Research Article
BibTex RIS Cite

Effect Of Laser Power Density On AISI 304L Tube Manufacturing By Laser Welding

Year 2025, Volume: 11 Issue: 3, 518 - 528, 31.12.2025

Abstract

In this study, AISI 304L stainless steel sheets were joined using laser welding without filler material to produce 12 mm diameter tubes for pipe manufacturing purposes. The effects of laser power variations on mechanical and microstructural properties were examined. Welding parameters ranged from 50 W to 80 W, with heating inputs of 0.370 kJ/mm (N1), 0.533 kJ/mm (N2), and 0.592 kJ/mm (N3). Microhardness testing showed higher hardness in the weld metal (227–285 HV) than in the base material, with minimal changes in the heat-affected zone. Drift-expanding tests indicated reduced plastic deformation with increasing heat input. Simulations confirmed the influence of welding parameters on temperature gradients and fusion zone widths, with maximum temperatures of 1361°C, 1545°C, and 1716°C for N1, N2, and N3, respectively. As part of the parameter determination, laser weld analysis of the N1, N2 and N3 parameters was carried out using the Simufact welding program. Altair Hyper Works was used in the FEA (Finite Element Analysis) simulation studies of the tube drift expansion. The physical test results were found to be consistent with the analysis results.

References

  • [1] K. Aydın, M.S, Yıldırım and Y. Kaya, “Effects of temperature and time on the diffusion bonding of 316L stainless steel and H13 hot work tool steel,” Steel Research International, vol. 96, no. 6, p. 2400629, 2024. doi: 10.1002/srin.202400629
  • [2] A.M. El-Batahgy, “Effect of laser welding parameters on fusion zone shape and solidification structure of austenitic stainless steels,” Mater Letters, vol. 32, no. 2-3, pp. 155–163, 1997. doi: 10.1016/S0167-577X(97)00023-2
  • [3] O. V. Akgun, O. T. Inal, “Laser surface melting and alloying of type 304L stainless steel,” Journal of Materials Science, vol. 30, no. 23, pp. 6105–6112, 1995. doi: 10.1007/BF01151534
  • [4] L. Quintino, A. Costa, R. Miranda, D. Yapp and V. Kumar, C.J. Kong, “Welding with high power fiber lasers – A preliminary study,” Materials & Design, vol. 28, no. 4, pp. 1231–1237, 2007. doi: 10.1016/j.matdes.2006.01.009
  • [5] J. Yu, X. Lin, J. Wang, J. Chen and W. Huang, “Mechanics and energy analysis on molten pool spreading during laser solid forming,” Applied Surface Science, vol. 256, no. 14, pp. 4612–4620, 2010. doi: 10.1016/j.apsusc.2010.02.060
  • [6] B. R. Kumar, N. Chauhan and P.M. Raole, “Mechanical and microstructural characterization of 8 mm thick samples of SS 316L by CO₂ laser welding,” Advanced Materials Research, vol. 585, pp. 430–434, 2012. doi: 10.4028/www.scientific.net/AMR.585.430
  • [7] M. Zhang, G. Chen, Y. Zhou and S. Liao, “Optimization of deep penetration laser welding of thick stainless steel with a 10 kW fiber laser,” Materials & Design, vol.53, pp. 568–576, 2014. doi: 10.1016/j.matdes.2013.06.066
  • [8] A. Grajcar, M. Różański, S. Stano, A. Kowalski and B. Grzegorczyk, “Effect of heat input on microstructure and hardness distribution of laser welded Si-Al TRIP-type steel,” Advances in Materials Science and Engineering, vol. 2014, no. 1, p. 658947, 2014. doi: 10.1155/2014/658947
  • [9] J. A. Alcock, B. Baufeld, “Diode laser welding of stainless steel 304L,” J Mater Process Technol, vol. 240, pp. 138–144, 2017. doi: 10.1016/j.jmatprotec.2016.09.019
  • [10] W. Tan, Y.C. Shin, “Laser keyhole welding of stainless steel thin plate stack for applications in fuel cell manufacturing,” Science and Technology of Welding and Joining, vol. 20, no. 4, pp. 313–318, 2015. doi: 10.1179/1362171815Y.0000000005
  • [11] M. J. Torkamany, J. Sabbaghzadeh and M.J. Hamedi, “Effect of laser welding mode on the microstructure and mechanical performance of dissimilar laser spot welds between low carbon and austenitic stainless steels,” Materials & Design, vol. 34, pp. 666–672, 2012. doi: 10.1016/j.matdes.2011.05.024
  • [12] R. S. Desai, S. Bag, “Influence of displacement constraints in thermomechanical analysis of laser micro-spot-welding process,” Journal of Manufacturing Processes, vol. 16, no. 2, pp. 264–275, 2014. doi:10.1016/j.jmapro.2013.10.002
  • [13] M. Baruah, S. Bag, “”Influence of pulsation in thermo-mechanical analysis on laser micro-welding of Ti6Al4V alloy,” Optics and Laser Technology, vol. 90, pp. 40–51, 2017. doi:10.1016/j.optlastec.2016.11.006
  • [14] J. Sun, Q. Yan, W. Gao and J. Huang, “Investigation of laser welding on butt joints of Al/steel dissimilar materials,” Materials & Design, vol. 83, pp. 120–128, 2015. doi:10.1016/j.matdes.2015.05.069
  • [15] U. Çalıgülü, M. Taşkın and H. Dikbaş, “The effects of high welding speed on microstructure and mechanical property of dissimilar welded components (AISI 430–AISI 304) by CO₂ LBW method,” Technological Applied Sciences, vol. 5, no. 2, pp.160–177, 2010. doi:10.12739/10.12739
  • [16] S. Nishimura, R. Katsura, Y. Saito, W. Kono, H. Takahashi, M. Koshiishi, et al., “YAG laser welding of neutron irradiated stainless steels,” Journal of Nuclear Materials, vol. 258, pp. 2002–2007, 1998. doi:10.1016/S0022-3115(98)00127-5
  • [17] I. Hajiannia, M. Shamanian and M. Kasiri, “Microstructure and mechanical properties of AISI 347 stainless steel/A335 low alloy steel dissimilar joint produced by gas tungsten arc welding,” Materials and Design, vol. 50, pp. 566–573, 2013. doi:10.1016/j.matdes.2013.03.029
  • [18] E. Assuncao, S. Williams, “Comparison of continuous wave and pulsed wave laser welding effects,” Optics and Lasers in Engineering, vol.51, no. 6, pp. 674–680, 2013. doi:10.1016/j.optlaseng.2013.01.007
  • [19] J. R. Berretta, W. de Rossi, M.D Martins das Neves, I. Alves de Almeida and N. Dias Vieira Junior, “Pulsed Nd:YAG laser welding of AISI 304 to AISI 420 stainless steels,” Optics and Lasers in Engineering, vol.45, no. 9, pp. 960–966, 2007. doi:10.1016/j.optlaseng.2007.02.001
  • [20] B. R. Moharana, S.K. Sahu, A. Maiti, S.K. Sahoo and T. K. Moharana, “An experimental study on joining of AISI 304 SS to Cu by Nd-YAG laser welding process,” Materials Today: Proceedings, vol.33, pp. 5262–5268, 2020. doi:10.1016/j.matpr.2020.02.953
  • [21] ISO EN ISO 8493, “Metallic materials-Tube-Drift-expanding test,” International Organization for Standardization, Geneva 2004.
  • [22] F. H Yeh, “Study of tube flaring forming limit in the tube flaring process,” The Journal of Strain Analysis for Engineering Design, vol. 42, no. 5, pp. 315-324, pp. 2007. doi:10.1243/03093247JS
  • [23] X. Zhan, J. Zhang, J. Wang, L. Wang, X. Li and Y. Zhao, “Microstructure characteristics and mechanical properties of fiber-diode hybrid laser welded 304 austenitic stainless steel,” Materials Science and Engineering: A, vol. 854, p.143884, 2022. doi:10.1016/j.msea.2022.143884
  • [24] A. Shah, A. Kumar and J. Ramkumar, “Analysis of transient thermo-fluidic behavior of melt pool during spot laser welding of 304 stainless-steel,” Journal of Materials Processing Technology, vol. 256, pp. 109–120, 2018. doi:10.1016/j.jmatprotec.2018.02.005
  • [25] K. Kim, J. Lee and H. Cho, “Analysis of pulsed Nd:YAG laser welding of AISI 304 steel,” Journal of Mechanical Science and Technology, vol.24, no. 11, pp. 2253–2259, 2010. doi:10.1007/s12206-010-0902-6
  • [26] G. Zhang, N.I. Arshad, P. Zhang, H. M. Hazaimeh, M. Alqahtani and N. Kraiem, “Experimental study and finite volume modeling of keyhole dynamics, temperature distribution and weld characteristics in laser welding of austenitic stainless-steel tube,” Optics & Laser Technology, vol. 183, no. 2, p.112366, 2025. doi:10.1016/j.optlastec.2024.112366
There are 26 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other)
Journal Section Research Article
Authors

Mehtap Hıdıroğlu 0000-0002-3368-1696

Ahmet Onayli 0000-0001-8418-4289

Nizamettin Kahraman 0000-0002-7152-3795

Submission Date July 16, 2025
Acceptance Date December 16, 2025
Publication Date December 31, 2025
Published in Issue Year 2025 Volume: 11 Issue: 3

Cite

IEEE M. Hıdıroğlu, A. Onayli, and N. Kahraman, “Effect Of Laser Power Density On AISI 304L Tube Manufacturing By Laser Welding”, GJES, vol. 11, no. 3, pp. 518–528, 2025.

GJES is indexed and archived by:

3311333114331153311633117

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg