Araştırma Makalesi
BibTex RIS Kaynak Göster

Elektrikli Araçlarda Batarya Şarj Ünitesi için LLC Rezonans Dönüştürücünün Kurulumu, Modellemesi ve Analizi

Yıl 2021, Cilt: 7 Sayı: 3, 298 - 308, 31.12.2021

Öz

Fosil yakıtların azalması, petrol fiyatlarının artması, hava kirliliğinin her geçen gün etkisini daha fazla göstermesi gibi etkenler elektrikli araçlara olan ilginin artmasına sebep olmuştur. Elektrikli araçların güç devrelerini beslemek için yüksek güçlü bataryaların kullanıldığı bilinmektedir. Dolayısıyla, batarya teknolojisi ve batarya şarj üniteleri elektrikli araçlar için oldukça önem arz etmektedir. Batarya şarj üniteleri şebekeden aldığı alternatif akımı, şarj işlemini gerçekleştirebilmek için doğru akıma çevirmektedir, bundan dolayı bir ac-dc dönüştürücü ve genellikle bir yalıtımlı dc-dc dönüştürücüden oluşmaktadır. Batarya şarj ünitelerinin güç yoğunluğu ve verimliliği büyük ölçüde dc-dc dönüştürücü devresinin tasarımına bağlıdır. Bu çalışmada, elektrikli araçların batarya şarj ünitelerine uyumlu bir yarım köprü yalıtımlı LLC rezonans dönüştürücü modellemesi kurulumu ve analizi yapılmıştır. Laboratuvar ortamında kurulumu için Texas Instruments (TMDSHVRESLLCKIT) kullanılmıştır. Yapılan analiz çalışmasında 300-W gücünde, 380V giriş gerilimi ve 12V çıkış geriliminde bir LLC rezonans dönüştürücü ve PI tabanlı kontrol yöntemi ile modellenmiştir. Analizi yapılan çalışma, ani değişen giriş gerilimi (380-400V) ve 4 farklı yük durumunda (%100, %75, %50, %25) incelenmiştir. Analiz çalışmasının benzetim ortamında gerçekleştirilmesi için Matlab/Simulink programı kullanılmıştır.

Destekleyen Kurum

Harran Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

19012

Teşekkür

Bu çalışma Harran Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından desteklenmiştir. Proje Numarası: 19012

Kaynakça

  • [1] G. Waltrich, M.L. Heldwein, "Modeling and simulation of electric vehicles (EVs) and design of batteries for EVs," IEEE Southern Power Conference, 2015, November 29th to December 2nd, 2015,
  • [2] C-Y. Oh, D-H. Kim, D-G. Woo, W-Y. Sung, B-K Lee, "A High-Efficient Non isolated Single Stage On-Board Battery Charger for Electric Vehicles," IEEE Transactions On Power Electronics, vol. 28, no. 12, pp. 5746-5757, 2013.
  • [3] S. Li, J. Deng, C.C. Mi, "Single-Stage Resonant Battery Charger with Inherent Power Factor Correction for Electric Vehicles," IEEE Transactions On Vehicular Technology, vol. 62, no. 9, pp. 4336-4344, 2013.
  • [4] S. Dusmez, A. Khaligh, "A Charge-Nonlinear-Carrier-Controlled Reduced-Part Single-Stage Integrated Power Electronics Interface for Automotive Applications," IEEE Transactions On Vehicular Technology, vol. 63, no. 3, pp. 1091-1103, 2014.
  • [5] B. Koushki, A. Safaee, P. Jain, A. Bakhshai, "Review and Comparison of Bi-Directional AC-DC Converters with V2G Capability for On-Board EV and HEV, " IEEE, pp.1-6, 2014. Under Variable Temperature And Irradiance,” European Journal Of Technic (EJT), Vol. 6, No. 2, pp. 87–95, Dec. 2016.
  • [6] U.R. Prasanna, A.K. Singh, K. Rajashekara, "Novel Bidirectional Single-phase Single-Stage Isolated AC–DC Converter with PFC for Charging of Electric Vehicles," IEEE Transactions On Transportation Electrification, vol. 3, no. 3, pp. 536-544, 2017.
  • [7] H.S. Ribeiro, B.V. Borges, "High-Performance Voltage-Fed AC–DC Full-Bridge Single-Stage Power Factor Correctors with a Reduced DC Bus Capacitor," IEEE Transactions On Power Electronics, vol. 29, no. 6, pp. 2680-2692, 2014.
  • [8] C.A. Cheng, C.H. Chang, T.Y. Chung, F.L. Yang, "Design and Implementation of a Single-Stage Driver for Supplying an LED Street-Lighting Module with Power Factor Corrections, " IEEE Transactions On Power Electronics, vol. 30, no. 2, pp. 956-966, 2015.
  • [9] M. Kwon, S. Choi, "An Electrolytic Capacitorless Bidirectional EV Charger for V2G and V2H Applications," IEEE Transactions On Power Electronics, vol. 32, no. 9, pp. 6792-6799, 2013.
  • [10] Yilmaz U., Turksoy O., Teke A., Intelligent control of high energy efficient two-stage battery charger topology for electric vehicles, Energy 186 (2019) 115825
  • [11] Yilmaz U., Turksoy O., Teke A., Improving a battery charger architecture for electric vehicles with photovoltaic system. Int J Energy Res. 2020;44:4376–4394. https://doi.org/ 10.1002/er.5211
  • [12] J. Deng, S. Li, S. Hu, C. C. Mi and R. Ma, "Design Methodology of LLC Resonant Converters for Electric Vehicle Battery Chargers," in IEEE Transactions on Vehicular Technology, vol. 63, no. 4, pp. 1581-1592, May 2014, doi: 10.1109/TVT.2013.2287379.
  • [13] N. Shafiei and M. Ordonez, "Improving the Regulation Range of EV Battery Chargers With L3C2 Resonant Converters," in IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3166-3184, June 2015, doi: 10.1109/TPEL.2014.2336668.
  • [14] Chih-Chiang Hua, Yi-Hsiung Fang, Cheng-Wei Lin, "LLC resonant converter for electric vehicle battery chargers"IET Power Electron., 2016, Vol. 9, Iss. 12, pp. 2369–2376
  • [15] Do-Hyun Kim, Min-Soo Kim, Sarvar Hussain Nengroo, Chang-Hee Kim and Hee-Je Kim, "LLC Resonant Converter for LEV (Light Electric Vehicle) Fast Chargers"Electronics 2019, 8, 362; pp. 1-14
  • [16] M. Li, Q. Chen, X. Ren, Y. Zhang, K. Jin and B. Chen, "The integrated LLC resonant converter using center-tapped transformer for on-board EV charger," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 2015, pp. 6293-6298, doi: 10.1109/ECCE.2015.7310542.
  • [17] X. Dan Gumera, A. Caberos and S. Huang, "Design and Implementation of a High Efficiency Cost Effective EV Charger Using LLC Resonant Converter," 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore, 2017, pp. 1-6, doi: 10.1109/ACEPT.2017.8168618.
  • [18] S. Kimura, K. Nanamori, M. Noah and M. Yamamoto, "A novel llc resonant dc-dc converter with integrated transformer," 2017 IEEE International Telecommunications Energy Conference (INTELEC), Broadbeach, QLD, Australia, 2017, pp. 506-510, doi: 10.1109/INTLEC.2017.8214186.
  • [19] Y. Daş, A. Tekin, M. Boztepe and C. Tarhan, "A Robust Voltage Control Method for Universal EV Battery Charger LLC Resonant Converters," 2019 IEEE International Conference on Sustainable Energy Technologies and Systems (ICSETS), Bhubaneswar, India, 2019, pp. 120-125, doi: 10.1109/ICSETS.2019.8744865.
  • [20] H. Bai, D. Yang, J. Song, Q. Su, B. Duan and C. Zhang, "Linear Active Disturbance Rejection Control of LLC Resonant Converters for EV Chargers," 2020 Chinese Automation Congress (CAC), Shanghai, China, 2020, pp. 993-998, doi: 10.1109/CAC51589.2020.9327865.
  • [21] Jovanovic ´ M.M., Irving B. T., 2016. On-the-Fly Topology-Morphing Control—Efficiency Optimization Method for LLC Resonant Converters Operating in Wide Input- and/or Output-Voltage Range. IEEE Transactions On Power Electronics, 31(3): 2596-2608.
  • [22] Lin R.-L., Huang L.-H., 2018. Efficiency Improvement on LLC Resonant Converter Using Integrated LCLC Resonant Transformer. IEEE Transactions On Industry Applications, 54(2): 1756-1764.
  • [23] Vu H.-N., Choi W., 2018. A Novel Dual Full-Bridge LLC Resonant Converter for CC and CV Charges of Batteries for Electric Vehicles. IEEE Transactions On Industrial Electronics, 65(3): 2212-2225.
  • [24] Noah M., Endo S., Ishibashi H., Nanamori K., Imaoka J., Umetani K., Yamamoto M., 2018. A Current Sharing Method Utilizing Single Balancing Transformer for a Multiphase LLC Resonant Converter with Integrated Magnetics. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(2): 977-992.
Yıl 2021, Cilt: 7 Sayı: 3, 298 - 308, 31.12.2021

Öz

Proje Numarası

19012

Kaynakça

  • [1] G. Waltrich, M.L. Heldwein, "Modeling and simulation of electric vehicles (EVs) and design of batteries for EVs," IEEE Southern Power Conference, 2015, November 29th to December 2nd, 2015,
  • [2] C-Y. Oh, D-H. Kim, D-G. Woo, W-Y. Sung, B-K Lee, "A High-Efficient Non isolated Single Stage On-Board Battery Charger for Electric Vehicles," IEEE Transactions On Power Electronics, vol. 28, no. 12, pp. 5746-5757, 2013.
  • [3] S. Li, J. Deng, C.C. Mi, "Single-Stage Resonant Battery Charger with Inherent Power Factor Correction for Electric Vehicles," IEEE Transactions On Vehicular Technology, vol. 62, no. 9, pp. 4336-4344, 2013.
  • [4] S. Dusmez, A. Khaligh, "A Charge-Nonlinear-Carrier-Controlled Reduced-Part Single-Stage Integrated Power Electronics Interface for Automotive Applications," IEEE Transactions On Vehicular Technology, vol. 63, no. 3, pp. 1091-1103, 2014.
  • [5] B. Koushki, A. Safaee, P. Jain, A. Bakhshai, "Review and Comparison of Bi-Directional AC-DC Converters with V2G Capability for On-Board EV and HEV, " IEEE, pp.1-6, 2014. Under Variable Temperature And Irradiance,” European Journal Of Technic (EJT), Vol. 6, No. 2, pp. 87–95, Dec. 2016.
  • [6] U.R. Prasanna, A.K. Singh, K. Rajashekara, "Novel Bidirectional Single-phase Single-Stage Isolated AC–DC Converter with PFC for Charging of Electric Vehicles," IEEE Transactions On Transportation Electrification, vol. 3, no. 3, pp. 536-544, 2017.
  • [7] H.S. Ribeiro, B.V. Borges, "High-Performance Voltage-Fed AC–DC Full-Bridge Single-Stage Power Factor Correctors with a Reduced DC Bus Capacitor," IEEE Transactions On Power Electronics, vol. 29, no. 6, pp. 2680-2692, 2014.
  • [8] C.A. Cheng, C.H. Chang, T.Y. Chung, F.L. Yang, "Design and Implementation of a Single-Stage Driver for Supplying an LED Street-Lighting Module with Power Factor Corrections, " IEEE Transactions On Power Electronics, vol. 30, no. 2, pp. 956-966, 2015.
  • [9] M. Kwon, S. Choi, "An Electrolytic Capacitorless Bidirectional EV Charger for V2G and V2H Applications," IEEE Transactions On Power Electronics, vol. 32, no. 9, pp. 6792-6799, 2013.
  • [10] Yilmaz U., Turksoy O., Teke A., Intelligent control of high energy efficient two-stage battery charger topology for electric vehicles, Energy 186 (2019) 115825
  • [11] Yilmaz U., Turksoy O., Teke A., Improving a battery charger architecture for electric vehicles with photovoltaic system. Int J Energy Res. 2020;44:4376–4394. https://doi.org/ 10.1002/er.5211
  • [12] J. Deng, S. Li, S. Hu, C. C. Mi and R. Ma, "Design Methodology of LLC Resonant Converters for Electric Vehicle Battery Chargers," in IEEE Transactions on Vehicular Technology, vol. 63, no. 4, pp. 1581-1592, May 2014, doi: 10.1109/TVT.2013.2287379.
  • [13] N. Shafiei and M. Ordonez, "Improving the Regulation Range of EV Battery Chargers With L3C2 Resonant Converters," in IEEE Transactions on Power Electronics, vol. 30, no. 6, pp. 3166-3184, June 2015, doi: 10.1109/TPEL.2014.2336668.
  • [14] Chih-Chiang Hua, Yi-Hsiung Fang, Cheng-Wei Lin, "LLC resonant converter for electric vehicle battery chargers"IET Power Electron., 2016, Vol. 9, Iss. 12, pp. 2369–2376
  • [15] Do-Hyun Kim, Min-Soo Kim, Sarvar Hussain Nengroo, Chang-Hee Kim and Hee-Je Kim, "LLC Resonant Converter for LEV (Light Electric Vehicle) Fast Chargers"Electronics 2019, 8, 362; pp. 1-14
  • [16] M. Li, Q. Chen, X. Ren, Y. Zhang, K. Jin and B. Chen, "The integrated LLC resonant converter using center-tapped transformer for on-board EV charger," 2015 IEEE Energy Conversion Congress and Exposition (ECCE), Montreal, QC, Canada, 2015, pp. 6293-6298, doi: 10.1109/ECCE.2015.7310542.
  • [17] X. Dan Gumera, A. Caberos and S. Huang, "Design and Implementation of a High Efficiency Cost Effective EV Charger Using LLC Resonant Converter," 2017 Asian Conference on Energy, Power and Transportation Electrification (ACEPT), Singapore, 2017, pp. 1-6, doi: 10.1109/ACEPT.2017.8168618.
  • [18] S. Kimura, K. Nanamori, M. Noah and M. Yamamoto, "A novel llc resonant dc-dc converter with integrated transformer," 2017 IEEE International Telecommunications Energy Conference (INTELEC), Broadbeach, QLD, Australia, 2017, pp. 506-510, doi: 10.1109/INTLEC.2017.8214186.
  • [19] Y. Daş, A. Tekin, M. Boztepe and C. Tarhan, "A Robust Voltage Control Method for Universal EV Battery Charger LLC Resonant Converters," 2019 IEEE International Conference on Sustainable Energy Technologies and Systems (ICSETS), Bhubaneswar, India, 2019, pp. 120-125, doi: 10.1109/ICSETS.2019.8744865.
  • [20] H. Bai, D. Yang, J. Song, Q. Su, B. Duan and C. Zhang, "Linear Active Disturbance Rejection Control of LLC Resonant Converters for EV Chargers," 2020 Chinese Automation Congress (CAC), Shanghai, China, 2020, pp. 993-998, doi: 10.1109/CAC51589.2020.9327865.
  • [21] Jovanovic ´ M.M., Irving B. T., 2016. On-the-Fly Topology-Morphing Control—Efficiency Optimization Method for LLC Resonant Converters Operating in Wide Input- and/or Output-Voltage Range. IEEE Transactions On Power Electronics, 31(3): 2596-2608.
  • [22] Lin R.-L., Huang L.-H., 2018. Efficiency Improvement on LLC Resonant Converter Using Integrated LCLC Resonant Transformer. IEEE Transactions On Industry Applications, 54(2): 1756-1764.
  • [23] Vu H.-N., Choi W., 2018. A Novel Dual Full-Bridge LLC Resonant Converter for CC and CV Charges of Batteries for Electric Vehicles. IEEE Transactions On Industrial Electronics, 65(3): 2212-2225.
  • [24] Noah M., Endo S., Ishibashi H., Nanamori K., Imaoka J., Umetani K., Yamamoto M., 2018. A Current Sharing Method Utilizing Single Balancing Transformer for a Multiphase LLC Resonant Converter with Integrated Magnetics. IEEE Journal of Emerging and Selected Topics in Power Electronics, 6(2): 977-992.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Ünal Yılmaz 0000-0003-3993-9309

Ali Kırçay 0000-0002-2842-1507

Proje Numarası 19012
Yayımlanma Tarihi 31 Aralık 2021
Gönderilme Tarihi 30 Mart 2021
Kabul Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 7 Sayı: 3

Kaynak Göster

IEEE Ü. Yılmaz ve A. Kırçay, “Elektrikli Araçlarda Batarya Şarj Ünitesi için LLC Rezonans Dönüştürücünün Kurulumu, Modellemesi ve Analizi”, GMBD, c. 7, sy. 3, ss. 298–308, 2021.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg