Research Article
BibTex RIS Cite

GMAW Esaslı Eklemeli İmalat İle Üretilen Düşük Karbonlu Çeliğin Mekanik Özellikleri

Year 2021, Volume: 7 Issue: 3, 175 - 182, 31.12.2021

Abstract

Tel ark eklemeli imalat, özellikle büyük ebatlı metal parçaların ekonomik üretimi ve nispeten yüksek biriktirme oranları gerektiren bir dizi uygulamalar için yüksek esneklik ve verimliliğe sahiptir. Bu çalışmada, düşük karbonlu çelik telden GMAW tabanlı eklemeli imalat uygulanarak üretilen parça mekanik özelliklerinin (çekme dayanımı ve mikrosertlik) deformasyon hızına göre değişimi araştırılmıştır. Bu bağlamda, eklemeli imalat parçadan dikiş yönüne dik ve paralel olarak hazırlanan numunelere 1 ve 4 mm/sn hızlarında çekme deneyleri uygulanmıştır. Kaynak dikiş yönüne dik numunelerde, süneklikteki anizotropik davranış yüzünden deformasyon hızının artmasıyla çekme dayanımında artış görülürken yüzde uzama miktarlarında azalma belirlenmiştir. Çekme hızının dört kat artmasıyla dikiş yönüne paralel numunede çekme dayanımı ortalama 545 MPa, dik numunede ise 524 MPa olarak elde edilmiştir. Dikiş yönüne paralel numunede, orijinal numuneye göre çekme deformasyonu neticesinde mikrosertlikte yükselme olurken, bu artış 1 mm/sn ve 4 mm/sn için sırasıyla ortalama %56 ve %64 olarak hesaplanmıştır. Dikiş yönüne dik numunelerde, bu oranlamada bir miktar azalma olsa da orijinal numuneye göre mikrosertlik değerlerindeki artış sırasıyla %46 ve %53 olarak belirlenmiştir.

References

  • [1] A. Hakan Dedeakayoğulları, Kacal, “Eklemeli İmalat Teknolojileri ve Kullanılan Talaşlı İmalat Yöntemleri,” İmalat Teknol. ve Uygulamaları, vol. 1, no. 1, pp. 1–12, 2020.
  • [2] M. Y. Kayacan and N. Yılmaz, “DMLS Eklemeli İmalatta Süreç Ve Maliyet Modeli Geliştirilmesi,” J. Polytech., vol. 0900, no. 3, pp. 763–770, 2018, doi: 10.2339/politeknik.428093.
  • [3] J. J. Lewandowski and M. Seifi, “Metal Additive Manufacturing: A Review of Mechanical Properties,” Annu. Rev. Mater. Res., vol. 46, no. April, pp. 151–186, 2016, doi: 10.1146/annurev-matsci-070115-032024.
  • [4] F. Martina, J. Mehnen, S. W. Williams, P. Colegrove, and F. Wang, “Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V,” J. Mater. Process. Technol., vol. 212, no. 6, pp. 1377–1386, 2012, doi: 10.1016/j.jmatprotec.2012.02.002.
  • [5] B. Cong, R. Ouyang, B. Qi, and J. Ding, “Influence of cold metal transfer process and its heat input on weld bead geometry and porosity of aluminum-copper alloy welds,” Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng., vol. 45, no. 3, pp. 606–611, 2016, doi: 10.1016/s1875-5372(16)30080-7.
  • [6] C. R. Cunningham, J. M. Flynn, A. Shokrani, V. Dhokia, and S. T. Newman, “Invited review article: Strategies and processes for high quality wire arc additive manufacturing,” Addit. Manuf., vol. 22, no. June, pp. 672–686, 2018, doi: 10.1016/j.addma.2018.06.020.
  • [7] J. L. Prado-Cerqueira, J. L. Diéguez, and A. M. Camacho, “Preliminary development of a Wire and Arc Additive Manufacturing system (WAAM),” Procedia Manuf., vol. 13, pp. 895–902, 2017, doi: 10.1016/j.promfg.2017.09.154.
  • [8] M. Chaturvedi, E. Scutelnicu, C. C. Rusu, L. R. Mistodie, D. Mihailescu, and S. Arungalai Vendan, “Wire arc additive manufacturing: Review on recent findings and challenges in industrial applications and materials characterization,” Metals (Basel)., vol. 11, no. 6, 2021, doi: 10.3390/met11060939.
  • [9] D. Ding, Z. Pan, D. Cuiuri, and H. Li, “A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM),” Robot. Comput. Integr. Manuf., vol. 31, pp. 101–110, 2015, doi: 10.1016/j.rcim.2014.08.008.
  • [10] R. Duraisamy, S. Mohan Kumar, A. Rajesh Kannan, N. Siva Shanmugam, and K. Sankaranarayanasamy, “Reliability and sustainability of wire arc additive manufactured plates using ER 347 wire-mechanical and metallurgical perspectives,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 235, no. 10, pp. 1860–1871, 2021, doi: 10.1177/0954406219861136.
  • [11] A. Queguineur, G. Rückert, F. Cortial, and J. Y. Hascoët, “Evaluation of WAAM for large-sized components in naval applications_NavalGroup_2017,” Weld. World, vol. 62, no. 2, pp. 259–266, 2017.
  • [12] L. Wang, J. Xue, and Q. Wang, “Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel,” Mater. Sci. Eng. A, vol. 751, no. November, pp. 183–190, 2019, doi: 10.1016/j.msea.2019.02.078.
  • [13] Z. Lin, C. Goulas, W. Ya, and M. J. M. Hermans, “Microstructure and mechanical properties of medium carbon steel deposits obtained via wire and arc additive manufacturing using metal-cored wire,” Metals (Basel)., vol. 9, no. 6, 2019, doi: 10.3390/met9060673.
  • [14] V. T. Le, D. S. Mai, and Q. H. Hoang, “A study on wire and arc additive manufacturing of low-carbon steel components: process stability, microstructural and mechanical properties,” J. Brazilian Soc. Mech. Sci. Eng., vol. 42, no. 9, pp. 1–11, 2020, doi: 10.1007/s40430-020-02567-0.
  • [15] İskender Yeşildağ, “Düşük alaşimli çelikten tel ark eklemeli imalat ile üretilen bir parçanin mekanik özelliklerinin incelenmesi,” Yüksek Lisans Tezi, Lisansüstü Eğitim Enstitüsü, Karabük Üniversitesi, 2020.
  • [16] T. Wang, Y. Zhang, Z. Wu, and C. Shi, “Microstructure and properties of die steel fabricated by WAAM using H13 wire,” Vacuum, vol. 149, pp. 185–189, 2018, doi: 10.1016/j.vacuum.2017.12.034.
  • [17] A. Busachi, J. Erkoyuncu, P. Colegrove, F. Martina, and J. Ding, “Designing a WAAM based manufacturing system for defence applications,” Procedia CIRP, vol. 37, no. October, pp. 48–53, 2015, doi: 10.1016/j.procir.2015.08.085.
  • [18] Q. Kun, Y. Li-Ming, and H. Shi-Sheng, “Mechanism of Strain Rate Effect Based on Dislocation Theory,” Chinese Phys. Lett., vol. 26, no. 3, p. 036103, Mar. 2009, doi: 10.1088/0256-307X/26/3/036103.
  • [19] J. H. Kim, D. Kim, H. N. Han, F. Barlat, and M. G. Lee, “Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling,” Mater. Sci. Eng. A, vol. 559, pp. 222–231, 2013, doi: 10.1016/j.msea.2012.08.087.
  • [20] Q. Zhang, J. Chen, Z. Zhao, H. Tan, X. Lin, and W. Huang, “Microstructure and anisotropic tensile behavior of laser additive manufactured TC21 titanium alloy,” Mater. Sci. Eng. A, vol. 673, pp. 204–212, 2016, doi: 10.1016/j.msea.2016.07.040.
  • [21] X. Xu, S. Ganguly, J. Ding, S. Guo, S. Williams, and F. Martina, “Microstructural evolution and mechanical properties of maraging steel produced by wire + arc additive manufacture process,” Mater. Charact., vol. 143, no. December, pp. 152–162, 2018, doi: 10.1016/j.matchar.2017.12.002.
  • [22] A. Lopez, R. Bacelar, I. Pires, T. G. Santos, J. P. Sousa, and L. Quintino, “Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing,” Addit. Manuf., vol. 21, no. April 2019, pp. 298–306, 2018, doi: 10.1016/j.addma.2018.03.020.
  • [23] M. Türkmen, S. Gündüz, “Çift fazli çeliklerde martenzit morfolojisinin statik deformasyon yaşlanma davranişi üzerine etkisi,” J. Fac. Eng. Archit. Gazi Univ., vol. 28, no. 2, pp. 353–362, 2013.
  • [24] C. V. Haden, G. Zeng, F. M. Carter, C. Ruhl, B. A. Krick, and D. G. Harlow, “Wire and arc additive manufactured steel: Tensile and wear properties,” Addit. Manuf., vol. 16, no. 2010, pp. 115–123, 2017, doi: 10.1016/j.addma.2017.05.010.
  • [25] P. Dirisu, G. Supriyo, F. Martina, X. Xu, and S. Williams, “Wire plus arc additive manufactured functional steel surfaces enhanced by rolling,” Int. J. Fatigue, vol. 130, no. December 2018, p. 105237, 2020, doi: 10.1016/j.ijfatigue.2019.105237.
  • [26] N. Sridharan, M. W. Noakes, A. Nycz, L. J. Love, R. R. Dehoff, and S. S. Babu, “On the toughness scatter in low alloy C-Mn steel samples fabricated using wire arc additive manufacturing,” Mater. Sci. Eng. A, vol. 713, no. July 2017, pp. 18–27, 2018, doi: 10.1016/j.msea.2017.11.101.

Mechanical Properties of Low Carbon Steel Produced by GMAW-based Additive Manufacturing

Year 2021, Volume: 7 Issue: 3, 175 - 182, 31.12.2021

Abstract

Wire arc additive manufacturing has high flexibility and efficiency, especially for the economical production of large-size metal parts and a range of applications that require relatively high deposition rates. In this study, the variation of the mechanical properties (tensile strength and microhardness) of the part produced by GMAW-based additive manufacturing from low carbon steel wire according to the deformation rate was investigated. In this context, tensile tests at 1 and 4 mm/sec speeds were applied to the samples prepared perpendicular and parallel to the seam direction from the additive manufacturing part. In the samples perpendicular to the weld seam direction, an increase in tensile strength was observed with an increase in the deformation rate due to the anisotropic behavior in ductility, while a decrease in percent elongation was determined. With the increase of the tensile speed four times, the average tensile strength of the sample parallel to the seam direction was 545 MPa, and the vertical specimen was 524 MPa. In the sample parallel to the seam direction, there was an increase in microhardness as a result of tensile deformation compared to the original sample, while this increase was calculated as 56% and 64% on average for 1 mm/sec and 4 mm/sec, respectively. Although there was a slight decrease in this ratio in samples perpendicular to the seam direction, the increase in microhardness values compared to the original sample was determined as 46% and 53%, respectively.

References

  • [1] A. Hakan Dedeakayoğulları, Kacal, “Eklemeli İmalat Teknolojileri ve Kullanılan Talaşlı İmalat Yöntemleri,” İmalat Teknol. ve Uygulamaları, vol. 1, no. 1, pp. 1–12, 2020.
  • [2] M. Y. Kayacan and N. Yılmaz, “DMLS Eklemeli İmalatta Süreç Ve Maliyet Modeli Geliştirilmesi,” J. Polytech., vol. 0900, no. 3, pp. 763–770, 2018, doi: 10.2339/politeknik.428093.
  • [3] J. J. Lewandowski and M. Seifi, “Metal Additive Manufacturing: A Review of Mechanical Properties,” Annu. Rev. Mater. Res., vol. 46, no. April, pp. 151–186, 2016, doi: 10.1146/annurev-matsci-070115-032024.
  • [4] F. Martina, J. Mehnen, S. W. Williams, P. Colegrove, and F. Wang, “Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti-6Al-4V,” J. Mater. Process. Technol., vol. 212, no. 6, pp. 1377–1386, 2012, doi: 10.1016/j.jmatprotec.2012.02.002.
  • [5] B. Cong, R. Ouyang, B. Qi, and J. Ding, “Influence of cold metal transfer process and its heat input on weld bead geometry and porosity of aluminum-copper alloy welds,” Xiyou Jinshu Cailiao Yu Gongcheng/Rare Met. Mater. Eng., vol. 45, no. 3, pp. 606–611, 2016, doi: 10.1016/s1875-5372(16)30080-7.
  • [6] C. R. Cunningham, J. M. Flynn, A. Shokrani, V. Dhokia, and S. T. Newman, “Invited review article: Strategies and processes for high quality wire arc additive manufacturing,” Addit. Manuf., vol. 22, no. June, pp. 672–686, 2018, doi: 10.1016/j.addma.2018.06.020.
  • [7] J. L. Prado-Cerqueira, J. L. Diéguez, and A. M. Camacho, “Preliminary development of a Wire and Arc Additive Manufacturing system (WAAM),” Procedia Manuf., vol. 13, pp. 895–902, 2017, doi: 10.1016/j.promfg.2017.09.154.
  • [8] M. Chaturvedi, E. Scutelnicu, C. C. Rusu, L. R. Mistodie, D. Mihailescu, and S. Arungalai Vendan, “Wire arc additive manufacturing: Review on recent findings and challenges in industrial applications and materials characterization,” Metals (Basel)., vol. 11, no. 6, 2021, doi: 10.3390/met11060939.
  • [9] D. Ding, Z. Pan, D. Cuiuri, and H. Li, “A multi-bead overlapping model for robotic wire and arc additive manufacturing (WAAM),” Robot. Comput. Integr. Manuf., vol. 31, pp. 101–110, 2015, doi: 10.1016/j.rcim.2014.08.008.
  • [10] R. Duraisamy, S. Mohan Kumar, A. Rajesh Kannan, N. Siva Shanmugam, and K. Sankaranarayanasamy, “Reliability and sustainability of wire arc additive manufactured plates using ER 347 wire-mechanical and metallurgical perspectives,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 235, no. 10, pp. 1860–1871, 2021, doi: 10.1177/0954406219861136.
  • [11] A. Queguineur, G. Rückert, F. Cortial, and J. Y. Hascoët, “Evaluation of WAAM for large-sized components in naval applications_NavalGroup_2017,” Weld. World, vol. 62, no. 2, pp. 259–266, 2017.
  • [12] L. Wang, J. Xue, and Q. Wang, “Correlation between arc mode, microstructure, and mechanical properties during wire arc additive manufacturing of 316L stainless steel,” Mater. Sci. Eng. A, vol. 751, no. November, pp. 183–190, 2019, doi: 10.1016/j.msea.2019.02.078.
  • [13] Z. Lin, C. Goulas, W. Ya, and M. J. M. Hermans, “Microstructure and mechanical properties of medium carbon steel deposits obtained via wire and arc additive manufacturing using metal-cored wire,” Metals (Basel)., vol. 9, no. 6, 2019, doi: 10.3390/met9060673.
  • [14] V. T. Le, D. S. Mai, and Q. H. Hoang, “A study on wire and arc additive manufacturing of low-carbon steel components: process stability, microstructural and mechanical properties,” J. Brazilian Soc. Mech. Sci. Eng., vol. 42, no. 9, pp. 1–11, 2020, doi: 10.1007/s40430-020-02567-0.
  • [15] İskender Yeşildağ, “Düşük alaşimli çelikten tel ark eklemeli imalat ile üretilen bir parçanin mekanik özelliklerinin incelenmesi,” Yüksek Lisans Tezi, Lisansüstü Eğitim Enstitüsü, Karabük Üniversitesi, 2020.
  • [16] T. Wang, Y. Zhang, Z. Wu, and C. Shi, “Microstructure and properties of die steel fabricated by WAAM using H13 wire,” Vacuum, vol. 149, pp. 185–189, 2018, doi: 10.1016/j.vacuum.2017.12.034.
  • [17] A. Busachi, J. Erkoyuncu, P. Colegrove, F. Martina, and J. Ding, “Designing a WAAM based manufacturing system for defence applications,” Procedia CIRP, vol. 37, no. October, pp. 48–53, 2015, doi: 10.1016/j.procir.2015.08.085.
  • [18] Q. Kun, Y. Li-Ming, and H. Shi-Sheng, “Mechanism of Strain Rate Effect Based on Dislocation Theory,” Chinese Phys. Lett., vol. 26, no. 3, p. 036103, Mar. 2009, doi: 10.1088/0256-307X/26/3/036103.
  • [19] J. H. Kim, D. Kim, H. N. Han, F. Barlat, and M. G. Lee, “Strain rate dependent tensile behavior of advanced high strength steels: Experiment and constitutive modeling,” Mater. Sci. Eng. A, vol. 559, pp. 222–231, 2013, doi: 10.1016/j.msea.2012.08.087.
  • [20] Q. Zhang, J. Chen, Z. Zhao, H. Tan, X. Lin, and W. Huang, “Microstructure and anisotropic tensile behavior of laser additive manufactured TC21 titanium alloy,” Mater. Sci. Eng. A, vol. 673, pp. 204–212, 2016, doi: 10.1016/j.msea.2016.07.040.
  • [21] X. Xu, S. Ganguly, J. Ding, S. Guo, S. Williams, and F. Martina, “Microstructural evolution and mechanical properties of maraging steel produced by wire + arc additive manufacture process,” Mater. Charact., vol. 143, no. December, pp. 152–162, 2018, doi: 10.1016/j.matchar.2017.12.002.
  • [22] A. Lopez, R. Bacelar, I. Pires, T. G. Santos, J. P. Sousa, and L. Quintino, “Non-destructive testing application of radiography and ultrasound for wire and arc additive manufacturing,” Addit. Manuf., vol. 21, no. April 2019, pp. 298–306, 2018, doi: 10.1016/j.addma.2018.03.020.
  • [23] M. Türkmen, S. Gündüz, “Çift fazli çeliklerde martenzit morfolojisinin statik deformasyon yaşlanma davranişi üzerine etkisi,” J. Fac. Eng. Archit. Gazi Univ., vol. 28, no. 2, pp. 353–362, 2013.
  • [24] C. V. Haden, G. Zeng, F. M. Carter, C. Ruhl, B. A. Krick, and D. G. Harlow, “Wire and arc additive manufactured steel: Tensile and wear properties,” Addit. Manuf., vol. 16, no. 2010, pp. 115–123, 2017, doi: 10.1016/j.addma.2017.05.010.
  • [25] P. Dirisu, G. Supriyo, F. Martina, X. Xu, and S. Williams, “Wire plus arc additive manufactured functional steel surfaces enhanced by rolling,” Int. J. Fatigue, vol. 130, no. December 2018, p. 105237, 2020, doi: 10.1016/j.ijfatigue.2019.105237.
  • [26] N. Sridharan, M. W. Noakes, A. Nycz, L. J. Love, R. R. Dehoff, and S. S. Babu, “On the toughness scatter in low alloy C-Mn steel samples fabricated using wire arc additive manufacturing,” Mater. Sci. Eng. A, vol. 713, no. July 2017, pp. 18–27, 2018, doi: 10.1016/j.msea.2017.11.101.
There are 26 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Mustafa Günay 0000-0002-1281-1359

İskender Yeşildağ 0000-0002-1155-1962

Publication Date December 31, 2021
Submission Date September 8, 2021
Acceptance Date October 28, 2021
Published in Issue Year 2021 Volume: 7 Issue: 3

Cite

IEEE M. Günay and İ. Yeşildağ, “Mechanical Properties of Low Carbon Steel Produced by GMAW-based Additive Manufacturing”, GJES, vol. 7, no. 3, pp. 175–182, 2021.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg