Araştırma Makalesi
BibTex RIS Kaynak Göster

Fabrication and Characterization of the ZnO Nanoparticles by Controlled Decomposition

Yıl 2022, Cilt: 8 Sayı: 1, 122 - 129, 30.04.2022

Öz

ZnO nanoparticles having different size and morphology were obtained by thermal decomposition method with long chain amine ligand and their physical and chemical characterization were comprehensively investigated. Zinc complexes were synthesized by two phase method and this precursor was used for the synthesis of ZnO nanoparticles in high temperature environment. Decomposition behaviour of the mixture with long chain amine precursor was monitored by Fourier Transformed Infrared Technique together with X-Ray Diffraction patterns to analyze the crystal features of the obtained nanocrystals. Transmission Electron Microscopy unveiled the morphological behaviour and crystalline properties of the nanoparticles which show a great homogeneity and monodispersity from the geometrical perspective. Long chain amine precursor concentration was great actor on the formation and growth behaviour of the ZnO nanoparticle as results indicated.

Kaynakça

  • [1] D. Ílem-Özdemir, E. Gündoğdu, M. Elinci, M. Aşikoğlu, ̏Nanoparticles: from diagnosis to therapy ̏ International Journal of Medical Nano Research; vol.3(1) pp. 1–5, Doi:2016, doi.org/10.23937/2378-3664/1410015
  • [2]C.M.Donegá, P. Liljeroth, D. Vanmaekelbergh, ̏Physicochemical evaluation of the hot injection method, a synthesis route for monodisperse nanocrystals ̏ Small; vol. 1(12) pp.1152-62, 2005, Doi: 10.1002/smll.200500239
  • [3] Y.Jun, J. Choi, J. Cheon, ̏Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes ̏ Angew Chem Int Ed Engl; vol.19;45(21) pp.3414-39, 2006, Doi:10.1002/anie.200503821
  • [4] S.G. Kwon, H. Taeghwan, ̏Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods ̏ Small, vol. 4;7(19) pp.2685-702, 20112. Doi: 10.1002/smll.201002022
  • [5] M. Rajamathi, R. Seshadri. ̏Oxide and chalcogenide nanoparticles from hydrothermal / solvothermal reactions ̏ Current Opinion in Solid State and Materials Science, vol.6,4 pp. 337-345, 2002. Doi: 10.1016/S1359-0286(02)00029-3
  • [6] J.A. Gerbec, D. Magana, A. Washington, G.F.Strouse ̏Microwave-Enhanced Reaction Rates for Nanoparticle Synthesis ̏ J.Am. Chem. Soc.vol. 127, pp. 15791-15800, 2005, Doi: 10.1021/ja052463g
  • [7] M. H. Huang, S. Mao, H. Feick, H.Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, ̏Room-temperature ultraviolet nanowire nanolasers ̏ Science, vol 292, pp. 1897, 2001, Doi: 10.1126/science.1060367
  • [8] Y.E. Panfil, M. Oded, U. Banin, ̏Colloidal Quantum Nanostructures: Emerging Materials for Display Applications ̏ Angew Chem Int Ed Engl, vol. 9;57(16) pp.4274-4295, 2018,Doi: 10.1002/anie.201708510
  • [9] G. Sharma, P. Jeevanandam, ̏Synthesis of self-assembled prismatic iron oxide nanoparticles by a novel thermal decomposition route ̏ RSC Adv.,vol.3,pp.189-200, 2013, Doi: 10.1039/C2RA22004K
  • 10] T. Togashi, K. Tsuchida, S. Soma, R. Nozawa, J. Matsui, K. Kanaizuka, M. Kurihara ̏Size-Tunable Continuous-Seed-Mediated Growth of Silver Nanoparticles in Alkylamine Mixture via the Stepwise Thermal Decomposition of Silver Oxalate ̏ Chemistry of Materials. Vol.32, 21, pp.9363-9370, 2020, Doi: 10.1021/acs.chemmater.0c03303
  • [11] S. Chen, Y. Lu, T. Huang, D. Yan, C. Dong, ̏Oxygen Vacancy Dependent Magnetism of CeO2 Nanoparticles Prepared by Thermal Decomposition Method ̏ The Journal of Physical Chemistry C. vol.114, 46, pp.19576-19581, 2010,Doi: 10.1021/jp1045172
  • [12] H. Damm, A. Kelchtermans, A. Bertha, F. Van den Broeck, K. Elen, J.C. Martins, R. Carleer, J. D'Haen, C. De Dobbelaere, J. Hadermann, A. Hardy, M. Van Bael K., ̏Thermal decomposition synthesis of Al-doped ZnO nanoparticles: an in-depth study ̏ RSC Adv. Vol.3, pp.23745-54, 2013,Doi: 10.1039/C3RA43328E
  • [13] D. Wang, M. Xing, Y. Wei, L. Wang, R.Wang, Q.Shen, ̏ Modeling of Nucleation and Growth in the Synthesis of PbS Colloidal Quantum Dots Under Variable Temperatures ̏ ACS Omega. Vol.29;6(5) pp.3701-3710, 2021, Doi: 10.1021/acsomega.0c05223
  • [14] S.A. McCarthy, R. Ratkic, F. Purcell-Milton, T.S. Perova, Y. K. Gunko ̏Adaptable surfactant-mediated method for the preparation of anisotropic metal chalcogenide nanomaterials ̏ Sci.Rep vol.8, pp.2860, 2018, Doi: 10.1038/s41598-018-21328-7
  • [15] H.C. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, Wiley-VCH Verlag GmbH & Co. KGaA, 2009

Kontrollü Bozundurma Tekniği İle ZnO Nanopartikül Üretimi ve Karakterizasyonu

Yıl 2022, Cilt: 8 Sayı: 1, 122 - 129, 30.04.2022

Öz

Farklı boyut ve morfolojiye sahip ZnO nanopartikülleri uzun zincirli amin ligandı kullanılarak termal bozundurma yöntemi ile elde edilmiş ve fiziksel ve kimyasal karakterizasyonları kapsamlı bir şekilde gerçekleştirilmiştir. Çinko kompleksleri iki fazlı yöntemle sentezlendikten sonra bu öncü reaktif yüksek sıcaklık kullanılarak ZnO nanoparçacık üretimi için vektörleştirildi. Uzun zincirli amin kimyasalını da içeren karışımın bozunma davranışları ve aynı zamanda elde edilen nanokristal özelliklerinin tayini için Fourier Dönüşümlü Kızılötesi Tekniği ile X-Işını Kırınım metotları kullanıldı. Transmisyon Elektron Mikroskobu, geometrik açıdan homojenlik ve monodispersite gösteren nanoparçacıkların morfolojik davranışlarını ve kristal özelliklerini ortaya koymuştur. Sonuçların gösterdiği gibi, uzun zincirli amin kimyasalının konsantrasyonu, ZnO nanoparçacığının oluşumu ve büyüme davranışı üzerinde büyük bir aktördür.

Kaynakça

  • [1] D. Ílem-Özdemir, E. Gündoğdu, M. Elinci, M. Aşikoğlu, ̏Nanoparticles: from diagnosis to therapy ̏ International Journal of Medical Nano Research; vol.3(1) pp. 1–5, Doi:2016, doi.org/10.23937/2378-3664/1410015
  • [2]C.M.Donegá, P. Liljeroth, D. Vanmaekelbergh, ̏Physicochemical evaluation of the hot injection method, a synthesis route for monodisperse nanocrystals ̏ Small; vol. 1(12) pp.1152-62, 2005, Doi: 10.1002/smll.200500239
  • [3] Y.Jun, J. Choi, J. Cheon, ̏Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes ̏ Angew Chem Int Ed Engl; vol.19;45(21) pp.3414-39, 2006, Doi:10.1002/anie.200503821
  • [4] S.G. Kwon, H. Taeghwan, ̏Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods ̏ Small, vol. 4;7(19) pp.2685-702, 20112. Doi: 10.1002/smll.201002022
  • [5] M. Rajamathi, R. Seshadri. ̏Oxide and chalcogenide nanoparticles from hydrothermal / solvothermal reactions ̏ Current Opinion in Solid State and Materials Science, vol.6,4 pp. 337-345, 2002. Doi: 10.1016/S1359-0286(02)00029-3
  • [6] J.A. Gerbec, D. Magana, A. Washington, G.F.Strouse ̏Microwave-Enhanced Reaction Rates for Nanoparticle Synthesis ̏ J.Am. Chem. Soc.vol. 127, pp. 15791-15800, 2005, Doi: 10.1021/ja052463g
  • [7] M. H. Huang, S. Mao, H. Feick, H.Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, ̏Room-temperature ultraviolet nanowire nanolasers ̏ Science, vol 292, pp. 1897, 2001, Doi: 10.1126/science.1060367
  • [8] Y.E. Panfil, M. Oded, U. Banin, ̏Colloidal Quantum Nanostructures: Emerging Materials for Display Applications ̏ Angew Chem Int Ed Engl, vol. 9;57(16) pp.4274-4295, 2018,Doi: 10.1002/anie.201708510
  • [9] G. Sharma, P. Jeevanandam, ̏Synthesis of self-assembled prismatic iron oxide nanoparticles by a novel thermal decomposition route ̏ RSC Adv.,vol.3,pp.189-200, 2013, Doi: 10.1039/C2RA22004K
  • 10] T. Togashi, K. Tsuchida, S. Soma, R. Nozawa, J. Matsui, K. Kanaizuka, M. Kurihara ̏Size-Tunable Continuous-Seed-Mediated Growth of Silver Nanoparticles in Alkylamine Mixture via the Stepwise Thermal Decomposition of Silver Oxalate ̏ Chemistry of Materials. Vol.32, 21, pp.9363-9370, 2020, Doi: 10.1021/acs.chemmater.0c03303
  • [11] S. Chen, Y. Lu, T. Huang, D. Yan, C. Dong, ̏Oxygen Vacancy Dependent Magnetism of CeO2 Nanoparticles Prepared by Thermal Decomposition Method ̏ The Journal of Physical Chemistry C. vol.114, 46, pp.19576-19581, 2010,Doi: 10.1021/jp1045172
  • [12] H. Damm, A. Kelchtermans, A. Bertha, F. Van den Broeck, K. Elen, J.C. Martins, R. Carleer, J. D'Haen, C. De Dobbelaere, J. Hadermann, A. Hardy, M. Van Bael K., ̏Thermal decomposition synthesis of Al-doped ZnO nanoparticles: an in-depth study ̏ RSC Adv. Vol.3, pp.23745-54, 2013,Doi: 10.1039/C3RA43328E
  • [13] D. Wang, M. Xing, Y. Wei, L. Wang, R.Wang, Q.Shen, ̏ Modeling of Nucleation and Growth in the Synthesis of PbS Colloidal Quantum Dots Under Variable Temperatures ̏ ACS Omega. Vol.29;6(5) pp.3701-3710, 2021, Doi: 10.1021/acsomega.0c05223
  • [14] S.A. McCarthy, R. Ratkic, F. Purcell-Milton, T.S. Perova, Y. K. Gunko ̏Adaptable surfactant-mediated method for the preparation of anisotropic metal chalcogenide nanomaterials ̏ Sci.Rep vol.8, pp.2860, 2018, Doi: 10.1038/s41598-018-21328-7
  • [15] H.C. Morkoç, Ü. Özgür, Zinc Oxide: Fundamentals, Materials and Device Technology, Wiley-VCH Verlag GmbH & Co. KGaA, 2009
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Osman Arslan 0000-0002-3011-1663

Yayımlanma Tarihi 30 Nisan 2022
Gönderilme Tarihi 16 Aralık 2021
Kabul Tarihi 29 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 8 Sayı: 1

Kaynak Göster

IEEE O. Arslan, “Fabrication and Characterization of the ZnO Nanoparticles by Controlled Decomposition”, GMBD, c. 8, sy. 1, ss. 122–129, 2022.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg