Araştırma Makalesi
BibTex RIS Kaynak Göster

CADMIUM BINDING CAPACITY OF DEMINERALIZED WHEY POWDER: A BOX-BOEHKEN DESIGN APPROACH

Yıl 2025, Cilt: 50 Sayı: 5, 766 - 779, 15.10.2025
https://doi.org/10.15237/gida.GD25019

Öz

This study explores the use of demineralized whey powder (d-WP) as an adsorbent for removing cadmium ions (Cd²⁺) from wastewater. Characterization of d-WP involved various analytical techniques: FTIR identified surface functional groups involved in adsorption, SEM examined surface morphology, elemental mapping visualized element distribution, and EDX determined elemental ratios. To optimize Cd²⁺ removal, a Box-Behnken Design (BBD) was utilized, evaluating four key parameters: initial Cd²⁺ concentration (10-50 mg/L), adsorbent dosage (0.5-1 g), contact time (10-60 minutes), and temperature (24-50 °C). The optimal conditions for maximum Cd²⁺ removal was found to be an initial concentration of 44 mg/L, a contact time of 26 minutes, an adsorbent dosage of 0.63 g, and a temperature of 45 °C. ANOVA confirmed the significant effects of these parameters on removal efficiency.

Destekleyen Kurum

This study was supported by Mus Alparslan University Scientific Research Coordination Unit.

Proje Numarası

Projects Number: BAP-24-SBMYO-4909-01

Kaynakça

  • Afroze, S., Sen, T.K. (2018). A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water, Air, & Soil Pollution, 229(7): 225, https://doi.org/ 10.1007/s11270-018-3869-z.
  • Agarwala, R., Mulky, L. (2023). Adsorption of dyes from wastewater: A comprehensive review. ChemBioEng Reviews, 10(3): 326–335, https://doi.org/10.1002/cben.202200011.
  • Albadarin, A.B., Collins, M.N., Naushad, M., Shirazian, S., Walker, G., Mangwandi, C. (2017). Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chemical Engineering Journal, 307:264–272, https://doi.org/ 10.1016/j.cej.2016.08.089.
  • Asemani, M., Rabbani, A.R. (2020). Detailed FTIR spectroscopy characterization of crude oil extracted asphaltenes: Curve resolve of overlapping bands. Journal of Petroleum Science and Engineering, 185:106618, https://doi.org/ 10.1016/j.petrol.2019.106618.
  • Baris, O., David, J.M., Cagatay, A., Ozlem, K., Mecit, H.O. (2022). Challenges in dried whey powder production: quality problems. Food Research International, 160: 111682, https://doi.org/10.1016/j.foodres.2022.111682.
  • Çiftçi, H. (2022). Removal of methylene blue from water by ultrasound-assisted adsorption using low-cost bentonites. Chemical Physics Letters, 802: 139758, https://doi.org/10.1016/j.cplett.2022.139758.
  • Durmuş, S., Emin, M. (2022). The impact of ozone treatment on whey concentrates on the flow behaviour, functional and microbiological characteristics of whey powder. International Dairy Journal, 134: 105447, https://doi.org/10.1016/ j.idairyj.2022.105447.
  • Gemici, B.T., Ozel, H.U., Ozel, H.B. (2021). Removal of methylene blue onto forest wastes: Adsorption isotherms, kinetics and thermodynamic analysis. Environmental Technology & Innovation, 22, 101501, https://doi.org/ 10.1016/j.eti.2021.101501.
  • Islam, M.R., Mostafa, M.G. (2022). Adsorption kinetics, isotherms and thermodynamic studies of methyl blue in textile dye effluent on natural clay adsorbent. Sustainable Water Resources Management, 8(2): 52, https://doi.org/10.1007/s40899-022-00640-1.
  • Isra, K., Michael, Y.T.C., Juanfang, R., David, C., Hak-Kim, C. (2021). Modeling of a spray drying method to produce ciprofloxacin nanocrystals inside the liposomes utilizing a response surface methodology: Box-Behnken experimental design. International Journal of Pharmaceutics, 597: 120277, https://doi.org/10.1016/j.ijpharm.2021.120277.
  • Jiang, L., Ye, Q., Chen, J., Chen, Z., Gu, Y. (2018). Preparation of magnetically recoverable bentonite-Fe3O4-MnO2 composite particles for Cd (II) removal from aqueous solutions. Journal of Colloid and Interface Science, 513: 748-759, https://doi.org/10.1016/j.jcis.2017.11.063.
  • Jianhua, Q., Xianlin, M., Hong, Y., Xiuqing, Y., Zhaolin, D. (2017). Utilization of rice husks functionalized with xanthates as cost-effective biosorbents for optimal Cd(II) removal from aqueous solution via response surface methodology. Bioresource Technology, 241: 1036-1042, https://doi.org/10.1016/ j.biortech.2017.06.055.
  • Kalpana, V.P., Perarasu, V.T. (2020). Analysis on cellulose extraction from hybrid biomass for improved crystallinity. Journal of Molecular Structure, 1217: 128350, https://doi.org/10.1016/ j.molstruc.2020.128350.
  • Kamel, C., Bochra, K., Lamia, A., Salman, B.H., Jawaher, A.A., Azhar, H., Hisham, N.A. (2023). Enhanced textile dye removal from wastewater using natural biosorbent and Shewanella algae B29: Application of Box Behnken design and genomic approach. Bioresource Technology, 374: 128755, https://doi.org/10.1016/ j.biortech.2023.128755.
  • Mahdi, J., Seid, S.M., Akbar, B. (2019). A Taguchi approach production of spray-dried whey powder enriched with nanoencapsulated vitamin D3. Drying Technology, 37(16): 2059-2071, https://doi.org/10.1080/07373937.2018.1552598.
  • Melnikova, E.I., Bogdanova, E.V., Paveleva, D.A. (2023). Whey permeate mineral profile at various stages of membrane filtration. Applied Food Biotechnology, 10(4): 223–231, https://doi.org/ 10.22037/afb.v10i4.42664.
  • Ming, C., Xianfeng, W., Hao, Z. (2021). Comparative research on selective adsorption of Pb(II) by biosorbents prepared by two kinds of modifying waste biomass: Highly-efficient performance, application and mechanism. Journal of Environmental Management, 288: 112388, https://doi.org/10.1016/j.jenvman.2021.112388
  • Müşerref, B., Durmuş. S., Emin, M. (2024). Effects of the demineralisation degree on physicochemical, functional, microstructural and powder flow properties of whey powder. International Dairy Journal, 156: 105982, https://doi.org/10.1016/j.idairyj.2024.105982.
  • Öktüren Asri, F., Sönmez, S., Çıtak, S. (2007). Kadmiyumun çevre ve insan sağlığı üzerine etkileri. Derim, 24(1): 32-39.
  • Reza, Y., Akbar, T., Hamid, P., Ali, H.K., Valiollah, P., Soheila, A., Shahram, S., Maghsoud, B. (2022). Usability of whey powder as an alternative protein source in ruminant nutrition. Clean Technologies and Environmental Policy, 24(9): 2967–2974, https://doi.org/10.1007/s10098-022-02363-5.
  • Safo, K., Noby, H., Matatoshi, M., Naragino, H., El-Shazly, A.H. (2022). Statistical optimization modeling of organic dye photodegradation process using slag nanocomposite. Research on Chemical Intermediates, 48(10): 4183–4208, https://doi.org/10.1007/s11164-022-04807-5.
  • Samia, B., Jaouali, I., Souissi-Najar, S., Ouederni, A. (2017). Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. Journal of Cleaner Production, 142(4): 3809-3821, https://doi.org/ 10.1016/j.jclepro.2016.10.081.
  • Tang, X., Luan, Y., Zhao, Y., Li, B., Wu, M., Lai, Y. (2024). Tetrasodium iminodisuccinate modified montmorillonite for Pb and Cd adsorption from water: Characterization and mechanism. Journal of Environmental Chemical Engineering, 12(5): 113953, https://doi.org/ 10.1016/j.jece.2024.113953.
  • Tee, G.T., Gok, X.Y., Yong, W.F. (2022). Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. Environmental Research, 212: 113248, https://doi.org/10.1016/ j.envres.2022.113248.
  • Turp, S.M., Turp, G.A., Ekinci, N., Özdemir, S. (2020). Enhanced adsorption of methylene blue from textile wastewater by using natural and artificial zeolite. Water Science and Technology, 82(3): 513–523, https://doi.org/10.2166/wst.2020.358.
  • Uçurum, M., Özdemir, A., Teke, Ç., Serencam, H., İpek, M. (2018). Optimization of adsorption parameters for ultra-fine calcite using a box-behnken experimental design. Open Chemistry, 16(1): 992-1000, https://doi.org/10.1515/chem-2018-0114.
  • Varol, E.A., Mutlu, Ü. (2023). TGA-FTIR Analysis of biomass samples based on the thermal decomposition behavior of hemicellulose, cellulose, and lignin. Energies, 16(9): 3674, https://doi.org/10.3390/en16093674.
  • Wen-Tao, T., Hang, Z., Shang-Feng, T., Peng, Z., Jiao-Feng, G., Bo-Han, L. (2022). Enhancing Cd(II) adsorption on rice straw biochar by modification of iron and manganese oxides. Environmental Pollution, 300: 118899, https://doi.org/10.1016/j.envpol.2022.118899.
  • Wu, R., Kashi, E., Jawad, A.H., Musa, S.A., ALOthman Z.A., Wilson, L.D. (2024). Polymeric matrix of modified chitosan with algae and coal fly ash for a toxic cationic dye removal: Multivariable optimization by Box-Behnken design. Journal of Inorganic and Organometallic Polymers and Materials, 35(4): 2300-2314, https://doi.org/10.1007/s10904-024-03241-x.
  • Yanfei, Z., Yuyi, Y., Guihua, L., Gang, H., Wenzhi, L. (2020). Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene. Water Research, 184: 116209, https://doi.org/10.1016/ j.watres.2020.116209.
  • Zaki, S.A. (2021). Removal of uranium from aqueous solutions by adsorption using Rosetta ilmenite concentrate. International Journal of Environmental Analytical Chemistry, 103(17): 5987–6001, https://doi.org/10.1080/ 03067319.2021.1946686.
  • Zhong, L.B., Yin, J., Liu, S.G., Liu, Q., Yang, Y.S., Zheng, Y.M. (2016). Facile one-pot synthesis of urchin-like Fe-Mn binary oxide nanoparticles for effective adsorption of Cd (II) from water. RSC Advances, 6(105): 103438-103445, https://doi.org/10.1039/C6RA21030A.
  • Zulqarnain, H.K., Minling, G., Weiwen, Q., Md.Shafiqul, I., Zhengguo, S. (2020). Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution. Chemosphere, 246: 125701, https://doi.org/10.1016/ j.chemosphere.2019.125701.

DEMİNERALİZE PEYNİRALTI SUYU TOZUNUN KADMİYUM BAĞLAMA KAPASİTESİ: BİR BOX-BEHNKEN TASARIM YAKLAŞIMI

Yıl 2025, Cilt: 50 Sayı: 5, 766 - 779, 15.10.2025
https://doi.org/10.15237/gida.GD25019

Öz

Bu çalışma, demineralize peyniraltı suyu tozunun (d-WP) atık sudan kadmiyum iyonlarını (Cd²⁺) uzaklaştırmak için bir adsorban olarak kullanımını araştırmaktadır. d-WP'nin karakterizasyonu çeşitli analitik teknikler kullanılarak gerçekleştirilmiştir: FTIR, adsorpsiyonda yer alan yüzey fonksiyonel gruplarını tanımlamış; SEM, yüzey morfolojisini incelemiş; element haritalama, element dağılımını görselleştirmiş; ve EDX, element oranlarını belirlemiştir. Cd²⁺ uzaklaştırmasını optimize etmek için bir Box-Behnken Tasarımı (BBD) kullanılmış, dört ana parametre değerlendirilmiştir: başlangıç Cd²⁺ konsantrasyonu (10-50 mg/L), adsorban dozu (0.5-1 g), temas süresi (10-60 dakika) ve sıcaklık (24-50 °C). Maksimum Cd²⁺ uzaklaştırma için optimal koşullar, 44 mg/L başlangıç konsantrasyonu, 26 dakika temas süresi, 0.63 g adsorban dozu ve 45 °C sıcaklık olarak bulunmuştur. ANOVA, bu parametrelerin uzaklaştırma verimliliği üzerindeki önemli etkilerini doğrulamıştır.

Proje Numarası

Projects Number: BAP-24-SBMYO-4909-01

Kaynakça

  • Afroze, S., Sen, T.K. (2018). A review on heavy metal ions and dye adsorption from water by agricultural solid waste adsorbents. Water, Air, & Soil Pollution, 229(7): 225, https://doi.org/ 10.1007/s11270-018-3869-z.
  • Agarwala, R., Mulky, L. (2023). Adsorption of dyes from wastewater: A comprehensive review. ChemBioEng Reviews, 10(3): 326–335, https://doi.org/10.1002/cben.202200011.
  • Albadarin, A.B., Collins, M.N., Naushad, M., Shirazian, S., Walker, G., Mangwandi, C. (2017). Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chemical Engineering Journal, 307:264–272, https://doi.org/ 10.1016/j.cej.2016.08.089.
  • Asemani, M., Rabbani, A.R. (2020). Detailed FTIR spectroscopy characterization of crude oil extracted asphaltenes: Curve resolve of overlapping bands. Journal of Petroleum Science and Engineering, 185:106618, https://doi.org/ 10.1016/j.petrol.2019.106618.
  • Baris, O., David, J.M., Cagatay, A., Ozlem, K., Mecit, H.O. (2022). Challenges in dried whey powder production: quality problems. Food Research International, 160: 111682, https://doi.org/10.1016/j.foodres.2022.111682.
  • Çiftçi, H. (2022). Removal of methylene blue from water by ultrasound-assisted adsorption using low-cost bentonites. Chemical Physics Letters, 802: 139758, https://doi.org/10.1016/j.cplett.2022.139758.
  • Durmuş, S., Emin, M. (2022). The impact of ozone treatment on whey concentrates on the flow behaviour, functional and microbiological characteristics of whey powder. International Dairy Journal, 134: 105447, https://doi.org/10.1016/ j.idairyj.2022.105447.
  • Gemici, B.T., Ozel, H.U., Ozel, H.B. (2021). Removal of methylene blue onto forest wastes: Adsorption isotherms, kinetics and thermodynamic analysis. Environmental Technology & Innovation, 22, 101501, https://doi.org/ 10.1016/j.eti.2021.101501.
  • Islam, M.R., Mostafa, M.G. (2022). Adsorption kinetics, isotherms and thermodynamic studies of methyl blue in textile dye effluent on natural clay adsorbent. Sustainable Water Resources Management, 8(2): 52, https://doi.org/10.1007/s40899-022-00640-1.
  • Isra, K., Michael, Y.T.C., Juanfang, R., David, C., Hak-Kim, C. (2021). Modeling of a spray drying method to produce ciprofloxacin nanocrystals inside the liposomes utilizing a response surface methodology: Box-Behnken experimental design. International Journal of Pharmaceutics, 597: 120277, https://doi.org/10.1016/j.ijpharm.2021.120277.
  • Jiang, L., Ye, Q., Chen, J., Chen, Z., Gu, Y. (2018). Preparation of magnetically recoverable bentonite-Fe3O4-MnO2 composite particles for Cd (II) removal from aqueous solutions. Journal of Colloid and Interface Science, 513: 748-759, https://doi.org/10.1016/j.jcis.2017.11.063.
  • Jianhua, Q., Xianlin, M., Hong, Y., Xiuqing, Y., Zhaolin, D. (2017). Utilization of rice husks functionalized with xanthates as cost-effective biosorbents for optimal Cd(II) removal from aqueous solution via response surface methodology. Bioresource Technology, 241: 1036-1042, https://doi.org/10.1016/ j.biortech.2017.06.055.
  • Kalpana, V.P., Perarasu, V.T. (2020). Analysis on cellulose extraction from hybrid biomass for improved crystallinity. Journal of Molecular Structure, 1217: 128350, https://doi.org/10.1016/ j.molstruc.2020.128350.
  • Kamel, C., Bochra, K., Lamia, A., Salman, B.H., Jawaher, A.A., Azhar, H., Hisham, N.A. (2023). Enhanced textile dye removal from wastewater using natural biosorbent and Shewanella algae B29: Application of Box Behnken design and genomic approach. Bioresource Technology, 374: 128755, https://doi.org/10.1016/ j.biortech.2023.128755.
  • Mahdi, J., Seid, S.M., Akbar, B. (2019). A Taguchi approach production of spray-dried whey powder enriched with nanoencapsulated vitamin D3. Drying Technology, 37(16): 2059-2071, https://doi.org/10.1080/07373937.2018.1552598.
  • Melnikova, E.I., Bogdanova, E.V., Paveleva, D.A. (2023). Whey permeate mineral profile at various stages of membrane filtration. Applied Food Biotechnology, 10(4): 223–231, https://doi.org/ 10.22037/afb.v10i4.42664.
  • Ming, C., Xianfeng, W., Hao, Z. (2021). Comparative research on selective adsorption of Pb(II) by biosorbents prepared by two kinds of modifying waste biomass: Highly-efficient performance, application and mechanism. Journal of Environmental Management, 288: 112388, https://doi.org/10.1016/j.jenvman.2021.112388
  • Müşerref, B., Durmuş. S., Emin, M. (2024). Effects of the demineralisation degree on physicochemical, functional, microstructural and powder flow properties of whey powder. International Dairy Journal, 156: 105982, https://doi.org/10.1016/j.idairyj.2024.105982.
  • Öktüren Asri, F., Sönmez, S., Çıtak, S. (2007). Kadmiyumun çevre ve insan sağlığı üzerine etkileri. Derim, 24(1): 32-39.
  • Reza, Y., Akbar, T., Hamid, P., Ali, H.K., Valiollah, P., Soheila, A., Shahram, S., Maghsoud, B. (2022). Usability of whey powder as an alternative protein source in ruminant nutrition. Clean Technologies and Environmental Policy, 24(9): 2967–2974, https://doi.org/10.1007/s10098-022-02363-5.
  • Safo, K., Noby, H., Matatoshi, M., Naragino, H., El-Shazly, A.H. (2022). Statistical optimization modeling of organic dye photodegradation process using slag nanocomposite. Research on Chemical Intermediates, 48(10): 4183–4208, https://doi.org/10.1007/s11164-022-04807-5.
  • Samia, B., Jaouali, I., Souissi-Najar, S., Ouederni, A. (2017). Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. Journal of Cleaner Production, 142(4): 3809-3821, https://doi.org/ 10.1016/j.jclepro.2016.10.081.
  • Tang, X., Luan, Y., Zhao, Y., Li, B., Wu, M., Lai, Y. (2024). Tetrasodium iminodisuccinate modified montmorillonite for Pb and Cd adsorption from water: Characterization and mechanism. Journal of Environmental Chemical Engineering, 12(5): 113953, https://doi.org/ 10.1016/j.jece.2024.113953.
  • Tee, G.T., Gok, X.Y., Yong, W.F. (2022). Adsorption of pollutants in wastewater via biosorbents, nanoparticles and magnetic biosorbents: A review. Environmental Research, 212: 113248, https://doi.org/10.1016/ j.envres.2022.113248.
  • Turp, S.M., Turp, G.A., Ekinci, N., Özdemir, S. (2020). Enhanced adsorption of methylene blue from textile wastewater by using natural and artificial zeolite. Water Science and Technology, 82(3): 513–523, https://doi.org/10.2166/wst.2020.358.
  • Uçurum, M., Özdemir, A., Teke, Ç., Serencam, H., İpek, M. (2018). Optimization of adsorption parameters for ultra-fine calcite using a box-behnken experimental design. Open Chemistry, 16(1): 992-1000, https://doi.org/10.1515/chem-2018-0114.
  • Varol, E.A., Mutlu, Ü. (2023). TGA-FTIR Analysis of biomass samples based on the thermal decomposition behavior of hemicellulose, cellulose, and lignin. Energies, 16(9): 3674, https://doi.org/10.3390/en16093674.
  • Wen-Tao, T., Hang, Z., Shang-Feng, T., Peng, Z., Jiao-Feng, G., Bo-Han, L. (2022). Enhancing Cd(II) adsorption on rice straw biochar by modification of iron and manganese oxides. Environmental Pollution, 300: 118899, https://doi.org/10.1016/j.envpol.2022.118899.
  • Wu, R., Kashi, E., Jawad, A.H., Musa, S.A., ALOthman Z.A., Wilson, L.D. (2024). Polymeric matrix of modified chitosan with algae and coal fly ash for a toxic cationic dye removal: Multivariable optimization by Box-Behnken design. Journal of Inorganic and Organometallic Polymers and Materials, 35(4): 2300-2314, https://doi.org/10.1007/s10904-024-03241-x.
  • Yanfei, Z., Yuyi, Y., Guihua, L., Gang, H., Wenzhi, L. (2020). Adsorption mechanism of cadmium on microplastics and their desorption behavior in sediment and gut environments: The roles of water pH, lead ions, natural organic matter and phenanthrene. Water Research, 184: 116209, https://doi.org/10.1016/ j.watres.2020.116209.
  • Zaki, S.A. (2021). Removal of uranium from aqueous solutions by adsorption using Rosetta ilmenite concentrate. International Journal of Environmental Analytical Chemistry, 103(17): 5987–6001, https://doi.org/10.1080/ 03067319.2021.1946686.
  • Zhong, L.B., Yin, J., Liu, S.G., Liu, Q., Yang, Y.S., Zheng, Y.M. (2016). Facile one-pot synthesis of urchin-like Fe-Mn binary oxide nanoparticles for effective adsorption of Cd (II) from water. RSC Advances, 6(105): 103438-103445, https://doi.org/10.1039/C6RA21030A.
  • Zulqarnain, H.K., Minling, G., Weiwen, Q., Md.Shafiqul, I., Zhengguo, S. (2020). Mechanisms for cadmium adsorption by magnetic biochar composites in an aqueous solution. Chemosphere, 246: 125701, https://doi.org/10.1016/ j.chemosphere.2019.125701.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Gıda Mühendisliği
Bölüm Makaleler
Yazarlar

Neslihan Yıldız Küçük 0000-0002-2467-5454

Proje Numarası Projects Number: BAP-24-SBMYO-4909-01
Yayımlanma Tarihi 15 Ekim 2025
Gönderilme Tarihi 15 Ocak 2025
Kabul Tarihi 10 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 50 Sayı: 5

Kaynak Göster

APA Yıldız Küçük, N. (2025). CADMIUM BINDING CAPACITY OF DEMINERALIZED WHEY POWDER: A BOX-BOEHKEN DESIGN APPROACH. Gıda, 50(5), 766-779. https://doi.org/10.15237/gida.GD25019
AMA Yıldız Küçük N. CADMIUM BINDING CAPACITY OF DEMINERALIZED WHEY POWDER: A BOX-BOEHKEN DESIGN APPROACH. GIDA. Ekim 2025;50(5):766-779. doi:10.15237/gida.GD25019
Chicago Yıldız Küçük, Neslihan. “CADMIUM BINDING CAPACITY OF DEMINERALIZED WHEY POWDER: A BOX-BOEHKEN DESIGN APPROACH”. Gıda 50, sy. 5 (Ekim 2025): 766-79. https://doi.org/10.15237/gida.GD25019.
EndNote Yıldız Küçük N (01 Ekim 2025) CADMIUM BINDING CAPACITY OF DEMINERALIZED WHEY POWDER: A BOX-BOEHKEN DESIGN APPROACH. Gıda 50 5 766–779.
IEEE N. Yıldız Küçük, “CADMIUM BINDING CAPACITY OF DEMINERALIZED WHEY POWDER: A BOX-BOEHKEN DESIGN APPROACH”, GIDA, c. 50, sy. 5, ss. 766–779, 2025, doi: 10.15237/gida.GD25019.
ISNAD Yıldız Küçük, Neslihan. “CADMIUM BINDING CAPACITY OF DEMINERALIZED WHEY POWDER: A BOX-BOEHKEN DESIGN APPROACH”. Gıda 50/5 (Ekim2025), 766-779. https://doi.org/10.15237/gida.GD25019.
JAMA Yıldız Küçük N. CADMIUM BINDING CAPACITY OF DEMINERALIZED WHEY POWDER: A BOX-BOEHKEN DESIGN APPROACH. GIDA. 2025;50:766–779.
MLA Yıldız Küçük, Neslihan. “CADMIUM BINDING CAPACITY OF DEMINERALIZED WHEY POWDER: A BOX-BOEHKEN DESIGN APPROACH”. Gıda, c. 50, sy. 5, 2025, ss. 766-79, doi:10.15237/gida.GD25019.
Vancouver Yıldız Küçük N. CADMIUM BINDING CAPACITY OF DEMINERALIZED WHEY POWDER: A BOX-BOEHKEN DESIGN APPROACH. GIDA. 2025;50(5):766-79.

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/