| | | |

## trenKumaraswamy Inverse Lindley Distribution with Stress-Strength ReliabilityKumaraswamy Inverse Lindley Distribution With Stress-Strength Reliability

#### Saeed E. HEMEDA [1] , Sukanta PRAMANİK [2] , Sudhansu MAİTİ [3]

A new generalizing of inverse Lindley distribution called Kumaraswamy inverse Lindley is presented in this study. Some mathematical expressions are determined to the proposed distribution. Significant statistical measures are deduced including quantiles generating functions, ordinary and incomplete moments, entropies, mean deviations and order statistics. Some different properties such as, median, mean, variance, coefficient of variation, coefficients of skewness and kurtosis are characterized. Moreover, stress-strength reliabilities defined. Simulation study of the Kumaraswamy inverse distribution is introduced using maximum likelihood estimation and the performances of their estimates are compered through biases and mean square errors. The applicability and importance of the new distribution is conducted through two real data groups.
A new generalizing of inverse Lindley distribution called Kumaraswamy inverse Lindley is presented in this study. Some mathematical expressions are determined to the proposed distribution. Significant statistical measures are deduced including quantiles generating functions, ordinary and incomplete moments, entropies, mean deviations and order statistics. Some different properties such as, median, mean, variance, coefficient of variation, coefficients of skewness and kurtosis are characterized. Moreover, stress-strength reliabilities defined. Simulation study of the Kumaraswamy inverse distribution is introducedusing maximum likelihood estimation and the performances of their estimates are compered through biases and mean square errors. The applicability and importance of the new distribution is conducted through two real data groups.
• [1] Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723.
• [2] Al-Babtain, A., Fattah, A. A., Ahmed, A. H. N., and Merovci, F. (2017). The Kumaraswamy-transmuted exponentiated modified Weibull distribution. Communications in Statistics-Simulation and Computation, 46(5), 3812-3832.
Birincil Dil en Malzeme Bilimleri, Ortak Disiplinler, Fizik, Uygulamalı Araştırma Makalesi Orcid: 0000-0002-5425-065XYazar: Saeed E. HEMEDAKurum: Obour High Institute for Management & Informatics, CairoÜlke: Egypt Orcid: 0000-0003-1621-7741Yazar: Sukanta PRAMANİK (Sorumlu Yazar)Kurum: SILIGURI COLLEGEÜlke: India Orcid: 0000-0001-8906-6513Yazar: Sudhansu MAİTİKurum: Visva-Bharati UniversityÜlke: India Yayımlanma Tarihi : 27 Aralık 2020
 Bibtex @araştırma makalesi { gmbd739424, journal = {Gazi Mühendislik Bilimleri Dergisi (GMBD)}, issn = {2149-4916}, eissn = {2149-9373}, address = {Eti Mh. Ali Suavi Cd. Birecik. Sk. No:1 Gazi İş Merkezi Ofis No:98 Çankaya/ANKARA}, publisher = {Aydın KARAPINAR}, year = {2020}, volume = {6}, pages = {255 - 264}, doi = {}, title = {Kumaraswamy Inverse Lindley Distribution With Stress-Strength Reliability}, key = {cite}, author = {E. Hemeda, Saeed and Pramanik, Sukanta and Maiti, Sudhansu} } APA E. Hemeda, S , Pramanik, S , Maiti, S . (2020). Kumaraswamy Inverse Lindley Distribution With Stress-Strength Reliability . Gazi Mühendislik Bilimleri Dergisi (GMBD) , 6 (3) , 255-264 . Retrieved from https://dergipark.org.tr/tr/pub/gmbd/issue/58697/739424 MLA E. Hemeda, S , Pramanik, S , Maiti, S . "Kumaraswamy Inverse Lindley Distribution With Stress-Strength Reliability" . Gazi Mühendislik Bilimleri Dergisi (GMBD) 6 (2020 ): 255-264 Chicago E. Hemeda, S , Pramanik, S , Maiti, S . "Kumaraswamy Inverse Lindley Distribution With Stress-Strength Reliability". Gazi Mühendislik Bilimleri Dergisi (GMBD) 6 (2020 ): 255-264 RIS TY - JOUR T1 - Kumaraswamy Inverse Lindley Distribution With Stress-Strength Reliability AU - Saeed E. Hemeda , Sukanta Pramanik , Sudhansu Maiti Y1 - 2020 PY - 2020 N1 - DO - T2 - Gazi Mühendislik Bilimleri Dergisi (GMBD) JF - Journal JO - JOR SP - 255 EP - 264 VL - 6 IS - 3 SN - 2149-4916-2149-9373 M3 - UR - Y2 - 2020 ER - EndNote %0 Gazi Mühendislik Bilimleri Dergisi (GMBD) Kumaraswamy Inverse Lindley Distribution With Stress-Strength Reliability %A Saeed E. Hemeda , Sukanta Pramanik , Sudhansu Maiti %T Kumaraswamy Inverse Lindley Distribution With Stress-Strength Reliability %D 2020 %J Gazi Mühendislik Bilimleri Dergisi (GMBD) %P 2149-4916-2149-9373 %V 6 %N 3 %R %U ISNAD E. Hemeda, Saeed , Pramanik, Sukanta , Maiti, Sudhansu . "Kumaraswamy Inverse Lindley Distribution With Stress-Strength Reliability". Gazi Mühendislik Bilimleri Dergisi (GMBD) 6 / 3 (Aralık 2020): 255-264 . AMA E. Hemeda S , Pramanik S , Maiti S . Kumaraswamy Inverse Lindley Distribution With Stress-Strength Reliability. GMBD. 2020; 6(3): 255-264. Vancouver E. Hemeda S , Pramanik S , Maiti S . Kumaraswamy Inverse Lindley Distribution With Stress-Strength Reliability. Gazi Mühendislik Bilimleri Dergisi (GMBD). 2020; 6(3): 255-264. IEEE S. E. Hemeda , S. Pramanik ve S. Maiti , "Kumaraswamy Inverse Lindley Distribution With Stress-Strength Reliability", Gazi Mühendislik Bilimleri Dergisi (GMBD), c. 6, sayı. 3, ss. 255-264, Ara. 2020

Makalenin Yazarları
[1]
[3]