Research Article
BibTex RIS Cite

Finding Influencers on Twitter with Using Machine Learning Classification Algorithms

Year 2018, Volume: 4 Issue: 3, 183 - 196, 24.12.2018

Abstract

Microblog sites are environments
where people follow people. With this feature, a microblog site is a convenient
environment for spreading an opinion or introducing a new product. The key
point is determination of individuals who maximize the spreading.
This problem is known as Influence
Maximization (IM) and has attracted attention of many researchers. Many studies
in the literature have modeled IM problem on graphs for different propagation
models such as Independent Cascade (IC) and Linear Threshold (LT). However,
microblogs like Twitter have their own features. Many works on IM in Twitter
derive new metrics from user and tweet features; apply a greedy approach for
selecting influencers. In this study, we adopted different approach for IM
problem, and we dealt it as a classification problem. Firstly, we collected
data on International Women Day 2018;
empirically we labeled the users as either influencer candidates or
non-influencers; then we applied classification methods for classifying users
into one class with using features of users. By this way, we obtained an
influencer candidates set, which is very smaller than entire dataset. Experimental
results show that making selection with using same heuristic (namely MF) from
the reduced influencer candidates set outperforms making selection from entire
dataset.

References

  • [1] M. Cha, H. Haddai, F. Benevenuto, and K. P. Gummadi, “Measuring User Influence in Twitter: The Million Follower Fallacy,” in International AAAI Conference on Weblogs and Social Media 2010 (ICWSM-10), 2010, pp. 10–17.
  • [2] L. Cui et al., “DDSE: A novel evolutionary algorithm based on degree-descending search strategy for influence maximization in social networks,” J. Netw. Comput. Appl., vol. 103, no. September 2017, pp. 119–130, 2018.
  • [3] P. Domingos and M. Richardson, “Mining the network value of customers,” in Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’01, 2001, pp. 57–66.
  • [4] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of influence through a social network,” in Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’03, 2003, p. 137.
  • [5] D. Li, C. Wang, S. Zhang, G. Zhou, D. Chu, and C. Wu, “Positive influence maximization in signed social networks based on simulated annealing,” Neurocomputing, vol. 260, pp. 69–78, 2017.
  • [6] L. Liu, J. Tang, J. Han, and S. Yang, “Learning influence from heterogeneous social networks,” Data Min. Knowl. Discov., vol. 25, no. 3, pp. 511–544, 2012.
  • [7] J. S. More and C. Lingam, “A SI model for social media influencer maximization,” Appl. Comput. Informatics, 2017.
  • [8] M. Richardson and P. Domingos, “Mining knowledge-sharing sites for viral marketing,” in Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’02, 2002, p. 61.
  • [9] Y. Zeng, X. Chen, G. Cong, S. Qin, J. Tang, and Y. Xiang, “Maximizing influence under influence loss constraint in social networks,” Expert Syst. Appl., vol. 55, pp. 255–267, 2016.
  • [10] F. Li and T. C. Du, “Maximizing micro-blog influence in online promotion,” Expert Syst. Appl., vol. 70, pp. 52–66, 2017.
  • [11] S. P. Borgatti, “Identifying sets of key players in a social network,” Comput. Math. Organ. Theory, vol. 12, no. 1, pp. 21–34, Apr. 2006.
  • [12] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in social networks,” in Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’09, 2009, p. 199.
  • [13] T. Lappas, E. Terzi, D. Gunopulos, and H. Mannila, “Finding effectors in social networks,” in Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’10, 2010, p. 1059.
  • [14] J.-R. Lee and C.-W. Chung, “A Query Approach for Influence Maximization on Specific Users in Social Networks,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 2, pp. 340–353, Feb. 2015.
  • [15] D. Li, Z.-M. Xu, N. Chakraborty, A. Gupta, K. Sycara, and S. Li, “Polarity Related Influence Maximization in Signed Social Networks,” PLoS One, vol. 9, no. 7, p. e102199, Jul. 2014.
  • [16] S. Peng, A. Yang, L. Cao, S. Yu, and D. Xie, “Social influence modeling using information theory in mobile social networks,” Inf. Sci. (Ny)., vol. 379, pp. 146–159, Feb. 2017.
  • [17] K. Zhang, H. Du, and M. W. Feldman, “Maximizing influence in a social network: Improved results using a genetic algorithm,” Phys. A Stat. Mech. its Appl., vol. 478, pp. 20–30, Jul. 2017.
  • [18] S. Peng, Y. Zhou, L. Cao, S. Yu, J. Niu, and W. Jia, “Influence analysis in social networks: A survey,” J. Netw. Comput. Appl., vol. 106, no. November 2017, pp. 17–32, 2018.
  • [19] M. Samadi, R. Nagi, A. Semenov, and A. Nikolaev, “Seed activation scheduling for influence maximization in social networks,” Omega, vol. 77, no. June 2018, pp. 96–114, 2018.
  • [20] J. V. Cossu, V. Labatut, and N. Dugué, “A review of features for the discrimination of twitter users: application to the prediction of offline influence,” Soc. Netw. Anal. Min., vol. 6, no. 1, 2016.
  • [21] Z. Zengin Alp and S. Gunduz Oguducu, “Identifying topical influencers on twitter based on user behavior and network topology,” Knowledge-Based Syst., vol. 141, pp. 211–221, 2018.
  • [22] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA data mining software,” ACM SIGKDD Explor. Newsl., vol. 11, no. 1, p. 10, Nov. 2009.
  • [23] M. Kitsak et al., “Identification of influential spreaders in complex networks,” Nat. Phys., vol. 6, no. 11, pp. 888–893, Nov. 2010.
  • [24] D. M. Romero, W. Galuba, S. Asur, and B. A. Huberman, “Influence and passivity in social media,” in Proceedings of the 20th international conference companion on World wide web - WWW ’11, 2011, p. 113.
  • [25] M. Cataldi and M. A. Aufaure, “The 10 million follower fallacy: audience size does not prove domain-influence on Twitter,” Knowl. Inf. Syst., vol. 44, no. 3, pp. 559–580, 2015.
  • [26] A. Pal and S. Counts, “Identifying topical authorities in microblogs,” Proc. fourth ACM Int. Conf. Web search data Min. - WSDM ’11, p. 45, 2011.
  • [27] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social network or a news media?,” in Proceedings of the 19th International Conference on World Wide Web (WWW’10), 2010, vol. 112, no. 2, pp. 591–600.
  • [28] J. Weng, E. P. Lim, J. Jiang, and Q. He, “Twitterrank: Finding topic-sensitive influential twitterers,” Proc. 3rd ACM Int. Conf. Web Search Data Min. (WSDM 2010), pp. 261–270, 2010.
  • [29] A. Leavitt, E. Burchard, D. Fisher, and S. Gilbert, “The Influentials: New Approaches for Analyzing Influence on Twitter,” 2009. [Online]. Available: http://www.webecologyproject.org/wp-content/uploads/2009/09/influence-report-final.pdf. [Accessed: 05-Apr-2018].
  • [30] P. Ficamos and Y. Liu, “A Topic based Approach for Sentiment Analysis on Twitter Data.,” Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 12, pp. 201–205, 2016.
  • [31] P.-C. Lin and P.-M. Huang, “A Study of Effective Features for Detecting Long-surviving Twitter Spam Accounts,” in 2013 15th International Conference on Advanced Communications Technology (ICACT), 2013, pp. 841–846.
  • [32] M. Giatsoglou, M. G. Vozalis, K. Diamantaras, A. Vakali, G. Sarigiannidis, and K. C. Chatzisavvas, “Sentiment analysis leveraging emotions and word embeddings,” Expert Syst. Appl., vol. 69, pp. 214–224, 2017.
  • [33] “Rate limits — Twitter Developers,” Twitter, 2018. [Online]. Available: https://developer.twitter.com/en/docs/basics/rate-limits.html. [Accessed: 05-Apr-2018].
  • [34] S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric,” PLoS One, vol. 12, no. 6, p. e0177678, Jun. 2017.
  • [35] A. More, “Survey of resampling techniques for improving classification performance in unbalanced datasets,” vol. 10000, pp. 1–7, 2016.
  • [36] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, and J. M. Pérez, “Applying Resampling Methods for Imbalanced Datasets to Not So Imbalanced Datasets,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8109 LNAI, 2013, pp. 111–120.
  • [37] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data streams,” in Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’01, 2001, pp. 97–106.
  • [38] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algorithms,” Mach. Learn., vol. 6, no. 1, pp. 37–66, Jan. 1991.
  • [39] S. L. Salzberg, “C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993,” Mach. Learn., vol. 16, no. 3, pp. 235–240, Sep. 1994.
  • [40] J. G. Cleary and L. E. Trigg, “K*: An Instance-based Learner Using and Entropic Distance Measure,” in Proceedings of the Twelfth International Conference on International Conference on Machine Learning, 1995, pp. 108–114.
  • [41] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally Weighted Learning,” Artif. Intell. Rev., vol. 11, no. 1–5, pp. 11–73, 1997.
  • [42] G. H. John and P. Langley, “Estimating Continuous Distributions in Bayesian Classifiers,” in Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 1995, pp. 338–345.
  • [43] R. Kohavi, “Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-tree Hybrid,” in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996, pp. 202–207.
  • [44] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.
  • [45] B. W. Matthews, “Comparison of the predicted and observed secondary structure of T4 phage lysozyme,” Biochim. Biophys. Acta - Protein Struct., vol. 405, no. 2, pp. 442–451, Oct. 1975.
  • [46] Y. Yang, S. Hung, Y. Zhang, and Y. Shen, “INDIVIDUAL-INFLUENCE & INTERACTIVE-RELATIONSHIP : THE APPLICATION UPON SOCIAL MEDIA FOR PUBLISHING-RELATED,” in Forty-Sixth Annual Meeting of the Western Decision Sciences Institute (WDSI 2017), 2017, pp. 1–6.
  • [47] D. Bartholomew, “SQL vs. NoSQL,” Linux J., vol. 2010, no. 195, pp. 54–59, 2010.
  • [48] Y. Li and S. Manoharan, “A performance comparison of SQL and NoSQL databases,” in IEEE Pacific RIM Conference on Communications, Computers, and Signal Processing - Proceedings, 2013, pp. 15–19.
  • [49] Jing Han, Haihong E, Guan Le, and Jian Du, “Survey on NoSQL database,” in 2011 6th International Conference on Pervasive Computing and Applications, 2011, pp. 363–366.
  • [50] A. Boicea, F. Radulescu, and L. I. Agapin, “MongoDB vs Oracle - Database comparison,” in Proceedings of 3rd International Conference on Emerging Intelligent Data and Web Technologies, EIDWT 2012, 2012, pp. 330–335.

Twitter Üzerindeki Etkili Bireylerin Makine Öğrenmesi Sınıflandırma Algoritmaları İle Tespiti

Year 2018, Volume: 4 Issue: 3, 183 - 196, 24.12.2018

Abstract

Mikroblog siteleri insanların
birbirlerini takip ettikleri ortamlardır. Bu özellikleri ile bir microblog
sitesi bir fikrin ya da yeni bir ürünün yayılması için elverişli bir ortamdır.
Buradaki anahtar nokta, yayılımı maksimize edecek bireylerin tespitidir. Bu
problem, Etki Maksimizasyonu (EM) olarak bilinir ve birçok araştırmacının
ilgisini çekmiştir. Literatürdeki birçok çalışma EM problemini graflar üzerinde
Independent Cascade (IC) ve Linear Threshold (LT) yayılım modelleri için ele
almıştır. Ne var ki, Twitter gibi microblog sitelerinin kendi özellikleri ve vardır.
Twitter üzerinde EM problemini ele almış olan birçok çalışma, kullanıcı ve
tweet özelliklerinden yeni ölçütler geliştirme ve bu ölçütleri kullanan bir aç
gözlü algoritma ile etkin bireyleri seçme yolunu izler. Bu çalışmada biz EM
problemi farklı bir yaklaşım uyguladık ve problemi bir sınıflandırma problemi
olarak ele aldık. İlk olarak, 2018 Uluslararası Kadınlar Gününde veri topladık;
kullanıcıları deneysel olarak etkili bireyler ve etkili olmayan bireyler olarak
etiketledik; son olarak bireyleri etkili ya da etkili olmayan diye sınıflara
ayırmak için sınıflandırma algoritmalarını kullandık. Bu şekilde, ana
verisetinden oldukça küçük olan bir etkili bireyler kümesi elde ettik. Deneysel
sonuçlar, aynı parametreyi kullanarak indirgenmiş kümeden seçim yapılmasının,
bütün veriseti üzerinden seçim yapılmasına göre çok daha başarılı sonuçlar
verdiğini göstermiştir.

References

  • [1] M. Cha, H. Haddai, F. Benevenuto, and K. P. Gummadi, “Measuring User Influence in Twitter: The Million Follower Fallacy,” in International AAAI Conference on Weblogs and Social Media 2010 (ICWSM-10), 2010, pp. 10–17.
  • [2] L. Cui et al., “DDSE: A novel evolutionary algorithm based on degree-descending search strategy for influence maximization in social networks,” J. Netw. Comput. Appl., vol. 103, no. September 2017, pp. 119–130, 2018.
  • [3] P. Domingos and M. Richardson, “Mining the network value of customers,” in Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’01, 2001, pp. 57–66.
  • [4] D. Kempe, J. Kleinberg, and É. Tardos, “Maximizing the spread of influence through a social network,” in Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’03, 2003, p. 137.
  • [5] D. Li, C. Wang, S. Zhang, G. Zhou, D. Chu, and C. Wu, “Positive influence maximization in signed social networks based on simulated annealing,” Neurocomputing, vol. 260, pp. 69–78, 2017.
  • [6] L. Liu, J. Tang, J. Han, and S. Yang, “Learning influence from heterogeneous social networks,” Data Min. Knowl. Discov., vol. 25, no. 3, pp. 511–544, 2012.
  • [7] J. S. More and C. Lingam, “A SI model for social media influencer maximization,” Appl. Comput. Informatics, 2017.
  • [8] M. Richardson and P. Domingos, “Mining knowledge-sharing sites for viral marketing,” in Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’02, 2002, p. 61.
  • [9] Y. Zeng, X. Chen, G. Cong, S. Qin, J. Tang, and Y. Xiang, “Maximizing influence under influence loss constraint in social networks,” Expert Syst. Appl., vol. 55, pp. 255–267, 2016.
  • [10] F. Li and T. C. Du, “Maximizing micro-blog influence in online promotion,” Expert Syst. Appl., vol. 70, pp. 52–66, 2017.
  • [11] S. P. Borgatti, “Identifying sets of key players in a social network,” Comput. Math. Organ. Theory, vol. 12, no. 1, pp. 21–34, Apr. 2006.
  • [12] W. Chen, Y. Wang, and S. Yang, “Efficient influence maximization in social networks,” in Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’09, 2009, p. 199.
  • [13] T. Lappas, E. Terzi, D. Gunopulos, and H. Mannila, “Finding effectors in social networks,” in Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’10, 2010, p. 1059.
  • [14] J.-R. Lee and C.-W. Chung, “A Query Approach for Influence Maximization on Specific Users in Social Networks,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 2, pp. 340–353, Feb. 2015.
  • [15] D. Li, Z.-M. Xu, N. Chakraborty, A. Gupta, K. Sycara, and S. Li, “Polarity Related Influence Maximization in Signed Social Networks,” PLoS One, vol. 9, no. 7, p. e102199, Jul. 2014.
  • [16] S. Peng, A. Yang, L. Cao, S. Yu, and D. Xie, “Social influence modeling using information theory in mobile social networks,” Inf. Sci. (Ny)., vol. 379, pp. 146–159, Feb. 2017.
  • [17] K. Zhang, H. Du, and M. W. Feldman, “Maximizing influence in a social network: Improved results using a genetic algorithm,” Phys. A Stat. Mech. its Appl., vol. 478, pp. 20–30, Jul. 2017.
  • [18] S. Peng, Y. Zhou, L. Cao, S. Yu, J. Niu, and W. Jia, “Influence analysis in social networks: A survey,” J. Netw. Comput. Appl., vol. 106, no. November 2017, pp. 17–32, 2018.
  • [19] M. Samadi, R. Nagi, A. Semenov, and A. Nikolaev, “Seed activation scheduling for influence maximization in social networks,” Omega, vol. 77, no. June 2018, pp. 96–114, 2018.
  • [20] J. V. Cossu, V. Labatut, and N. Dugué, “A review of features for the discrimination of twitter users: application to the prediction of offline influence,” Soc. Netw. Anal. Min., vol. 6, no. 1, 2016.
  • [21] Z. Zengin Alp and S. Gunduz Oguducu, “Identifying topical influencers on twitter based on user behavior and network topology,” Knowledge-Based Syst., vol. 141, pp. 211–221, 2018.
  • [22] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA data mining software,” ACM SIGKDD Explor. Newsl., vol. 11, no. 1, p. 10, Nov. 2009.
  • [23] M. Kitsak et al., “Identification of influential spreaders in complex networks,” Nat. Phys., vol. 6, no. 11, pp. 888–893, Nov. 2010.
  • [24] D. M. Romero, W. Galuba, S. Asur, and B. A. Huberman, “Influence and passivity in social media,” in Proceedings of the 20th international conference companion on World wide web - WWW ’11, 2011, p. 113.
  • [25] M. Cataldi and M. A. Aufaure, “The 10 million follower fallacy: audience size does not prove domain-influence on Twitter,” Knowl. Inf. Syst., vol. 44, no. 3, pp. 559–580, 2015.
  • [26] A. Pal and S. Counts, “Identifying topical authorities in microblogs,” Proc. fourth ACM Int. Conf. Web search data Min. - WSDM ’11, p. 45, 2011.
  • [27] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a social network or a news media?,” in Proceedings of the 19th International Conference on World Wide Web (WWW’10), 2010, vol. 112, no. 2, pp. 591–600.
  • [28] J. Weng, E. P. Lim, J. Jiang, and Q. He, “Twitterrank: Finding topic-sensitive influential twitterers,” Proc. 3rd ACM Int. Conf. Web Search Data Min. (WSDM 2010), pp. 261–270, 2010.
  • [29] A. Leavitt, E. Burchard, D. Fisher, and S. Gilbert, “The Influentials: New Approaches for Analyzing Influence on Twitter,” 2009. [Online]. Available: http://www.webecologyproject.org/wp-content/uploads/2009/09/influence-report-final.pdf. [Accessed: 05-Apr-2018].
  • [30] P. Ficamos and Y. Liu, “A Topic based Approach for Sentiment Analysis on Twitter Data.,” Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 12, pp. 201–205, 2016.
  • [31] P.-C. Lin and P.-M. Huang, “A Study of Effective Features for Detecting Long-surviving Twitter Spam Accounts,” in 2013 15th International Conference on Advanced Communications Technology (ICACT), 2013, pp. 841–846.
  • [32] M. Giatsoglou, M. G. Vozalis, K. Diamantaras, A. Vakali, G. Sarigiannidis, and K. C. Chatzisavvas, “Sentiment analysis leveraging emotions and word embeddings,” Expert Syst. Appl., vol. 69, pp. 214–224, 2017.
  • [33] “Rate limits — Twitter Developers,” Twitter, 2018. [Online]. Available: https://developer.twitter.com/en/docs/basics/rate-limits.html. [Accessed: 05-Apr-2018].
  • [34] S. Boughorbel, F. Jarray, and M. El-Anbari, “Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric,” PLoS One, vol. 12, no. 6, p. e0177678, Jun. 2017.
  • [35] A. More, “Survey of resampling techniques for improving classification performance in unbalanced datasets,” vol. 10000, pp. 1–7, 2016.
  • [36] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, and J. M. Pérez, “Applying Resampling Methods for Imbalanced Datasets to Not So Imbalanced Datasets,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 8109 LNAI, 2013, pp. 111–120.
  • [37] G. Hulten, L. Spencer, and P. Domingos, “Mining time-changing data streams,” in Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’01, 2001, pp. 97–106.
  • [38] D. W. Aha, D. Kibler, and M. K. Albert, “Instance-based learning algorithms,” Mach. Learn., vol. 6, no. 1, pp. 37–66, Jan. 1991.
  • [39] S. L. Salzberg, “C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan Kaufmann Publishers, Inc., 1993,” Mach. Learn., vol. 16, no. 3, pp. 235–240, Sep. 1994.
  • [40] J. G. Cleary and L. E. Trigg, “K*: An Instance-based Learner Using and Entropic Distance Measure,” in Proceedings of the Twelfth International Conference on International Conference on Machine Learning, 1995, pp. 108–114.
  • [41] C. G. Atkeson, A. W. Moore, and S. Schaal, “Locally Weighted Learning,” Artif. Intell. Rev., vol. 11, no. 1–5, pp. 11–73, 1997.
  • [42] G. H. John and P. Langley, “Estimating Continuous Distributions in Bayesian Classifiers,” in Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, 1995, pp. 338–345.
  • [43] R. Kohavi, “Scaling Up the Accuracy of Naive-Bayes Classifiers: A Decision-tree Hybrid,” in Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996, pp. 202–207.
  • [44] L. Breiman, “Random Forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.
  • [45] B. W. Matthews, “Comparison of the predicted and observed secondary structure of T4 phage lysozyme,” Biochim. Biophys. Acta - Protein Struct., vol. 405, no. 2, pp. 442–451, Oct. 1975.
  • [46] Y. Yang, S. Hung, Y. Zhang, and Y. Shen, “INDIVIDUAL-INFLUENCE & INTERACTIVE-RELATIONSHIP : THE APPLICATION UPON SOCIAL MEDIA FOR PUBLISHING-RELATED,” in Forty-Sixth Annual Meeting of the Western Decision Sciences Institute (WDSI 2017), 2017, pp. 1–6.
  • [47] D. Bartholomew, “SQL vs. NoSQL,” Linux J., vol. 2010, no. 195, pp. 54–59, 2010.
  • [48] Y. Li and S. Manoharan, “A performance comparison of SQL and NoSQL databases,” in IEEE Pacific RIM Conference on Communications, Computers, and Signal Processing - Proceedings, 2013, pp. 15–19.
  • [49] Jing Han, Haihong E, Guan Le, and Jian Du, “Survey on NoSQL database,” in 2011 6th International Conference on Pervasive Computing and Applications, 2011, pp. 363–366.
  • [50] A. Boicea, F. Radulescu, and L. I. Agapin, “MongoDB vs Oracle - Database comparison,” in Proceedings of 3rd International Conference on Emerging Intelligent Data and Web Technologies, EIDWT 2012, 2012, pp. 330–335.
There are 50 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Research Articles
Authors

Mehmet Şimşek 0000-0002-9797-5028

Abdullah Talha Kabakuş This is me 0000-0003-2181-4292

Publication Date December 24, 2018
Submission Date October 8, 2018
Acceptance Date November 6, 2018
Published in Issue Year 2018 Volume: 4 Issue: 3

Cite

IEEE M. Şimşek and A. T. Kabakuş, “Finding Influencers on Twitter with Using Machine Learning Classification Algorithms”, GJES, vol. 4, no. 3, pp. 183–196, 2018.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg