Araştırma Makalesi
BibTex RIS Kaynak Göster

Dondurma işleminin mandalina polifenollerinin biyoerişilebilirliği üzerine etkisi

Yıl 2023, Sayı: 30, 10 - 21, 21.07.2023
https://doi.org/10.56833/gidaveyem.1279050

Öz

Amaç: Bu çalışmanın amacı, taze ve donuk Klementin türü mandalinada ve mandalina kabuğunda toplam fenolik maddenin, toplam flavonoid maddenin, toplam antioksidan kapasitenin ve flavanon glikozitlerin biyoerişilebilirliklerinin in vitro sindirim modeli kullanılarak değerlendirilmesidir.
Materyal ve yöntem: Mandalina polifenollerinin biyoerişilebilirliğinin tespitinde sırasıyla ağız, mide ve ince bağırsaktaki sindirimi simüle eden bir in vitro sindirim modeli uygulanmıştır. Toplam fenolik madde içeriği, toplam flavonoid madde içeriği ve toplam antioksidan kapasitedeki değişimler spektrofotometrik yöntemlerle belirlenmiş olup, flavanon glikozitlerin tespiti yüksek performanslı sıvı kromatografisi–fotodiyot dizi dedektörü (HPLC–PDA) ile yapılmıştır. Örnekler arasındaki istatistiksel farklılıkların değerlendirilmesi için, tek yönlü varyans analizi (ANOVA) ve ardından Tukey testi uygulanmıştır (p<0,05).
Bulgular ve sonuç: Taze ve donuk mandalinalar için toplam fenolik madde (sırasıyla %92 ve %85) ve toplam antioksidan kapasite (sırasıyla %57-128 ve %46-96) biyoerişilebilirliği bakımından önemli bir fark görülmemiştir (p>0,05). Ancak donuk mandalinanın toplam flavonoid madde biyoerişilebilirliğinin taze mandalinaya kıyasla istatistiksel olarak önemli düzeyde daha yüksek olduğu saptanmıştır (sırasıyla %39 ve %20) (p <0,05). HPLC–PDA ile yapılan kromatografik analiz sonucunda mandalinada bulunan başlıca flavanon glikozitler, narirutin ve hesperidin olarak tespit edilmiştir. Spektrofotometrik analizle elde edilen toplam flavonoid madde içeriği sonuçlarında olduğu gibi donuk mandalinanın flavanon glikozit biyoerişilebilirliğinin taze mandalinaya kıyasla daha yüksek olduğu görülmüştür (sırasıyla %32-65 ve %25-43) (p<0,05). Öte yandan mandalina kabuklarının toplam fenolik madde (%33), toplam flavonoid madde (%18), toplam antioksidan kapasite (%36-63) ve flavanon glikozit (%1,5-18) biyoerişilebilirliğinin iç meyveden daha düşük olduğu tespit edilmiştir.
Anahtar kelimeler: klementin; bireysel hızlı dondurma; in vitro sindirim; toplam fenolik madde; toplam antioksidan kapasite; hesperidin; narirutin

Destekleyen Kurum

Bursa Uludağ Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından finansal olarak desteklenmiştir

Proje Numarası

Proje No: FYL-2022-1096

Teşekkür

Yazarlar Mevsim Gıda Sanayi ve Soğuk Depo Tic. A.Ş. firmasına numunelerin teminindeki desteklerinden dolayı teşekkür eder.

Kaynakça

  • Anwer, M. K., Al-Shdefat, R., Jamil, S., Alam, P., Abdel-Kader, M. S., and Shakeel, F. (2014). Solubility of bioactive compound hesperidin in six pure solvents at (298.15 to 333.15) K. Journal of Chemical & Engineering Data, 59(6), 2065-2069. https://doi.org/10.1021/je500206w
  • Apak, R., Guclu K., Ozyurek M., and Karademir S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. https://doi.org/10.1021/jf048741x
  • Barry, G. H., Caruso, M., and Gmitter Jr, F. G. (2020). Commercial scion varieties. In The Genus Citrus (pp. 83-104). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-812163-4.00005-X
  • Benzie, I.F., and Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
  • Capanoglu, E., Kamiloglu, S., Demirci Cekic, S., Sozgen Baskan, K., Avan, A.N., Uzunboy, S., and Apak, R. (2022). Antioxidant Activity and Capacity Measurement. In H.M. Ekiert, K.G. Ramawat and J. Arora (Eds.), Plant Antioxidants and Health (pp. 709-773). Springer, Cham. https://doi.org/10.1007/978-3-030-78160-6_22
  • Cebadera, L., Dias, M.I., Barros, L., Fernández-Ruiz, V., Cámara, R. M., Del Pino, Á., ... and Cámara, M. (2020). Characterization of extra early spanish clementine varieties (Citrus clementina Hort ex Tan) as a relevant source of bioactive compounds with antioxidant activity. Foods, 9(5), 642. https://doi.org/10.3390/foods9050642
  • Chen, Q., Wang, D., Tan, C., Hu, Y., Sundararajan, B., and Zhou, Z. (2020). Profiling of flavonoid and antioxidant activity of fruit tissues from 27 Chinese local citrus cultivars. Plants, 9(2), 196. https://doi.org/10.3390/plants9020196
  • Cho, E.J., Lee, Y.G., Chang, J., and Bae, H.J. (2020). A high-yield process for production of biosugars and hesperidin from mandarin peel wastes. Molecules, 25(18), 4286. https://doi.org/10.3390/molecules25184286
  • Cilla, A., Rodrigo, M. J., De Ancos, B., Sánchez-Moreno, C., Cano, M. P., Zacarías, L., ... and Alegría, A. (2020). Impact of high-pressure processing on the stability and bioaccessibility of bioactive compounds in Clementine mandarin juice and its cytoprotective effect on Caco-2 cells. Food & Function, 11(10), 8951-8962. https://doi.org/10.1039/D0FO02048F
  • Costanzo, G., Iesce, M. R., Naviglio, D., Ciaravolo, M., Vitale, E., and Arena, C. (2020). Comparative studies on different citrus cultivars: A revaluation of waste mandarin components. Antioxidants, 9(6), 517. https://doi.org/10.3390/antiox9060517
  • Czech, A., Malik, A., Sosnowska, B., and Domaradzki, P. (2021). Bioactive substances, heavy metals, and antioxidant activity in whole fruit, peel, and pulp of citrus fruits. International Journal of Food Science, 2021. https://doi.org/10.1155/2021/6662259
  • De Ancos, B., Cilla, A., Barberá, R., Sánchez-Moreno, C., and Cano, M. P. (2017). Influence of orange cultivar and mandarin postharvest storage on polyphenols, ascorbic acid and antioxidant activity during gastrointestinal digestion. Food Chemistry, 225, 114-124. https://doi.org/10.1016/j.foodchem.2016.12.098 FAOSTAT (2022a). Erişim tarihi: Aralık, 2022. http://www.fao.org/faostat/en/#data/QC/visualize.
  • Hunlun, C., De Beer, D., Sigge, G. O., and Van Wyk, J. (2017). Characterisation of the flavonoid composition and total antioxidant capacity of juice from different citrus varieties from the Western Cape region. Journal of Food Composition and Analysis, 62, 115-125. https://doi.org/10.1016/j.jfca.2017.04.018
  • Jakobek, L., and Matić, P. (2019). Non-covalent dietary fiber-polyphenol interactions and their influence on polyphenol bioaccessibility. Trends in Food Science & Technology, 83, 235-247. https://doi.org/10.1016/j.tifs.2018.11.024
  • Kamiloglu, S. (2019a). Effect of different freezing methods on the bioaccessibility of strawberry polyphenols. International Journal of Food Science & Technology, 54(8), 2652–2660. https://doi.org/10.1111/ijfs.14249
  • Kamiloğlu, S. (2019b). Endüstriyel dondurma işlemi ve in vitro gastrointestinal sindirim sırasında taze fasulyenin fenoliklerinde, flavonoidlerinde ve antioksidan kapasitesinde meydana gelen değişimler. Akademik Gıda, 17(2), 176-184. https://doi.org/10.24323/akademik-gida.613559
  • Kamiloğlu, S. (2019c). Taze ve dondurulmuş elmalarda ve elma posasinda polifenol biyoerişilebilirliğinin değerlendirilmesi. Gıda, 44(3),409-418. https://doi.org/10.15237/ gida.gd19026
  • Kamiloglu, S. (2020). Industrial freezing effects on the content and bioaccessibility of spinach (Spinacia oleracea L.) polyphenols. Journal of the Science of Food and Agriculture, 100(11), 4190-4198. https://doi.org/10.1002/jsfa.10458
  • Kamiloglu, S., Tomas, M., Ozdal, T., and Capanoglu, E. (2021). Effect of food matrix on the content and bioavailability of flavonoids. Trends in Food Science & Technology, 117, 15-33. https://doi.org/10.1016/j.tifs.2020.10.030 Kim, D.O., Jeong, S.W., and Lee, C.Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81(3), 321-326. https://doi.org/10.1016/S0308-8146(02)00423-5
  • Kumaran, A., and Karunakaran R.J. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97(1), 109-114. https://doi.org/10.1016/j.foodchem.2005.03.032
  • Langgut, D. (2017). The citrus route revealed: From southeast asia into the mediterranean. HortScience, 52(6), 814-822. https://doi.org/10.21273/HORTSCI11023-16
  • Mahawar, M.K., Jalgaonkar, K., Bibwe, B., Bhushan, B., Meena, V.S., and Sonkar, R.K. (2020). Post-harvest processing and valorization of Kinnow mandarin (Citrus reticulate L.): A review. Journal of Food Science and Technology, 57(3), 799-815. https://doi.org/10.1007/s13197-019-04083-z
  • Meneguzzo, F., Ciriminna, R., Zabini, F., and Pagliaro, M. (2020). Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. Processes, 8(5), 549. https://doi.org/10.3390/pr8050549
  • Minekus, M., Alminger M., Alvito P., Ballance S., Bohn T., Bourlieu C., … and Brodkorb A. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function, 5(6), 1113-1124. https://doi.org/10.1039/C3FO60702J
  • Oliveira, A., Alexandre, E. M., Coelho, M., Barros, R. M., Almeida, D. P., and Pintado, M. (2016). Peach polyphenol and carotenoid content as affected by frozen storage and pasteurization. LWT-Food Science and Technology, 66, 361-368. https://doi.org/10.1016/j.lwt.2015.10.037
  • Onbirinci Kalkınma Planı (2019). https://www.sbb.gov.tr/wp-content/uploads/2022/07/On_Birinci_Kalkinma_Plani-2019-2023.pdf
  • Özdemirli, N., ve Kamiloğlu, S. (2022). Kavun çekirdeği şerbetinde (sübye) fenolik bileşiklerin biyoerişilebilirliğinin değerlendirilmesi. Gıda, 47(6), 1130-1139. https://doi.org/10.15237/gida.GD22083
  • Roussos, P. A., Flessoura, I., Petropoulos, F., Massas, I., Tsafouros, A., Ntanos, E., and Denaxa, N. K. (2019). Soil physicochemical properties, tree nutrient status, physical, organoleptic and phytochemical characteristics and antioxidant capacity of clementine mandarin (Citrus clementine cv. SRA63) juice under integrated and organic farming. Scientia Horticulturae, 250, 414-420. https://doi.org/10.1016/j.scienta.2019.02.082
  • Sentandreu, E., Stinco, C. M., Vicario, I. M., Mapelli-Brahm, P., Navarro, J. L., and Meléndez-Martínez, A. J. (2020). High-pressure homogenization as compared to pasteurization as a sustainable approach to obtain mandarin juices with improved bioaccessibility of carotenoids and flavonoids. Journal of Cleaner Production, 262, 121325. https://doi.org/10.1016/j.jclepro.2020.121325 UN (2020). Erişim tarihi: Aralık, 2022. https://www.un-page.org/page-and-sustainable-development-goals
  • Velioglu, Y.S., Mazza G., Gao L., and Oomah B.D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113-4117. https://doi.org/10.1021/jf9801973
  • Wojtunik-Kulesza, K., Oniszczuk, A., Oniszczuk, T., Combrzyński, M., Nowakowska, D., and Matwijczuk, A. (2020). Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients, 12(5), 1401. https://doi.org/10.3390/nu12051401

Effect of freezing on the bioaccessibility of mandarin polyphenols

Yıl 2023, Sayı: 30, 10 - 21, 21.07.2023
https://doi.org/10.56833/gidaveyem.1279050

Öz

Objective: The objective of this study was to evaluate the bioaccessibility of total phenolics, total flavonoids, total antioxidant capacity and flavanone glycosides in fresh and frozen clementine mandarins, and mandarin peels using an in vitro digestion model.
Material and method: An in vitro digestion model simulating the digestion in the mouth, stomach, and small intestine was applied to determine the bioaccessibility of mandarin polyphenols. Changes in total phenolic content, total flavonoid content and total antioxidant capacity were determined using spectrophotometric methods, whereas the detection of flavanone glycosides was carried out with high performance liquid chromatography–photodiode array detector (HPLC–PDA). For the evaluation of statistical differences between the samples, one-way analysis of variance (ANOVA) was applied followed by Tukey's post-hoc test (p<0.05).
Results and conclusion: Although there was statistically no significant difference between the fresh and frozen mandarins in terms of the bioaccessiblity of total phenolics (92% and 85%, respectively) and total antioxidant capacity (57-128% and 46-96%, respectively) (p>0.05), the bioaccessible total flavonoids from frozen mandarin was found to be significantly higher than fresh mandarin (39% and 20%, respectively) (p<0.05). Chromatographic analysis by HPLC–PDA revealed narirutin and hesperidin as the major flavanone glycosides. Confirming the results obtained with spectrophotometric total flavonoid content method, bioaccessibility of flavanone glycosides was found to be higher than that of fresh mandarin (32-65% and 25-43%, respectively) (p<0.05). On the other hand, bioaccessibility of total phenolics (%33), total flavonoids (%18), total antioxidant capacity (%36-63) and flavanone glycosides (%1.5-18) were lower in mandarin peels compared to fruit pulp.

Proje Numarası

Proje No: FYL-2022-1096

Kaynakça

  • Anwer, M. K., Al-Shdefat, R., Jamil, S., Alam, P., Abdel-Kader, M. S., and Shakeel, F. (2014). Solubility of bioactive compound hesperidin in six pure solvents at (298.15 to 333.15) K. Journal of Chemical & Engineering Data, 59(6), 2065-2069. https://doi.org/10.1021/je500206w
  • Apak, R., Guclu K., Ozyurek M., and Karademir S.E. (2004). Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. Journal of Agricultural and Food Chemistry, 52(26), 7970-7981. https://doi.org/10.1021/jf048741x
  • Barry, G. H., Caruso, M., and Gmitter Jr, F. G. (2020). Commercial scion varieties. In The Genus Citrus (pp. 83-104). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-812163-4.00005-X
  • Benzie, I.F., and Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
  • Capanoglu, E., Kamiloglu, S., Demirci Cekic, S., Sozgen Baskan, K., Avan, A.N., Uzunboy, S., and Apak, R. (2022). Antioxidant Activity and Capacity Measurement. In H.M. Ekiert, K.G. Ramawat and J. Arora (Eds.), Plant Antioxidants and Health (pp. 709-773). Springer, Cham. https://doi.org/10.1007/978-3-030-78160-6_22
  • Cebadera, L., Dias, M.I., Barros, L., Fernández-Ruiz, V., Cámara, R. M., Del Pino, Á., ... and Cámara, M. (2020). Characterization of extra early spanish clementine varieties (Citrus clementina Hort ex Tan) as a relevant source of bioactive compounds with antioxidant activity. Foods, 9(5), 642. https://doi.org/10.3390/foods9050642
  • Chen, Q., Wang, D., Tan, C., Hu, Y., Sundararajan, B., and Zhou, Z. (2020). Profiling of flavonoid and antioxidant activity of fruit tissues from 27 Chinese local citrus cultivars. Plants, 9(2), 196. https://doi.org/10.3390/plants9020196
  • Cho, E.J., Lee, Y.G., Chang, J., and Bae, H.J. (2020). A high-yield process for production of biosugars and hesperidin from mandarin peel wastes. Molecules, 25(18), 4286. https://doi.org/10.3390/molecules25184286
  • Cilla, A., Rodrigo, M. J., De Ancos, B., Sánchez-Moreno, C., Cano, M. P., Zacarías, L., ... and Alegría, A. (2020). Impact of high-pressure processing on the stability and bioaccessibility of bioactive compounds in Clementine mandarin juice and its cytoprotective effect on Caco-2 cells. Food & Function, 11(10), 8951-8962. https://doi.org/10.1039/D0FO02048F
  • Costanzo, G., Iesce, M. R., Naviglio, D., Ciaravolo, M., Vitale, E., and Arena, C. (2020). Comparative studies on different citrus cultivars: A revaluation of waste mandarin components. Antioxidants, 9(6), 517. https://doi.org/10.3390/antiox9060517
  • Czech, A., Malik, A., Sosnowska, B., and Domaradzki, P. (2021). Bioactive substances, heavy metals, and antioxidant activity in whole fruit, peel, and pulp of citrus fruits. International Journal of Food Science, 2021. https://doi.org/10.1155/2021/6662259
  • De Ancos, B., Cilla, A., Barberá, R., Sánchez-Moreno, C., and Cano, M. P. (2017). Influence of orange cultivar and mandarin postharvest storage on polyphenols, ascorbic acid and antioxidant activity during gastrointestinal digestion. Food Chemistry, 225, 114-124. https://doi.org/10.1016/j.foodchem.2016.12.098 FAOSTAT (2022a). Erişim tarihi: Aralık, 2022. http://www.fao.org/faostat/en/#data/QC/visualize.
  • Hunlun, C., De Beer, D., Sigge, G. O., and Van Wyk, J. (2017). Characterisation of the flavonoid composition and total antioxidant capacity of juice from different citrus varieties from the Western Cape region. Journal of Food Composition and Analysis, 62, 115-125. https://doi.org/10.1016/j.jfca.2017.04.018
  • Jakobek, L., and Matić, P. (2019). Non-covalent dietary fiber-polyphenol interactions and their influence on polyphenol bioaccessibility. Trends in Food Science & Technology, 83, 235-247. https://doi.org/10.1016/j.tifs.2018.11.024
  • Kamiloglu, S. (2019a). Effect of different freezing methods on the bioaccessibility of strawberry polyphenols. International Journal of Food Science & Technology, 54(8), 2652–2660. https://doi.org/10.1111/ijfs.14249
  • Kamiloğlu, S. (2019b). Endüstriyel dondurma işlemi ve in vitro gastrointestinal sindirim sırasında taze fasulyenin fenoliklerinde, flavonoidlerinde ve antioksidan kapasitesinde meydana gelen değişimler. Akademik Gıda, 17(2), 176-184. https://doi.org/10.24323/akademik-gida.613559
  • Kamiloğlu, S. (2019c). Taze ve dondurulmuş elmalarda ve elma posasinda polifenol biyoerişilebilirliğinin değerlendirilmesi. Gıda, 44(3),409-418. https://doi.org/10.15237/ gida.gd19026
  • Kamiloglu, S. (2020). Industrial freezing effects on the content and bioaccessibility of spinach (Spinacia oleracea L.) polyphenols. Journal of the Science of Food and Agriculture, 100(11), 4190-4198. https://doi.org/10.1002/jsfa.10458
  • Kamiloglu, S., Tomas, M., Ozdal, T., and Capanoglu, E. (2021). Effect of food matrix on the content and bioavailability of flavonoids. Trends in Food Science & Technology, 117, 15-33. https://doi.org/10.1016/j.tifs.2020.10.030 Kim, D.O., Jeong, S.W., and Lee, C.Y. (2003). Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 81(3), 321-326. https://doi.org/10.1016/S0308-8146(02)00423-5
  • Kumaran, A., and Karunakaran R.J. (2006). Antioxidant and free radical scavenging activity of an aqueous extract of Coleus aromaticus. Food Chemistry, 97(1), 109-114. https://doi.org/10.1016/j.foodchem.2005.03.032
  • Langgut, D. (2017). The citrus route revealed: From southeast asia into the mediterranean. HortScience, 52(6), 814-822. https://doi.org/10.21273/HORTSCI11023-16
  • Mahawar, M.K., Jalgaonkar, K., Bibwe, B., Bhushan, B., Meena, V.S., and Sonkar, R.K. (2020). Post-harvest processing and valorization of Kinnow mandarin (Citrus reticulate L.): A review. Journal of Food Science and Technology, 57(3), 799-815. https://doi.org/10.1007/s13197-019-04083-z
  • Meneguzzo, F., Ciriminna, R., Zabini, F., and Pagliaro, M. (2020). Review of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production. Processes, 8(5), 549. https://doi.org/10.3390/pr8050549
  • Minekus, M., Alminger M., Alvito P., Ballance S., Bohn T., Bourlieu C., … and Brodkorb A. (2014). A standardised static in vitro digestion method suitable for food–an international consensus. Food & Function, 5(6), 1113-1124. https://doi.org/10.1039/C3FO60702J
  • Oliveira, A., Alexandre, E. M., Coelho, M., Barros, R. M., Almeida, D. P., and Pintado, M. (2016). Peach polyphenol and carotenoid content as affected by frozen storage and pasteurization. LWT-Food Science and Technology, 66, 361-368. https://doi.org/10.1016/j.lwt.2015.10.037
  • Onbirinci Kalkınma Planı (2019). https://www.sbb.gov.tr/wp-content/uploads/2022/07/On_Birinci_Kalkinma_Plani-2019-2023.pdf
  • Özdemirli, N., ve Kamiloğlu, S. (2022). Kavun çekirdeği şerbetinde (sübye) fenolik bileşiklerin biyoerişilebilirliğinin değerlendirilmesi. Gıda, 47(6), 1130-1139. https://doi.org/10.15237/gida.GD22083
  • Roussos, P. A., Flessoura, I., Petropoulos, F., Massas, I., Tsafouros, A., Ntanos, E., and Denaxa, N. K. (2019). Soil physicochemical properties, tree nutrient status, physical, organoleptic and phytochemical characteristics and antioxidant capacity of clementine mandarin (Citrus clementine cv. SRA63) juice under integrated and organic farming. Scientia Horticulturae, 250, 414-420. https://doi.org/10.1016/j.scienta.2019.02.082
  • Sentandreu, E., Stinco, C. M., Vicario, I. M., Mapelli-Brahm, P., Navarro, J. L., and Meléndez-Martínez, A. J. (2020). High-pressure homogenization as compared to pasteurization as a sustainable approach to obtain mandarin juices with improved bioaccessibility of carotenoids and flavonoids. Journal of Cleaner Production, 262, 121325. https://doi.org/10.1016/j.jclepro.2020.121325 UN (2020). Erişim tarihi: Aralık, 2022. https://www.un-page.org/page-and-sustainable-development-goals
  • Velioglu, Y.S., Mazza G., Gao L., and Oomah B.D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. Journal of Agricultural and Food Chemistry, 46(10), 4113-4117. https://doi.org/10.1021/jf9801973
  • Wojtunik-Kulesza, K., Oniszczuk, A., Oniszczuk, T., Combrzyński, M., Nowakowska, D., and Matwijczuk, A. (2020). Influence of in vitro digestion on composition, bioaccessibility and antioxidant activity of food polyphenols—A non-systematic review. Nutrients, 12(5), 1401. https://doi.org/10.3390/nu12051401
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Özgün Araştırmalar
Yazarlar

Nurdan Özdemirli Bu kişi benim 0000-0001-8741-1416

Senem Kamiloğlu 0000-0003-3902-4360

Proje Numarası Proje No: FYL-2022-1096
Yayımlanma Tarihi 21 Temmuz 2023
Yayımlandığı Sayı Yıl 2023 Sayı: 30

Kaynak Göster

APA Özdemirli, N., & Kamiloğlu, S. (2023). Dondurma işleminin mandalina polifenollerinin biyoerişilebilirliği üzerine etkisi. Gıda Ve Yem Bilimi Teknolojisi Dergisi(30), 10-21. https://doi.org/10.56833/gidaveyem.1279050