousavi Khaneghah, A., Javanmardi, F., Hadidi, M., Hadian, Z., Jafarzadeh, S., Huseyn, E., Sant’Ana, A. S. (2021). A review of recent advances in the decontamination of mycotoxin and inactivation of fungi by ultrasound. Ultrasonics Sonochemistry, 79, 105755. https://doi.org/10.1016/j.ultsonch.2021.105755
  • Hu, J., Li, X., Cheng, Z., Fan, X., Ma, Z., Hu, X., Wu, G., Xing, Y. (2022). Modified Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch by gaseous ozone: Structural, physicochemical and in vitro digestible properties. Food Hydrocolloids, 125, 107365. https://doi.org/10.1016/j.foodhyd.2021.107365
  • Hu, J., Li, X., Jing, Y., Hu, X., Ma, Z., Liu, R., Song, G., Zhang, D. (2020). Effect of gaseous ozone treatment on the microbial and physicochemical properties of buckwheat-based composite flour and shelf-life extension of fresh noodles. Journal of Cereal Science, 95, 103055. https://doi.org/10.1016/j.jcs.2020.103055
  • Ingegno, B. L., Tavella, L. (2022). Ozone gas treatment against three main pests of stored products by combination of different application parameters. Journal of Stored Products Research, 95, 101902. https://doi.org/10.1016/j.jspr.2021.101902
  • Kaur, K., Pandiselvam, R., Kothakota, A., Padma Ishwarya, S., Zalpouri, R., Mahanti, N. K. (2022). Impact of ozone treatment on food polyphenols – A comprehensive review. Food Control, 142, 109207. https://doi.org/10.1016/j.foodcont.2022.109207
  • Kolaç, T., Gürbüz, P., Yetiş, G. (2017). Doğal Ürünlerin Fenolik İçeriği Ve Antioksidan Özellikleri. İstanbul.Üniversitesi Sağlık Hizmetleri Meslek Yüksekokulu Dergisi, 5(1).
  • Li, M., Peng, J., Zhu, K.-X., Guo, X.-N., Zhang, M., Peng, W., Zhou, H.-M. (2013). Delineating the microbial and physical–chemical changes during storage of ozone treated wheat flour. Innovative Food Science & Emerging Technologies, 20, 223-229. https://doi.org/10.1016/j.ifset.2013.06.004
  • Lillo, E., Cordisco, M., Trotta, A., Greco, G., Carbonari, A., Rizzo, A., Sciorsci, R. L., Corrente, M. (2022). Evaluation of antibacterial oxygen/ozone mixture in vitro activity on bacteria isolated from cervico-vaginal mucus of cows with acute metritis. Theriogenology, S0093691X22004459. https://doi.org/10.1016/j.theriogenology.2022.10.031
  • Lima, D. C., Maniglia, B. C., Matta Junior, M. D., Le-Bail, P., Le-Bail, A., Augusto, P. E. D. (2021). Dual-process of starch modification: Combining ozone and dry heating treatments to modify cassava starch structure and functionality. International Journal of Biological Macromolecules, 167, 894-905. https://doi.org/10.1016/j.ijbiomac.2020.11.046
  • Maniglia, B. C., Castanha, N., Rojas, M. L., Augusto, P. E. (2021). Emerging technologies to enhance starch performance. Current Opinion in Food Science, 37, 26-36. https://doi.org/10.1016/j.cofs.2020.09.003
  • Mayookha, V. P., Pandiselvam, R., Kothakota, A., Padma Ishwarya, S., Chandra Khanashyam, A., Kutlu, N., Rifna, E. J., Kumar, M., Panesar, P. S., & Abd El-Maksoud, A. A. (2023). Ozone and cold plasma: Emerging oxidation technologies for inactivation of enzymes in fruits, vegetables, and fruit juices. Food Control, 144, 109399. https://doi.org/10.1016/j.foodcont.2022.109399
  • Mei, J., Liu, G., Huang, X., Ding, W. (2016). Effects of ozone treatment on medium hard wheat (Triticum aestivum L.) flour quality and performance. CyTA-Journal of Food, 14(3), 449-456. https://doi.org/10.1080/19476337.2015.1133714
  • Mendez, F., Maier, D. E., Mason, L. J., Woloshuk, C. P. (2003). Penetration of ozone into columns of stored grains and effects on chemical composition and processing performance. Journal of Stored Products Research, 39(1), 33-44. https://doi.org/10.1016/S0022-474X(02)00015-2
  • Mir, S. A., Dar, B. N., Mir, M. M., Sofi, S. A., Shah, M. A., Sidiq, T., Sunooj, K. V., Hamdani, A. M., Mousavi Khaneghah, A. (2022). Current strategies for the reduction of pesticide residues in food products. Journal of Food Composition and Analysis, 106, 104274. https://doi.org/10.1016/j.jfca.2021.104274 Mir, S. A., Dar, B. N., Shah, M. A., Sofi, S. A., Hamdani, A. M., Oliveira, C. A. F., Hashemi Moosavi, M., Mousavi Khaneghah, A., Sant’Ana, A. S. (2021). Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food and Chemical Toxicology, 148, 111976. https://doi.org/10.1016/j.fct.2021.111976
  • Muştu, Ç. (2020). Yiyecek ve İçecek İşletmelerinde Ozon Uygulamaları. AYDIN GASTRONOMY, 4(1), 45-53. https://doi.org/10.17932/IAU.GASTRONOMY.2017.016/2020.401/gas_v04i1005
  • Nada, S., Nikola, T., Bozidar, U., Ilija, D., Andreja, R. (2022). Prevention and practical strategies to control mycotoxins in the wheat and maize chain. Food Control, 136, 108855. https://doi.org/10.1016/j.foodcont.2022.108855
  • Nickhil, C., Mohapatra, D., Kar, A., Giri, S. K., Tripathi, M. K., Sharma, Y. (2021). Gaseous ozone treatment of chickpea grains, part I: Effect on protein, amino acid, fatty acid, mineral content, and microstructure. Food Chemistry, 345, 128850. https://doi.org/10.1016/j.foodchem.2020.128850
  • Niveditha, A., Pandiselvam, R., Prasath, V. A., Singh, S. K., Gul, K., Kothakota, A. (2021). Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods- a review. Food Control, 130, 108338. https://doi.org/10.1016/j.foodcont.2021.108338
  • Nunes, V. M., Moosavi, M., Mousavi Khaneghah, A., Oliveira, C. A. (2021). Innovative modifications in food processing to reduce the levels of mycotoxins. Current Opinion in Food Science, 38, 155-161. https://doi.org/10.1016/j.cofs.2020.11.010
  • Obadi, M., Zhu, K.-X., Peng, W., Noman, A., Mohammed, K., Zhou, H.-M. (2018). Characterization of oil extracted from whole grain flour treated with ozone gas. Journal of Cereal Science, 79, 527-533. https://doi.org/10.1016/j.jcs.2017.12.007
  • Ojogbo, E., Ogunsona, E. O., Mekonnen, T. H. (2020). Chemical and physical modifications of starch for renewable polymeric materials. Materials Today Sustainability, 7-8, 100028. https://doi.org/10.1016/j.mtsust.2019.100028
  • Özaslan, Z. T., İbanoğlu, Ş. (2022). Ozonation of corn starch in the presence of guar gum: Rheological, thermal and antioxidant properties. Food Hydrocolloids, 124, 107299. https://doi.org/10.1016/j.foodhyd.2021.107299
  • Pandiselvam, R., Singh, A., Agriopoulou, S., Sachadyn-Król, M., Aslam, R., Gonçalves Lima, C. M., Khanashyam, A. C., Kothakota, A., Atakan, O., Kumar, M., Mathanghi, S. K., Mousavi Khaneghah, A. (2022). A comprehensive review of impacts of ozone treatment on textural properties in different food products. Trends in Food Science Technology, 127, 74-86. https://doi.org/10.1016/j.tifs.2022.06.008
  • Phan, L. T., Schaar, H., Saracevic, E., Krampe, J., Kreuzinger, N. (2022). Effect of ozonation on the biodegradability of urban wastewater treatment plant effluent. Science of The Total Environment, 812, 152466. https://doi.org/10.1016/j.scitotenv.2021.152466
  • Qasim, M., Rafique, M. S., Naz, R. (2022). Water purification by ozone generator employing non-thermal plasma. Materials Chemistry and Physics, 291, 126442. https://doi.org/10.1016/j.matchemphys.2022.126442
  • Qian, Y.-F., Zhang, J.-J., Liu, C.-C., Ertbjerg, P., Yang, S.-P. (2022). Effects of gaseous ozone treatment on the quality and microbial community of salmon (Salmo salar) during cold storage. Food Control, 142, 109217. https://doi.org/10.1016/j.foodcont.2022.109217
  • Raghunathan, R., Pandiselvam, R., Kothakota, A., Mousavi Khaneghah, A. (2021). The application of emerging non-thermal technologies for the modification of cereal starches. LWT, 138, 110795. https://doi.org/10.1016/j.lwt.2020.110795
  • Rangel, K., Cabral, F. O., Lechuga, G. C., Carvalho, J. P. R. S., Villas-Bôas, M. H. S., Midlej, V., De-Simone, S. G. (2021). Detrimental Effect of Ozone on Pathogenic Bacteria. Microorganisms, 10(1), 40. https://doi.org/10.3390/microorganisms10010040
  • Sandhu, H. P. S., Manthey, F. A., Simsek, S. (2012). Ozone gas affects physical and chemical properties of wheat (Triticum aestivum L.) starch. Carbohydrate Polymers, 87(2), 1261-1268. https://doi.org/10.1016/j.carbpol.2011.09.003
  • Sandhu, H. P. S., Manthey, F. A., Simsek, S., Ohm, J.-B. (2011). Comparison Between Potassium Bromate and Ozone as Flour Oxidants in Breadmaking. Cereal Chemistry Journal, 88(1), 103-108. https://doi.org/10.1094/CCHEM-06-10-0085
  • Savi, G. D., Gomes, T., Canever, S. B., Feltrin, A. C., Piacentini, K. C., Scussel, R., Oliveira, D., Machado-de-Ávila, R. A., Cargnin, M., Angioletto, E. (2020). Application of ozone on rice storage: A mathematical modeling of the ozone spread, effects in the decontamination of filamentous fungi and quality attributes. Journal of Stored Products Research, 87, 101605. https://doi.org/10.1016/j.jspr.2020.101605
  • Savi, G. D., Piacentini, K. C., Bittencourt, K. O., Scussel, V. M. (2014). Ozone treatment efficiency on Fusarium graminearum and deoxynivalenol degradation and its effects on whole wheat grains (Triticum aestivum L.) quality and germination. Journal of Stored Products Research, 59, 245-253. https://doi.org/10.1016/j.jspr.2014.03.008
  • Sciorsci, R. L., Lillo, E., Occhiogrosso, L., Rizzo, A. (2020). Ozone therapy in veterinary medicine: A review. Research in Veterinary Science, 130, 240-246. https://doi.org/10.1016/j.rvsc.2020.03.026
  • Sirohi, R., Tarafdar, A., Kumar Gaur, V., Singh, S., Sindhu, R., Rajasekharan, R., Madhavan, A., Binod, P., Kumar, S., Pandey, A. (2021). Technologies for disinfection of food grains: Advances and way forward. Food Research International, 145, 110396. https://doi.org/10.1016/j.foodres.2021.110396
  • Sivaranjani, S., Prasath, V. A., Pandiselvam, R., Kothakota, A., & Mousavi Khaneghah, A. (2021). Recent advances in applications of ozone in the cereal industry. LWT, 146, 111412. https://doi.org/10.1016/j.lwt.2021.111412
  • Suman, M. (2021). Last decade studies on mycotoxins’ fate during food processing: An overview. Current Opinion in Food Science, 41, 70-80. https://doi.org/10.1016/j.cofs.2021.02.015
  • Tabla, R., Roa, I. (2022). Use of gaseous ozone in soft cheese ripening: Effect on the rind microorganisms and the sensorial quality. LWT, 170, 114066. https://doi.org/10.1016/j.lwt.2022.114066
  • Tiwari, B. K., Brennan, C. S., Curran, T., Gallagher, E., Cullen, P. J., O’ Donnell, C. P. (2010). Application of ozone in grain processing. Journal of Cereal Science, 51(3), 248-255. https://doi.org/10.1016/j.jcs.2010.01.007
  • Trombete, F., Minguita, A., Porto, Y., Freitas-Silva, O., Freitas-Sá, D., Freitas, S., Carvalho, C., Saldanha, T., Fraga, M. (2016). Chemical, Technological, and Sensory Properties of Wheat Grains ( Triticum aestivum L) as Affected by Gaseous Ozonation. International Journal of Food Properties, 19(12), 2739-2749. https://doi.org/10.1080/10942912.2016.1144067
  • Ünal, D., Sel, T. (2019). Ozone Application and Usage in Veterinary Medicine. Eurasian Journal of Health Sciences, 2(4), 182-190.
  • Ünüsan, N. (2019). Systematic review of mycotoxins in food and feeds in Turkey. Food Control, 97, 1-14. https://doi.org/10.1016/j.foodcont.2018.10.015
  • Vanier, N. L., El Halal, S. L. M., Dias, A. R. G., da Rosa Zavareze, E. (2017). Molecular structure, functionality and applications of oxidized starches: A review. Food Chemistry, 221, 1546-1559. https://doi.org/10.1016/j.foodchem.2016.10.138
  • Violleau, F., Pernot, A.-G., Surel, O. (2012). Effect of Oxygreen® wheat ozonation process on bread dough quality and protein solubility. Journal of Cereal Science, 55(3), 392-396. https://doi.org/10.1016/j.jcs.2012.01.014
  • Wang, L., Luo, Y., Luo, X., Wang, R., Li, Y., Li, Y., Shao, H., Chen, Z. (2016). Effect of deoxynivalenol detoxification by ozone treatment in wheat grains. Food Control, 66, 137-144. https://doi.org/10.1016/j.foodcont.2016.01.038
  • Yildiz, P. O., Yangilar, F. (2014). Ozon ve Gıda Endüstrisinde Kullanım Alanları. BEU Journal of Science, 3 (1), 94-101.
  • Zhang, Y., Mahidul Islam Masum, Md., Gao, C., Cheng, Y., Guan, J. (2022). Ozone reduces the fruit decay of postharvest winter jujube by altering the microbial community structure on fruit surface. Microbiological Research, 262, 127110. https://doi.org/10.1016/j.micres.2022.127110
  • Zhu, F. (2018). Effect of ozone treatment on the quality of grain products. Food Chemistry, 264, 358-366. https://doi.org/10.1016/j.foodchem.2018.05.047
  • Zhu, L., Ma, Q., Chen, J., Zhao, G. (2022). Current progress on innovative pest detection techniques for stored cereal grains and thereof powders. Food Chemistry, 396, 133706. https://doi.org/10.1016/j.foodchem.2022.133706

THE EFFECT OF OZONE TREATMENT ON CEREALS AND PRODUCTS

Yıl 2023, Cilt: 48 Sayı: 2, 285 - 304, 15.04.2023
https://doi.org/10.15237/gida.GD22117

Öz

Ozone (O3) is widely used and generally accepted as safe (GRAS) for chemical and microbial detoxification in different areas of the food industry (fresh fruits and vegetables, dairy products, juice processing industry, grain and cereal products industry, sterilization of water and packaging technology). It is also termed green technology. By ozone application, the microbiological quality of the food is improved, the shelf life is extended, mycotoxins in the food can also be effectively reduced or completely eliminated. Depending on the application parameters, it causes some changes on protein, starch, color, mineral substance, bioactive components, oil, acidity and germination ability, and affects the final product properties. The purpose of this review study is to explain the changes in the physical, chemical, physico-chemical and textural properties of the cereals depending on the application parameters of ozone with some literature data.

Kaynakça

  • Afsah‐Hejri, L., Hajeb, P., Ehsani, R. J. (2020). Application of ozone for degradation of mycotoxins in food: A review. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1777-1808. https://doi.org/10.1111/1541-4337.12594
  • Alegbeleye, O., Odeyemi, O. A., Strateva, M., Stratev, D. (2022). Microbial spoilage of vegetables, fruits and cereals. Applied Food Research, 2(1), 100122. https://doi.org/10.1016/j.afres.2022.100122
  • Arda, B., Onbaşı, E., Öztürk, A., Cınar, A. (2021). Ozon Gazının Ant fungal Ajan Olarak Etkinliğinin Belirlenmesi. Gıda ve Yem Bilimi, 2(26), 40-48. ISSN 1303-3107
  • Ashogbon, A. O. (2021). Dual modification of various starches: Synthesis, properties and applications. Food Chemistry, 342, 128325. https://doi.org/10.1016/j.foodchem.2020.128325
  • Bai, Y.-P., Zhou, H.-M. (2021). Impact of aqueous ozone mixing on microbiological, quality and physicochemical characteristics of semi-dried buckwheat noodles. Food Chemistry, 336, 127709. https://doi.org/10.1016/j.foodchem.2020.127709
  • Botondi, R., Barone, M., Grasso, C. (2021). A Review into the Effectiveness of Ozone Technology for Improving the Safety and Preserving the Quality of Fresh-Cut Fruits and Vegetables. Foods, 10(4), 748. https://doi.org/10.3390/foods10040748
  • Castanha, N., Matta Junior, M. D. da, Augusto, P. E. D. (2017). Potato starch modification using the ozone technology. Food Hydrocolloids, 66, 343-356. https://doi.org/10.1016/j.foodhyd.2016.12.001
  • Castanha, N., Miano, A. C., Jones, O. G., Reuhs, B. L., Campanella, O. H., Augusto, P. E. D. (2020). Starch modification by ozone: Correlating molecular structure and gel properties in different starch sources. Food Hydrocolloids, 108, 106027. https://doi.org/10.1016/j.foodhyd.2020.106027
  • Chakka, A. K., Sriraksha, M. S., Ravishankar, C. N. (2021). Sustainability of emerging green non-thermal technologies in the food industry with food safety perspective: A review. LWT, 151, 112140. https://doi.org/10.1016/j.lwt.2021.112140
  • Chan, H., Leh, C. P., Bhat, R., Senan, C., Williams, P. A., Karim, A. A. (2011). Molecular structure, rheological and thermal characteristics of ozone-oxidized starch. Food Chemistry, 126(3), 1019-1024. https://doi.org/10.1016/j.foodchem.2010.11.113
  • Chhem-Kieth, S., Holm Rasmussen, L., Rosenfjeld, M., Larsen Andersen, M. (2022). Effects of vegetables and fruit with varying physical damage, fungal infection, and soil contamination on stability of aqueous ozone. Food Bioscience, 102157. https://doi.org/10.1016/j.fbio.2022.102157
  • Chittrakorn, S., Earls, D., MacRitchie, F. (2014). Ozonation as an alternative to chlorination for soft wheat flours. Journal of Cereal Science, 60(1), 217-221. https://doi.org/10.1016/j.jcs.2014.02.013
  • Çatal, H., İbanoğlu, Ş. (2012). Structure, Physico-chemical and Microbiological Properties of Ozone-oxidized Wheat, Corn, Potato and Rice Starches. Journal of Food Science and Engineering, 2(4). https://doi.org/10.17265/2159-5828/2012.04.002
  • Çatal, H., İbanoğlu, Ş. (2014). Effect of aqueous ozonation on the pasting, flow and gelatinization properties of wheat starch. LWT - Food Science and Technology, 59(1), 577-582. https://doi.org/10.1016/j.lwt.2014.04.025
  • Çetinkaya, N., Pazarlar, S., Paylan, İ. C. (2022). Ozone treatment inactivates common bacteria and fungi associated with selected crop seeds and ornamental bulbs. Saudi Journal of Biological Sciences, 29(12), 103480. https://doi.org/10.1016/j.sjbs.2022.103480
  • da Luz, S. R., Almeida Villanova, F., Tuchtenhagen Rockembach, C., Dietrich Ferreira, C., José Dallagnol, L., Luis Fernandes Monks, J., de Oliveira, M. (2022). Reduced of mycotoxin levels in parboiled rice by using ozone and its effects on technological and chemical properties. Food Chemistry, 372, 131174. https://doi.org/10.1016/j.foodchem.2021.131174
  • Demi̇r, M. K., Elgün, A., Elgün, S. M. (2011). Farklı tip unlara ozon uygulamasının,un,hamur ve ekmek kalitesi üzerine etkisi. GIDA, 36(4), Art. 4.
  • Desvignes, C., Chaurand, M., Dubois, M., Sadoudi, A., Abecassis, J., Lullien-Pellerin, V. (2008). Changes in common wheat grain milling behavior and tissue mechanical properties following ozone treatment. Journal of Cereal Science, 47(2), 245-251. https://doi.org/10.1016/j.jcs.2007.04.004
  • Devu, S. S., Dileepmon, R., Kothakota, A., Venkatesh, T., Pandiselvam, R., Garg, R., Jambrak, A., Mediboyina, M. K., Kumar, M., Rajkumar, Raghunathan, R., Mousavi Khaneghah, A. (2022). Recent advancements in baking technologies to mitigate formation of toxic compounds: A comprehensive review. Food Control, 135, 108707. https://doi.org/10.1016/j.foodcont.2021.108707
  • Dubois, M., Coste, C., Despres, A. G., Efstathiou, T., Nio, C., Dumont, E. (2006). Safety of Oxygreen, an ozoen treatment on wheat grains, Part 2. Is there a substantianol equivalance between Oxygreen-treated wheat grains and untreated wheat grains. Food Additives & Contaminants, 23, 1-15.
  • Elgün, M. S., Bilgiçli, N. (2019). Buğday Ununa Ozon Gazı Uygulamasının Un ve Ekmek Kalitesine Etkisi. Akademik Gıda, 329-341. https://doi.org/10.24323/akademik-gida.647710
  • Epelle, E. I., Macfarlane, A., Cusack, M., Burns, A., Thissera, B., Mackay, W., Rateb, M. E., Yaseen, M. (2022). Bacterial and fungal disinfection via ozonation in air. Journal of Microbiological Methods, 194, 106431. https://doi.org/10.1016/j.mimet.2022.106431
  • Gavahian, M., Sarangapani, C., Misra, N. N. (2021). Cold plasma for mitigating agrochemical and pesticide residue in food and water: Similarities with ozone and ultraviolet technologies. Food Research International, 141, 110138. https://doi.org/10.1016/j.foodres.2021.110138
  • Guo, Y., Zhao, L., Ma, Q., Ji, C. (2021). Novel strategies for degradation of aflatoxins in food and feed: A review. Food Research International, 140, 109878. https://doi.org/10.1016/j.foodres.2020.109878
  • Hamad, G. M., Mehany, T., Simal-Gandara, J., Abou-Alella, S., Esua, O. J., Abdel-Wahhab, M. A., Hafez, E. E. (2023). A review of recent innovative strategies for controlling mycotoxins in foods. Food Control, 144, 109350. https://doi.org/10.1016/j.foodcont.2022.109350
  • Hashemi Moosavi, M., Mousavi Khaneghah, A., Javanmardi, F., Hadidi, M., Hadian, Z., Jafarzadeh, S., Huseyn, E., Sant’Ana, A. S. (2021). A review of recent advances in the decontamination of mycotoxin and inactivation of fungi by ultrasound. Ultrasonics Sonochemistry, 79, 105755. https://doi.org/10.1016/j.ultsonch.2021.105755
  • Hu, J., Li, X., Cheng, Z., Fan, X., Ma, Z., Hu, X., Wu, G., Xing, Y. (2022). Modified Tartary buckwheat (Fagopyrum tataricum Gaertn.) starch by gaseous ozone: Structural, physicochemical and in vitro digestible properties. Food Hydrocolloids, 125, 107365. https://doi.org/10.1016/j.foodhyd.2021.107365
  • Hu, J., Li, X., Jing, Y., Hu, X., Ma, Z., Liu, R., Song, G., Zhang, D. (2020). Effect of gaseous ozone treatment on the microbial and physicochemical properties of buckwheat-based composite flour and shelf-life extension of fresh noodles. Journal of Cereal Science, 95, 103055. https://doi.org/10.1016/j.jcs.2020.103055
  • Ingegno, B. L., Tavella, L. (2022). Ozone gas treatment against three main pests of stored products by combination of different application parameters. Journal of Stored Products Research, 95, 101902. https://doi.org/10.1016/j.jspr.2021.101902
  • Kaur, K., Pandiselvam, R., Kothakota, A., Padma Ishwarya, S., Zalpouri, R., Mahanti, N. K. (2022). Impact of ozone treatment on food polyphenols – A comprehensive review. Food Control, 142, 109207. https://doi.org/10.1016/j.foodcont.2022.109207
  • Kolaç, T., Gürbüz, P., Yetiş, G. (2017). Doğal Ürünlerin Fenolik İçeriği Ve Antioksidan Özellikleri. İstanbul.Üniversitesi Sağlık Hizmetleri Meslek Yüksekokulu Dergisi, 5(1).
  • Li, M., Peng, J., Zhu, K.-X., Guo, X.-N., Zhang, M., Peng, W., Zhou, H.-M. (2013). Delineating the microbial and physical–chemical changes during storage of ozone treated wheat flour. Innovative Food Science & Emerging Technologies, 20, 223-229. https://doi.org/10.1016/j.ifset.2013.06.004
  • Lillo, E., Cordisco, M., Trotta, A., Greco, G., Carbonari, A., Rizzo, A., Sciorsci, R. L., Corrente, M. (2022). Evaluation of antibacterial oxygen/ozone mixture in vitro activity on bacteria isolated from cervico-vaginal mucus of cows with acute metritis. Theriogenology, S0093691X22004459. https://doi.org/10.1016/j.theriogenology.2022.10.031
  • Lima, D. C., Maniglia, B. C., Matta Junior, M. D., Le-Bail, P., Le-Bail, A., Augusto, P. E. D. (2021). Dual-process of starch modification: Combining ozone and dry heating treatments to modify cassava starch structure and functionality. International Journal of Biological Macromolecules, 167, 894-905. https://doi.org/10.1016/j.ijbiomac.2020.11.046
  • Maniglia, B. C., Castanha, N., Rojas, M. L., Augusto, P. E. (2021). Emerging technologies to enhance starch performance. Current Opinion in Food Science, 37, 26-36. https://doi.org/10.1016/j.cofs.2020.09.003
  • Mayookha, V. P., Pandiselvam, R., Kothakota, A., Padma Ishwarya, S., Chandra Khanashyam, A., Kutlu, N., Rifna, E. J., Kumar, M., Panesar, P. S., & Abd El-Maksoud, A. A. (2023). Ozone and cold plasma: Emerging oxidation technologies for inactivation of enzymes in fruits, vegetables, and fruit juices. Food Control, 144, 109399. https://doi.org/10.1016/j.foodcont.2022.109399
  • Mei, J., Liu, G., Huang, X., Ding, W. (2016). Effects of ozone treatment on medium hard wheat (Triticum aestivum L.) flour quality and performance. CyTA-Journal of Food, 14(3), 449-456. https://doi.org/10.1080/19476337.2015.1133714
  • Mendez, F., Maier, D. E., Mason, L. J., Woloshuk, C. P. (2003). Penetration of ozone into columns of stored grains and effects on chemical composition and processing performance. Journal of Stored Products Research, 39(1), 33-44. https://doi.org/10.1016/S0022-474X(02)00015-2
  • Mir, S. A., Dar, B. N., Mir, M. M., Sofi, S. A., Shah, M. A., Sidiq, T., Sunooj, K. V., Hamdani, A. M., Mousavi Khaneghah, A. (2022). Current strategies for the reduction of pesticide residues in food products. Journal of Food Composition and Analysis, 106, 104274. https://doi.org/10.1016/j.jfca.2021.104274 Mir, S. A., Dar, B. N., Shah, M. A., Sofi, S. A., Hamdani, A. M., Oliveira, C. A. F., Hashemi Moosavi, M., Mousavi Khaneghah, A., Sant’Ana, A. S. (2021). Application of new technologies in decontamination of mycotoxins in cereal grains: Challenges, and perspectives. Food and Chemical Toxicology, 148, 111976. https://doi.org/10.1016/j.fct.2021.111976
  • Muştu, Ç. (2020). Yiyecek ve İçecek İşletmelerinde Ozon Uygulamaları. AYDIN GASTRONOMY, 4(1), 45-53. https://doi.org/10.17932/IAU.GASTRONOMY.2017.016/2020.401/gas_v04i1005
  • Nada, S., Nikola, T., Bozidar, U., Ilija, D., Andreja, R. (2022). Prevention and practical strategies to control mycotoxins in the wheat and maize chain. Food Control, 136, 108855. https://doi.org/10.1016/j.foodcont.2022.108855
  • Nickhil, C., Mohapatra, D., Kar, A., Giri, S. K., Tripathi, M. K., Sharma, Y. (2021). Gaseous ozone treatment of chickpea grains, part I: Effect on protein, amino acid, fatty acid, mineral content, and microstructure. Food Chemistry, 345, 128850. https://doi.org/10.1016/j.foodchem.2020.128850
  • Niveditha, A., Pandiselvam, R., Prasath, V. A., Singh, S. K., Gul, K., Kothakota, A. (2021). Application of cold plasma and ozone technology for decontamination of Escherichia coli in foods- a review. Food Control, 130, 108338. https://doi.org/10.1016/j.foodcont.2021.108338
  • Nunes, V. M., Moosavi, M., Mousavi Khaneghah, A., Oliveira, C. A. (2021). Innovative modifications in food processing to reduce the levels of mycotoxins. Current Opinion in Food Science, 38, 155-161. https://doi.org/10.1016/j.cofs.2020.11.010
  • Obadi, M., Zhu, K.-X., Peng, W., Noman, A., Mohammed, K., Zhou, H.-M. (2018). Characterization of oil extracted from whole grain flour treated with ozone gas. Journal of Cereal Science, 79, 527-533. https://doi.org/10.1016/j.jcs.2017.12.007
  • Ojogbo, E., Ogunsona, E. O., Mekonnen, T. H. (2020). Chemical and physical modifications of starch for renewable polymeric materials. Materials Today Sustainability, 7-8, 100028. https://doi.org/10.1016/j.mtsust.2019.100028
  • Özaslan, Z. T., İbanoğlu, Ş. (2022). Ozonation of corn starch in the presence of guar gum: Rheological, thermal and antioxidant properties. Food Hydrocolloids, 124, 107299. https://doi.org/10.1016/j.foodhyd.2021.107299
  • Pandiselvam, R., Singh, A., Agriopoulou, S., Sachadyn-Król, M., Aslam, R., Gonçalves Lima, C. M., Khanashyam, A. C., Kothakota, A., Atakan, O., Kumar, M., Mathanghi, S. K., Mousavi Khaneghah, A. (2022). A comprehensive review of impacts of ozone treatment on textural properties in different food products. Trends in Food Science Technology, 127, 74-86. https://doi.org/10.1016/j.tifs.2022.06.008
  • Phan, L. T., Schaar, H., Saracevic, E., Krampe, J., Kreuzinger, N. (2022). Effect of ozonation on the biodegradability of urban wastewater treatment plant effluent. Science of The Total Environment, 812, 152466. https://doi.org/10.1016/j.scitotenv.2021.152466
  • Qasim, M., Rafique, M. S., Naz, R. (2022). Water purification by ozone generator employing non-thermal plasma. Materials Chemistry and Physics, 291, 126442. https://doi.org/10.1016/j.matchemphys.2022.126442
  • Qian, Y.-F., Zhang, J.-J., Liu, C.-C., Ertbjerg, P., Yang, S.-P. (2022). Effects of gaseous ozone treatment on the quality and microbial community of salmon (Salmo salar) during cold storage. Food Control, 142, 109217. https://doi.org/10.1016/j.foodcont.2022.109217
  • Raghunathan, R., Pandiselvam, R., Kothakota, A., Mousavi Khaneghah, A. (2021). The application of emerging non-thermal technologies for the modification of cereal starches. LWT, 138, 110795. https://doi.org/10.1016/j.lwt.2020.110795
  • Rangel, K., Cabral, F. O., Lechuga, G. C., Carvalho, J. P. R. S., Villas-Bôas, M. H. S., Midlej, V., De-Simone, S. G. (2021). Detrimental Effect of Ozone on Pathogenic Bacteria. Microorganisms, 10(1), 40. https://doi.org/10.3390/microorganisms10010040
  • Sandhu, H. P. S., Manthey, F. A., Simsek, S. (2012). Ozone gas affects physical and chemical properties of wheat (Triticum aestivum L.) starch. Carbohydrate Polymers, 87(2), 1261-1268. https://doi.org/10.1016/j.carbpol.2011.09.003
  • Sandhu, H. P. S., Manthey, F. A., Simsek, S., Ohm, J.-B. (2011). Comparison Between Potassium Bromate and Ozone as Flour Oxidants in Breadmaking. Cereal Chemistry Journal, 88(1), 103-108. https://doi.org/10.1094/CCHEM-06-10-0085
  • Savi, G. D., Gomes, T., Canever, S. B., Feltrin, A. C., Piacentini, K. C., Scussel, R., Oliveira, D., Machado-de-Ávila, R. A., Cargnin, M., Angioletto, E. (2020). Application of ozone on rice storage: A mathematical modeling of the ozone spread, effects in the decontamination of filamentous fungi and quality attributes. Journal of Stored Products Research, 87, 101605. https://doi.org/10.1016/j.jspr.2020.101605
  • Savi, G. D., Piacentini, K. C., Bittencourt, K. O., Scussel, V. M. (2014). Ozone treatment efficiency on Fusarium graminearum and deoxynivalenol degradation and its effects on whole wheat grains (Triticum aestivum L.) quality and germination. Journal of Stored Products Research, 59, 245-253. https://doi.org/10.1016/j.jspr.2014.03.008
  • Sciorsci, R. L., Lillo, E., Occhiogrosso, L., Rizzo, A. (2020). Ozone therapy in veterinary medicine: A review. Research in Veterinary Science, 130, 240-246. https://doi.org/10.1016/j.rvsc.2020.03.026
  • Sirohi, R., Tarafdar, A., Kumar Gaur, V., Singh, S., Sindhu, R., Rajasekharan, R., Madhavan, A., Binod, P., Kumar, S., Pandey, A. (2021). Technologies for disinfection of food grains: Advances and way forward. Food Research International, 145, 110396. https://doi.org/10.1016/j.foodres.2021.110396
  • Sivaranjani, S., Prasath, V. A., Pandiselvam, R., Kothakota, A., & Mousavi Khaneghah, A. (2021). Recent advances in applications of ozone in the cereal industry. LWT, 146, 111412. https://doi.org/10.1016/j.lwt.2021.111412
  • Suman, M. (2021). Last decade studies on mycotoxins’ fate during food processing: An overview. Current Opinion in Food Science, 41, 70-80. https://doi.org/10.1016/j.cofs.2021.02.015
  • Tabla, R., Roa, I. (2022). Use of gaseous ozone in soft cheese ripening: Effect on the rind microorganisms and the sensorial quality. LWT, 170, 114066. https://doi.org/10.1016/j.lwt.2022.114066
  • Tiwari, B. K., Brennan, C. S., Curran, T., Gallagher, E., Cullen, P. J., O’ Donnell, C. P. (2010). Application of ozone in grain processing. Journal of Cereal Science, 51(3), 248-255. https://doi.org/10.1016/j.jcs.2010.01.007
  • Trombete, F., Minguita, A., Porto, Y., Freitas-Silva, O., Freitas-Sá, D., Freitas, S., Carvalho, C., Saldanha, T., Fraga, M. (2016). Chemical, Technological, and Sensory Properties of Wheat Grains ( Triticum aestivum L) as Affected by Gaseous Ozonation. International Journal of Food Properties, 19(12), 2739-2749. https://doi.org/10.1080/10942912.2016.1144067
  • Ünal, D., Sel, T. (2019). Ozone Application and Usage in Veterinary Medicine. Eurasian Journal of Health Sciences, 2(4), 182-190.
  • Ünüsan, N. (2019). Systematic review of mycotoxins in food and feeds in Turkey. Food Control, 97, 1-14. https://doi.org/10.1016/j.foodcont.2018.10.015
  • Vanier, N. L., El Halal, S. L. M., Dias, A. R. G., da Rosa Zavareze, E. (2017). Molecular structure, functionality and applications of oxidized starches: A review. Food Chemistry, 221, 1546-1559. https://doi.org/10.1016/j.foodchem.2016.10.138
  • Violleau, F., Pernot, A.-G., Surel, O. (2012). Effect of Oxygreen® wheat ozonation process on bread dough quality and protein solubility. Journal of Cereal Science, 55(3), 392-396. https://doi.org/10.1016/j.jcs.2012.01.014
  • Wang, L., Luo, Y., Luo, X., Wang, R., Li, Y., Li, Y., Shao, H., Chen, Z. (2016). Effect of deoxynivalenol detoxification by ozone treatment in wheat grains. Food Control, 66, 137-144. https://doi.org/10.1016/j.foodcont.2016.01.038
  • Yildiz, P. O., Yangilar, F. (2014). Ozon ve Gıda Endüstrisinde Kullanım Alanları. BEU Journal of Science, 3 (1), 94-101.
  • Zhang, Y., Mahidul Islam Masum, Md., Gao, C., Cheng, Y., Guan, J. (2022). Ozone reduces the fruit decay of postharvest winter jujube by altering the microbial community structure on fruit surface. Microbiological Research, 262, 127110. https://doi.org/10.1016/j.micres.2022.127110
  • Zhu, F. (2018). Effect of ozone treatment on the quality of grain products. Food Chemistry, 264, 358-366. https://doi.org/10.1016/j.foodchem.2018.05.047
  • Zhu, L., Ma, Q., Chen, J., Zhao, G. (2022). Current progress on innovative pest detection techniques for stored cereal grains and thereof powders. Food Chemistry, 396, 133706. https://doi.org/10.1016/j.foodchem.2022.133706
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Çağla Kayişoğlu 0000-0002-5235-7963

Seçil Türksoy 0000-0001-5763-2744

Yayımlanma Tarihi 15 Nisan 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 48 Sayı: 2

Kaynak Göster

APA Kayişoğlu, Ç., & Türksoy, S. (2023). OZON UYGULAMASININ TAHIL VE ÜRÜNLERİ ÜZERİNDEKİ ETKİLERİ. Gıda, 48(2), 285-304. https://doi.org/10.15237/gida.GD22117
AMA Kayişoğlu Ç, Türksoy S. OZON UYGULAMASININ TAHIL VE ÜRÜNLERİ ÜZERİNDEKİ ETKİLERİ. GIDA. Nisan 2023;48(2):285-304. doi:10.15237/gida.GD22117
Chicago Kayişoğlu, Çağla, ve Seçil Türksoy. “OZON UYGULAMASININ TAHIL VE ÜRÜNLERİ ÜZERİNDEKİ ETKİLERİ”. Gıda 48, sy. 2 (Nisan 2023): 285-304. https://doi.org/10.15237/gida.GD22117.
EndNote Kayişoğlu Ç, Türksoy S (01 Nisan 2023) OZON UYGULAMASININ TAHIL VE ÜRÜNLERİ ÜZERİNDEKİ ETKİLERİ. Gıda 48 2 285–304.
IEEE Ç. Kayişoğlu ve S. Türksoy, “OZON UYGULAMASININ TAHIL VE ÜRÜNLERİ ÜZERİNDEKİ ETKİLERİ”, GIDA, c. 48, sy. 2, ss. 285–304, 2023, doi: 10.15237/gida.GD22117.
ISNAD Kayişoğlu, Çağla - Türksoy, Seçil. “OZON UYGULAMASININ TAHIL VE ÜRÜNLERİ ÜZERİNDEKİ ETKİLERİ”. Gıda 48/2 (Nisan 2023), 285-304. https://doi.org/10.15237/gida.GD22117.
JAMA Kayişoğlu Ç, Türksoy S. OZON UYGULAMASININ TAHIL VE ÜRÜNLERİ ÜZERİNDEKİ ETKİLERİ. GIDA. 2023;48:285–304.
MLA Kayişoğlu, Çağla ve Seçil Türksoy. “OZON UYGULAMASININ TAHIL VE ÜRÜNLERİ ÜZERİNDEKİ ETKİLERİ”. Gıda, c. 48, sy. 2, 2023, ss. 285-04, doi:10.15237/gida.GD22117.
Vancouver Kayişoğlu Ç, Türksoy S. OZON UYGULAMASININ TAHIL VE ÜRÜNLERİ ÜZERİNDEKİ ETKİLERİ. GIDA. 2023;48(2):285-304.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/