Research Article
BibTex RIS Cite

A MATLAB/GUI Based Photovoltaic System Simulator for Estimation of PV Parameter using Newton-Raphson Method

Year 2021, Volume: 7 Issue: 3, 196 - 212, 31.12.2021

Abstract

In this study, the working principle, components and connection types of the solar cell and the equivalent circuit model extraction were examined. The mathematical equations of the photovoltaic (PV) solar cell module general equivalent circuit model were adapted to the MATLAB software. An interface was created in the MATLAB GUI environment using the Newton-Raphson method to solve the current equation of the solar cell. The model used also includes changing environmental conditions such as solar radiation and temperature. With the interface created, the user; can quickly obtain Current-Voltage (I-V) and Power-Voltage (P-V) curves by changing parameters such as radiation, temperature, series resistance, ideality factor and number of cells connected in series-parallel. In this study, characteristic curves were obtained by using different parameters for the solar panel data of two other manufacturers. In addition, the user can quickly get values such as maximum current (Imp), maximum voltage (Vmp), maximum power (Pmp), input power (Pin), filling factor (FF) and efficiency (η) by entering the variable values of the photovoltaic cell through this interface. In this way, an interface that provides convenience to the user has been developed for those working in this field.

References

  • [1] A. Koç, H. Yağlı, Y. Koç and İ. Uğurlu, “Dünyada ve Türkiye’de enerji görünümünün genel değerlendirilmesi” Mühendis ve Makina, vol. 59, no. 692, pp. 86-114, 2018.
  • [2] S. Ağıralioğlu, & N. Ağıralioğlu, “Türkiye’de enerji ve politikaları” Takvim-i Vekayi, vol. 8, no. 2, pp.166-198, 2020.
  • [3] U. Gürsoy, “Enerjide toplumsal maliyet ve temiz ve yenilenebilir enerji kaynakları” Türk Tabipleri Birliği Yayınları, Ankara, 2004.
  • [4] A. N. Akpolat, E. Dursun, A. E. Kuzucuoğlu, Y. Yang, F. Blaabjerg and A. F. Baba, “Performance analysis of a grid-connected rooftop solar photovoltaic system” Electronics, vol.8, no.8, pp. 905, 2019.
  • [5] M. E. Şahin and H. İ. Okumuş, “Modelling and simulation of solar cell module in MATLAB/Simulink” The Journal of Electrical, Electronics, Computer and Biomedical Engineering, vol. 3, no. 5, pp. 17-25, 2013.
  • [6] A. N. Akpolat, Y. Yang, F. Blaabjerg, E. Dursun and A. E. Kuzucuoğlu, “Modeling photovoltaic string in PLECS under partial shading” In 2019 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), August 2019, pp. 1-6.
  • [7] J. Patel, G. Sharma, “Modeling and Simulation of Solar Photovoltaic Module Usıng MATLAB/Simulink” International Journal of Research in Engineering and Technology, vol. 2, no. 3, pp. 225-228, 2013.
  • [8] N. Belhaouas, M. A. Cheikh, A. Malek, C. Larbes, “Matlab-Simulink of photovoltaic system based on a two-diode model simulator with shaded solar cells”, Revue des Energies Renouvelables, vol. 16, no. 65, pp.73, 2013.
  • [9] A. Pandey, S. Devdas, “To study maximum power point tracking in photovoltaic cells” International Journal of Scientific & Engineering Research, vol. 4, no. 6, 2013.
  • [10] E. Cuce, P. M. Cuce, I. H. Karakas and T. Bali, “An accurate model for photovoltaic (PV) modules to determine electrical characteristics and thermodynamic performance parameters” Energy Conversion and Management, vol. 146, pp. 205-216, 2017.
  • [11] I. H. Altas, A. M. Sharaf, “A photovoltaic array simulation model for Matlab-Simulink GUI environment” In 2007 IEEE International Conference on Clean Electrical Power, May 2007, pp. 341-345.
  • [12] V. Türkmenoğlu, F. Güngör, “MATLAB Simulink & GUI with PV Cell Simulation” ELECO 2014, , Bursa, Turkey, 27-29 November 2014, pp. 402-406.
  • [13] G. R. Walker, P.C. Sernia, “Cascaded DC-DC converter connection of photovoltaic modules” IEEE Transactions on Power Electronics, vol. 19, no. 4, pp.1130-1140, July 2004.
  • [14] V. Ouaschning, R. Hanitsch, “Numerical simulation of photovoltaic generators with shaded cells” Universities Power Engineering Conference, vol. 30, pp. 583-589, 1995.
  • [15] T. Tafticht, K. Agbossou, M. L. Doumbia, A. Chériti, “An improved maximum power point tracking method for photovoltaic systems” Renewable Energy, vol. 33, no. 7, pp. 1508-16. 2008.
  • [16] M. Benghanem, “Low cost management for photovoltaic system in isolated site with new IV characterization model proposed” Energy Conversion and Management, vol. 50, pp. 48-55, 2009.
  • [17] R. Bayindir, I. Colak, O. Kaplan, C. Can, “MATLAB/GUI based simulation for photovoltaic systems”, In 2011 IEEE International Conference on Power Engineering, Energy and Electrical Drives, pp. 1-4, May. 2011.
  • [18] I. Issam Houssamo, F. Locment and M. Sechilariu, “Maximum power tracking for photovoltaic power system Development and experimental comparison of two algorithms” Renewable Energy, vol. 35, no.10, pp.2381-87, 2010.
  • [19] G. Dzimano, “Modeling of photovoltaic systems” Master Thesis, Ohio State University, 2008.
  • [20] M. E. Şahin, H. İ. Okumuş, “Physical structure, electrical design, mathematical modeling and simulation of solar cells and modules” Turkish Journal of Electromechanics and Energy, vol. 1, no.1, 2016.
  • [21] M. B. Eteiba, E. T. El Shenawy, J. H. Shazly, A. Z. Hafez, “A photovoltaic (cell, module, array) simulation and monitoring model using MATLAB/GUI interface” International Journal of Computer Applications, vol. 69, no. 6, pp.14-28, 2013.
  • [22] S. Strong, W. Scheller, “The solar electric house” Sustainability Press, Massachusetts, 1993.
  • [23] G. Çelebi, “Using Principles of photovoltaic panels on vertical building envelope,” J. Fac. Eng. Arch. Gazi Univ. vol.17, no. 3, 2002.
  • [24] D. Erdoğan, “Research on building integrated photovoltaic systems and their performance evaluation” Master Thesis, İstanbul Technical University, 2009.
  • [25] O. Bingöl, and B. Özkaya, “Analysis and comparison of different PV array configurations under partial shading conditions” Solar Energy, vol.160, pp. 336-343, 2018.
  • [26] A. D. Hansen, P. Sørenson, L. H. Hansen, H. Bindner, “Models for a stand-alone PV system”, Risø National Laboratory, Roskilde, December 2000.
  • [27] E. Lorenzo, “Solar electricity engineering of photovoltaic systems” Artes Graficas Gala, S. L., Spain, 1994. [28] M. E. Şahin, “Energy Management and Measurement of Computer Controlled Solar House Model for Rize City” Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 10, no. 2, pp. 404-414, 2020.
  • [29] M. E. Şahin and F. Blaabjerg, “A hybrid PV-battery/supercapacitor system and a basic active power control proposal in MATLAB/Simulink” Electronics, vol. 9, no.1, pp. 129, 2020.
  • [30] S. Koohi-Kamalі, N. A. Rahim, H. Mokhlis, and V. V. Tyagi, “Photovoltaic electricity generator dynamic modeling methods for smart grid applications: A review” Renewable and Sustainable Energy Reviews, vol. 57, pp. 131-172, 2016.
  • [31] A. O. Awodugba, Y. K. Sanusi, and J. O. Ajayi, “Photovoltaic solar cell simulation of Shockley diode parameters in Matlab” International Journal of Physical Sciences, vol. 8, no. 22, pp. 1193-1200, 2013.
  • [32] A. K. Ryad, A. M. Atallah, A. Zekry, “Photovoltaic parameters estimation using hybrid flower pollination with clonal selection algorithm” Turkish Journal of Electromechanics Energy, vol. 3, no. 2, pp. 15-21, 2018.
  • [33] Panasonic VBHN330SJ47, Available: https://www.europe-solarstore.com/panasonic-vbhn330sj47.html. [Accesed: 22.05.2021].
  • [34] LG Neon 2 Black LG330N1K-V5, Available: https://www.lg.com/global/business/download/resources/solar/NeON_2_60_BF_90214.pdf, [Accesed: 22.05.2021].

Parametre Kestirimi Newton-Raphson Yöntemiyle Yapılan MATLAB/GUI Tabanlı Fotovoltaik Sistem Simülatörü

Year 2021, Volume: 7 Issue: 3, 196 - 212, 31.12.2021

Abstract

Bu çalışmada ilk olarak güneş pilinin çalışma prensibi, bileşenleri ve bağlantı şekilleri ile eşdeğer devre modeli çıkarımı incelenmiştir. Fotovoltaik (FV) güneş pili modülü genel eşdeğer devre modeli matematiksel denklemleri MATLAB programına uyarlanmıştır. Güneş pilinin akım denklemi çözümü için Newton-Raphson yöntemi kullanılarak MATLAB grafiksel kullanıcı ara yüzü (GUI) ortamında bir ara yüz oluşturulmuştur. Kullanılan model güneş ışınımı ve sıcaklık gibi değişen çevresel koşulları da içerecek şekilde tasarlanmıştır. Oluşturulan ara yüz ile kullanıcı; ışınım, sıcaklık, seri direnç, ideallik faktörü ve seri-paralel bağlı hücre sayıları gibi parametreleri değiştirerek akım ile gerilim (I-V) ve güç ile gerilim (P-V) eğrilerini kolayca elde edebilmektedir. Bu çalışmada iki ayrı üretici firmaya ait güneş paneli verileri için farklı parametreler kullanılarak karakteristik eğriler elde edilmiştir. Ayrıca kullanıcı bu ara yüz sayesinde fotovoltaik hücrenin değişken değerlerini girerek maksimum akım (Imp), maksimum gerilim (Vmp), maksimum güç (Pmp), giriş gücü (Pin), doldurma faktörü (DF) ve verim (η) gibi değerleri kolaylıkla elde edebilmektedir. Bu sayede bu alanda çalışanlar için kullanıcıya kolaylık sağlayan bir ara yüz geliştirilmiştir.

References

  • [1] A. Koç, H. Yağlı, Y. Koç and İ. Uğurlu, “Dünyada ve Türkiye’de enerji görünümünün genel değerlendirilmesi” Mühendis ve Makina, vol. 59, no. 692, pp. 86-114, 2018.
  • [2] S. Ağıralioğlu, & N. Ağıralioğlu, “Türkiye’de enerji ve politikaları” Takvim-i Vekayi, vol. 8, no. 2, pp.166-198, 2020.
  • [3] U. Gürsoy, “Enerjide toplumsal maliyet ve temiz ve yenilenebilir enerji kaynakları” Türk Tabipleri Birliği Yayınları, Ankara, 2004.
  • [4] A. N. Akpolat, E. Dursun, A. E. Kuzucuoğlu, Y. Yang, F. Blaabjerg and A. F. Baba, “Performance analysis of a grid-connected rooftop solar photovoltaic system” Electronics, vol.8, no.8, pp. 905, 2019.
  • [5] M. E. Şahin and H. İ. Okumuş, “Modelling and simulation of solar cell module in MATLAB/Simulink” The Journal of Electrical, Electronics, Computer and Biomedical Engineering, vol. 3, no. 5, pp. 17-25, 2013.
  • [6] A. N. Akpolat, Y. Yang, F. Blaabjerg, E. Dursun and A. E. Kuzucuoğlu, “Modeling photovoltaic string in PLECS under partial shading” In 2019 International Conference on Power Generation Systems and Renewable Energy Technologies (PGSRET), August 2019, pp. 1-6.
  • [7] J. Patel, G. Sharma, “Modeling and Simulation of Solar Photovoltaic Module Usıng MATLAB/Simulink” International Journal of Research in Engineering and Technology, vol. 2, no. 3, pp. 225-228, 2013.
  • [8] N. Belhaouas, M. A. Cheikh, A. Malek, C. Larbes, “Matlab-Simulink of photovoltaic system based on a two-diode model simulator with shaded solar cells”, Revue des Energies Renouvelables, vol. 16, no. 65, pp.73, 2013.
  • [9] A. Pandey, S. Devdas, “To study maximum power point tracking in photovoltaic cells” International Journal of Scientific & Engineering Research, vol. 4, no. 6, 2013.
  • [10] E. Cuce, P. M. Cuce, I. H. Karakas and T. Bali, “An accurate model for photovoltaic (PV) modules to determine electrical characteristics and thermodynamic performance parameters” Energy Conversion and Management, vol. 146, pp. 205-216, 2017.
  • [11] I. H. Altas, A. M. Sharaf, “A photovoltaic array simulation model for Matlab-Simulink GUI environment” In 2007 IEEE International Conference on Clean Electrical Power, May 2007, pp. 341-345.
  • [12] V. Türkmenoğlu, F. Güngör, “MATLAB Simulink & GUI with PV Cell Simulation” ELECO 2014, , Bursa, Turkey, 27-29 November 2014, pp. 402-406.
  • [13] G. R. Walker, P.C. Sernia, “Cascaded DC-DC converter connection of photovoltaic modules” IEEE Transactions on Power Electronics, vol. 19, no. 4, pp.1130-1140, July 2004.
  • [14] V. Ouaschning, R. Hanitsch, “Numerical simulation of photovoltaic generators with shaded cells” Universities Power Engineering Conference, vol. 30, pp. 583-589, 1995.
  • [15] T. Tafticht, K. Agbossou, M. L. Doumbia, A. Chériti, “An improved maximum power point tracking method for photovoltaic systems” Renewable Energy, vol. 33, no. 7, pp. 1508-16. 2008.
  • [16] M. Benghanem, “Low cost management for photovoltaic system in isolated site with new IV characterization model proposed” Energy Conversion and Management, vol. 50, pp. 48-55, 2009.
  • [17] R. Bayindir, I. Colak, O. Kaplan, C. Can, “MATLAB/GUI based simulation for photovoltaic systems”, In 2011 IEEE International Conference on Power Engineering, Energy and Electrical Drives, pp. 1-4, May. 2011.
  • [18] I. Issam Houssamo, F. Locment and M. Sechilariu, “Maximum power tracking for photovoltaic power system Development and experimental comparison of two algorithms” Renewable Energy, vol. 35, no.10, pp.2381-87, 2010.
  • [19] G. Dzimano, “Modeling of photovoltaic systems” Master Thesis, Ohio State University, 2008.
  • [20] M. E. Şahin, H. İ. Okumuş, “Physical structure, electrical design, mathematical modeling and simulation of solar cells and modules” Turkish Journal of Electromechanics and Energy, vol. 1, no.1, 2016.
  • [21] M. B. Eteiba, E. T. El Shenawy, J. H. Shazly, A. Z. Hafez, “A photovoltaic (cell, module, array) simulation and monitoring model using MATLAB/GUI interface” International Journal of Computer Applications, vol. 69, no. 6, pp.14-28, 2013.
  • [22] S. Strong, W. Scheller, “The solar electric house” Sustainability Press, Massachusetts, 1993.
  • [23] G. Çelebi, “Using Principles of photovoltaic panels on vertical building envelope,” J. Fac. Eng. Arch. Gazi Univ. vol.17, no. 3, 2002.
  • [24] D. Erdoğan, “Research on building integrated photovoltaic systems and their performance evaluation” Master Thesis, İstanbul Technical University, 2009.
  • [25] O. Bingöl, and B. Özkaya, “Analysis and comparison of different PV array configurations under partial shading conditions” Solar Energy, vol.160, pp. 336-343, 2018.
  • [26] A. D. Hansen, P. Sørenson, L. H. Hansen, H. Bindner, “Models for a stand-alone PV system”, Risø National Laboratory, Roskilde, December 2000.
  • [27] E. Lorenzo, “Solar electricity engineering of photovoltaic systems” Artes Graficas Gala, S. L., Spain, 1994. [28] M. E. Şahin, “Energy Management and Measurement of Computer Controlled Solar House Model for Rize City” Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, vol. 10, no. 2, pp. 404-414, 2020.
  • [29] M. E. Şahin and F. Blaabjerg, “A hybrid PV-battery/supercapacitor system and a basic active power control proposal in MATLAB/Simulink” Electronics, vol. 9, no.1, pp. 129, 2020.
  • [30] S. Koohi-Kamalі, N. A. Rahim, H. Mokhlis, and V. V. Tyagi, “Photovoltaic electricity generator dynamic modeling methods for smart grid applications: A review” Renewable and Sustainable Energy Reviews, vol. 57, pp. 131-172, 2016.
  • [31] A. O. Awodugba, Y. K. Sanusi, and J. O. Ajayi, “Photovoltaic solar cell simulation of Shockley diode parameters in Matlab” International Journal of Physical Sciences, vol. 8, no. 22, pp. 1193-1200, 2013.
  • [32] A. K. Ryad, A. M. Atallah, A. Zekry, “Photovoltaic parameters estimation using hybrid flower pollination with clonal selection algorithm” Turkish Journal of Electromechanics Energy, vol. 3, no. 2, pp. 15-21, 2018.
  • [33] Panasonic VBHN330SJ47, Available: https://www.europe-solarstore.com/panasonic-vbhn330sj47.html. [Accesed: 22.05.2021].
  • [34] LG Neon 2 Black LG330N1K-V5, Available: https://www.lg.com/global/business/download/resources/solar/NeON_2_60_BF_90214.pdf, [Accesed: 22.05.2021].
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Research Articles
Authors

İbrahim Buldu This is me 0000-0003-3829-6241

Mustafa Ergin Şahin 0000-0002-5121-6173

Publication Date December 31, 2021
Submission Date May 23, 2021
Acceptance Date November 9, 2021
Published in Issue Year 2021 Volume: 7 Issue: 3

Cite

IEEE İ. Buldu and M. E. Şahin, “Parametre Kestirimi Newton-Raphson Yöntemiyle Yapılan MATLAB/GUI Tabanlı Fotovoltaik Sistem Simülatörü”, GJES, vol. 7, no. 3, pp. 196–212, 2021.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg