Araştırma Makalesi
BibTex RIS Kaynak Göster

Biyomedikal Uygulamalarında Kullanılan CoCrMo Alaşımının İşlenebilirliği: Kesici Takım Tipinin İncelenmesi

Yıl 2022, Cilt: 8 Sayı: 2, 215 - 227, 01.09.2022

Öz

Sağlık sektöründe yaygın olarak implant malzemesi olarak kullanılan CoCrMo malzemesinin işlenebilirliği üzerine bir çalışma yapılmıştır. Kuru işleme şartlarında gerçekleştirilen deneylerde, üç farklı kesici takım (iki farklı firmadan DCMT ve DCGT kesici uçlar) ile birlikte üç ayrı kesme hızı ve ilerleme miktarı değişkeni kullanılmıştır. Mevcut takımlar sertlik ve tokluğa bağlı olarak farklı mekanik özelliklere sahiptirler. Deneysel çalışmanın sonucu olarak işleme esnasında elde edilen ortalama yüzey pürüzlülüğü (Ra) ve kesme sıcaklığı (T) işleme çıktıları dikkate alınmıştır. Deneysel sonuçlar sinyal-gürültü (S/N) oranına göre değerlendirilmiş olup faktörlerin Ra ve T üzerindeki etkisini belirlemek için Varyans Analizi (ANOVA) kullanılarak değerlendirilmiştir. ANOVA sonuçlarına göre ilerleme miktarı %61,4 oranı ile Ra üzerindeki en etkili faktör iken, kesme hızı ise %63,9 ile T üzerinde en etkiki faktör olmuştur. En düşük Ra değerleri, en yüksek kesme hızı ve en düşük ilerleme miktarında, en düşük T değerleri ise en düşük kesme hızı ve ilerleme miktarında işleme ile gerçekleştirilen deneylerde elde edilmiştir.

Destekleyen Kurum

Karabük Üniversitesi

Proje Numarası

KBÜBAP-18-YL-189

Kaynakça

  • E. Şap and H. Çelik, “Investigation of Effects of Ti and Mn Addition on Microstructure and Mechanical Properties of Cobalt Based Alloys,” Electronic Journal of Machine Technologies, vol. 9, no. 3, pp. 25–33, 2012.
  • E. Şap, “Investigation of effects of some metals on cobalt based alloys,” Fırat University Graduate School of Natural and Applied Sciences, 2010.
  • I. Milošev, “CoCrMo Alloy for Biomedical Applications,” in Biomedical Applications, S. S. Djokić, Ed. Boston, MA: Springer US, 2012, pp. 1–72. doi: 10.1007/978-1-4614-3125-1_1.
  • E. Bahce, M. S. Güler, E. EMİR, and C. ÖZEL, “CoCrMo Tibial Komponentin Karbür Takı m ile İşlenmesinde Yüzey Özelliklerinin Araştırılması,” Ordu University Journal of Science and Technology, vol. 8, no. 1, pp. 16–30, 2018.
  • G. Meral, M. Sarıkaya, M. Mia, H. Dilipak, U. Şeker, and M. K. Gupta, “Multi-objective optimization of surface roughness, thrust force, and torque produced by novel drill geometries using Taguchi-based GRA,” International Journal of Advanced Manufacturing Technology, vol. 101, no. 5–8, pp. 1595–1610, 2019, doi: 10.1007/s00170-018-3061-z.
  • M. E. Korkmaz and M. Günay, “Experimental and Statistical Analysis on Machinability of Nimonic80A Superalloy with PVD Coated Carbide,” Sigma Journal of Engineering and Natural Sciences, vol. 36, no. 4, pp. 1141–1152, 2018.
  • A. T. Abbas, D. Y. Pimenov, I. N. Erdakov, M. A. Taha, M. S. Soliman, and M. M. El Rayes, “ANN surface roughness optimization of AZ61 magnesium alloy finish turning: Minimum machining times at prime machining costs,” Materials, vol. 11, no. 5, 2018, doi: 10.3390/ma11050808.
  • A. T. Abbas, D. Y. Pimenov, I. N. Erdakov, M. A. Taha, M. M. El Rayes, and M. S. Soliman, “Artificial intelligence monitoring of hardening methods and cutting conditions and their effects on surface roughness, performance, and finish turning costs of solid-state recycled aluminum alloy 6061 chips,” Metals, vol. 8, no. 6, 2018, doi: 10.3390/met8060394.
  • M. S. Alajmi and A. M. Almeshal, “Modeling of Cutting Force in the Turning of AISI 4340 Using Gaussian Process Regression Algorithm,” Applied Sciences, vol. 11, no. 9. 2021. doi: 10.3390/app11094055.
  • M. Kuntoğlu, A. Aslan, D. Y. Pimenov, K. Giasin, T. Mikolajczyk, and S. Sharma, “Modeling of Cutting Parameters and Tool Geometry for Multi-Criteria Optimization of Surface Roughness and Vibration via Response Surface Methodology in Turning of AISI 5140 Steel,” Materials, vol. 13, no. 19. 2020. doi: 10.3390/ma13194242.
  • M. K. Gupta, M. Mia, G. R. Singh, D. Y. Pimenov, M. Sarikaya, and V. S. Sharma, “Hybrid cooling-lubrication strategies to improve surface topography and tool wear in sustainable turning of Al 7075-T6 alloy,” International Journal of Advanced Manufacturing Technology, vol. 101, no. 1–4, pp. 55–69, 2019, doi: 10.1007/s00170-018-2870-4.
  • M. Mia and N. R. Dhar, “Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method,” The International Journal of Advanced Manufacturing Technology, pp. 739–753, 2017, doi: 10.1007/s00170-016-8810-2.
  • N. S. R. K et al., “Investigation of surface modification and tool wear on milling Nimonic 80A under hybrid lubrication,” Tribology International, vol. 155, p. 106762, 2021, doi: https://doi.org/10.1016/j.triboint.2020.106762.
  • M. Günay, M. E. Korkmaz, and N. Yaşar, “Performance analysis of coated carbide tool in turning of Nimonic 80A superalloy under different cutting environments,” Journal of Manufacturing Processes, vol. 56, pp. 678–687, 2020, doi: https://doi.org/10.1016/j.jmapro.2020.05.031.
  • M. A. Erden, N. Yaşar, M. E. Korkmaz, B. Ayvacı, K. Nimel Sworna Ross, and M. Mia, “Investigation of microstructure, mechanical and machinability properties of Mo-added steel produced by powder metallurgy method,” The International Journal of Advanced Manufacturing Technology, 2021, doi: 10.1007/s00170-021-07052-z.
  • M. E. Korkmaz and Nafiz Yaşar, “FEM modelling of turning of AA6061-T6: Investigation of chip morphology, chip thickness and shear angle,” Journal of Production Systems and Manufacturing Science, vol. 2, no. 1, pp. 50–58, 2021.
  • M. Mia and N. R. Dhar, “Response surface and neural network based predictive models of cutting temperature in hard turning,” Journal of Advanced Research, vol. 7, no. 6, pp. 1035–1044, 2016, doi: https://doi.org/10.1016/j.jare.2016.05.004.
  • M. Mia and N. R. Dhar, “Effects of duplex jets high-pressure coolant on machining temperature and machinability of Ti-6Al-4V superalloy,” Journal of Materials Processing Technology, vol. 252, pp. 688–696, 2018, doi: https://doi.org/10.1016/j.jmatprotec.2017.10.040.
  • M. E. Korkmaz and M. Günay, “Finite Element Modelling of Cutting Forces and Power Consumption in Turning of AISI 420 Martensitic Stainless Steel,” Arabian Journal for Science and Engineering, vol. 43, no. 9, pp. 4863–4870, Sep. 2018, doi: 10.1007/s13369-018-3204-4.
  • E. Bahçe, M. S. Güler, and E. Emir, “Investigation of surface quality of CoCrMo alloy used in the tibial component of the knee prosthesis according to the methods of turning and turning-grinding,” Materials Science, vol. 26, no. 1, pp. 41–48, 2020, doi: 10.5755/j01.ms.26.1.21729.
  • A. Bordin, A. Ghiotti, S. Bruschi, L. Facchini, and F. Bucciotti, “Machinability Characteristics of Wrought and EBM CoCrMo Alloys,” Procedia CIRP, vol. 14, pp. 89–94, 2014, doi: https://doi.org/10.1016/j.procir.2014.03.082.
  • S. Bruschi, A. Ghiotti, and A. Bordin, “Effect of the process parameters on the machinability characteristics of a CoCrMo Alloy,” Key Engineering Materials, vol. 554–557, pp. 1976–1983, 2013, doi: 10.4028/www.scientific.net/KEM.554-557.1976.
  • B. Karpuschewski and J. Döring, “Influence of the Tool Geometry on the Machining of Cobalt Chromium Femoral Heads,” Procedia CIRP, vol. 49, pp. 67–71, 2016, doi: https://doi.org/10.1016/j.procir.2015.07.034.
  • A. Shokrani, V. Dhokia, and S. T. Newman, “Cryogenic High Speed Machining of Cobalt Chromium Alloy,” Procedia CIRP, vol. 46, pp. 404–407, 2016, doi: https://doi.org/10.1016/j.procir.2016.04.045.
  • K. Jagtap and R. Pawade, “A Comparative Analysis of Cutting Forces in Precision Turning of Co-Cr-Mo Bio-implant Alloy in Dry and Wet Machining Environments,” Advances in Intelligent Systems Research, vol. 137, pp. 234–241, 2017, doi: 10.2991/iccasp-16.2017.38.
  • M. R. Dijmarescu, T. D. Popovici, I. C. Tarba, M. C. Dijmarescu, and C. F. Bisu, “An experimental study on cutting forces when machining a CoCrMo alloy,” IOP Conference Series: Materials Science and Engineering, vol. 400, no. 2, 2018, doi: 10.1088/1757-899X/400/2/022019.
  • B. Karpuschewski, H. J. Pieper, and J. Döring, “Impact of the cooling system on the cutting of medical cobalt chromium with ceramic cutting inserts,” Production Engineering, vol. 8, no. 5, pp. 613–618, 2014, doi: 10.1007/s11740-014-0559-6.
  • G. Matula, A. Szatkowska, K. Matus, B. Tomiczek, and M. Pawlyta, “Structure and Properties of Co-Cr-Mo Alloy Manufactured by Powder Injection Molding Method,” Materials, vol. 14, no. 8. 2021. doi: 10.3390/ma14082010.
  • Y. Okazaki, A. Ishino, and S. Higuchi, “Chemical, Physical, and Mechanical Properties and Microstructures of Laser-Sintered Co–25Cr–5Mo–5W (SP2) and W–Free Co–28Cr–6Mo Alloys for Dental Applications,” Materials, vol. 12, no. 24. 2019. doi: 10.3390/ma12244039.
  • H. R. Kim et al., “Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques,” Materials, vol. 9, no. 7. 2016. doi: 10.3390/ma9070596.
  • M. Özdemir, “Analysis of the Effect Rates of Cutting Parameters on Surface Roughness using Surface Response Method,” Gazi University Science Journal: PART:C ‘Design and Technology,’ vol. 7, no. 3, pp. 639–648, 2019, doi: 10.29109/gujsc.595722.
  • K. Leksycki, E. Feldshtein, G. M. Królczyk, and S. Legutko, “On the Chip Shaping and Surface Topography When Finish Cutting 17-4 PH Precipitation-Hardening Stainless Steel under Near-Dry Cutting Conditions,” Materials, vol. 13, no. 9. 2020. doi: 10.3390/ma13092188.
  • O. Çakır, M. Kıyak, and E. Altan, “Comparison of gases applications to wet and dry cuttings in turning,” Journal of Materials Processing Technology, vol. 153–154, pp. 35–41, 2004, doi: https://doi.org/10.1016/j.jmatprotec.2004.04.190.
  • Y. Yamane, N. Narutaki, and K. Hayashi, “Suppression of tool wear by using an inert gas in face milling,” Journal of Materials Processing Technology, vol. 62, no. 4, pp. 380–383, 1996, doi: https://doi.org/10.1016/S0924-0136(96)02439-9.
  • P. Fallböhmer, C. A. Rodrı́guez, T. Özel, and T. Altan, “High-speed machining of cast iron and alloy steels for die and mold manufacturing,” Journal of Materials Processing Technology, vol. 98, no. 1, pp. 104–115, 2000, doi: https://doi.org/10.1016/S0924-0136(99)00311-8.
  • B. Özlü, M. Akgün, and H. Demir, “AA6061 Alaşımının tornalanmasında kesme parametrelerinin yüzey pürüzlülüğü üzerine etkisinin analizi ve optimizasyonu,” Gazi Mühendislik Bilimleri Dergisi, vol.5, no. 2, pp. 151-158, 2019, doi: https://dx.doi.org/10.30855/gmbd.2019.02.04.
  • A. Takmaz, “Optimization By The Taguchi Method Of Effect On The Surface Roughness Of Cryogenic Treatment Applied To Cutting Tools,” Düzce University, 2018.
  • A. Bordin, S. Bruschi, and A. Ghiotti, “The Effect of Cutting Speed and Feed Rate on the Surface Integrity in Dry Turning of CoCrMo Alloy,” Procedia CIRP, vol. 13, pp. 219–224, 2014, doi: https://doi.org/10.1016/j.procir.2014.04.038.
  • M. R. Dijmarescu, M. C. Dijmarescu, I. Voiculescu, T. D. Popovici, and I. C. Tarba, “Study on the influence of cutting parameters on surface quality when machining a CoCrMo alloy,” IOP Conference Series: Materials Science and Engineering, vol. 400, no. 2, 2018, doi: 10.1088/1757-899X/400/2/022020.
  • R. Çakıroğlu, and G. Uzun, “Yüksek ilerleme ile frezeleme işlemi esnasında oluşan kesme kuvvetinin ve iş parçası yüzey pürüzlülüğünün yapay sinir ağları ile modellenmesi,” Gazi Mühendislik Bilimleri Dergisi, vol. 7, no. 1, pp. 58-66, 2021, doi: https://dx.doi.org/10.30855/gmbd.2021.01.07.
  • M. Günay, İ. Korkut, E. Aslan, and U. Şeker, “Experimental investigation of the effect of cutting tool rake angle on main cutting force,” Journal of Materials Processing Technology, vol. 166, no. 1, pp. 44–49, Jul. 2005, doi: 10.1016/J.JMATPROTEC.2004.07.092.
  • M. Sekmen, M. Günay, and U. Şeker, “Effect on Formations of Built-up Edge and Built-up Layer, Surface Roughness of Cutting Speed and Rake Angle in the Machining of Aluminum Alloys,” Journal of Polytechnic, vol. 18, no. 3, pp. 141–148, 2015.
  • N. A. Abukhshim, P. T. Mativenga, and M. A. Sheikh, “Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining,” International Journal of Machine Tools and Manufacture, vol. 46, no. 7, pp. 782–800, 2006, doi: https://doi.org/10.1016/j.ijmachtools.2005.07.024.
  • I. Campos, M. Farah, N. López, G. Bermúdez, G. Rodríguez, and C. VillaVelázquez, “Evaluation of the tool life and fracture toughness of cutting tools boronized by the paste boriding process,” Applied Surface Science, vol. 254, no. 10, pp. 2967–2974, 2008, doi: https://doi.org/10.1016/j.apsusc.2007.10.038.
  • M. S. I. Chowdhury, B. Bose, S. Rawal, G. S. Fox-Rabinovich, and S. C. Veldhuis, “Investigation of the Wear Behavior of PVD Coated Carbide Tools during Ti6Al4V Machining with Intensive Built Up Edge Formation,” Coatings, vol. 11, no. 3. 2021. doi: 10.3390/coatings11030266.
  • M. Yavuz, H. Gökçe, and U. Şeker, “Matkap geometrisinin takım aşınması ve talaş oluşumu üzerine etkisinin araştırılması,” Gazi Mühendislik Bilimleri Dergisi, vol. 3, no. 1, 2017, doi: https://dergipark.org.tr/tr/pub/gmbd/issue/30198/323487.
  • S. Sulaiman, A. Roshan, and S. Borazjani, “Effect of cutting parameters on cutting temperature of TiAL6V4 alloy,” Applied Mechanics and Materials, vol. 392, no. May 2016, pp. 68–72, 2013, doi: 10.4028/www.scientific.net/AMM.392.68.
  • J. Yuan, J. M. Boyd, D. Covelli, T. Arif, G. S. Fox-Rabinovich, and S. C. Veldhuis, “Influence of Workpiece Material on Tool Wear Performance and Tribofilm Formation in Machining Hardened Steel,” Lubricants, vol. 4, no. 2. 2016. doi: 10.3390/lubricants4020010.
  • E. Şap et al., “Parametric Optimization for Improving the Machining Process of Cu/Mo-SiCP Composites Produced by Powder Metallurgy,” Materials, vol. 14, no. 8. 2021. doi: 10.3390/ma14081921.
  • M. F. Ghazali et al., “Tool Wear and Surface Evaluation in Drilling Fly Ash Geopolymer Using HSS, HSS-Co, and HSS-TiN Cutting Tools,” Materials, vol. 14(7), no. 7, p. 1628, 2021, doi: 10.3390/ma14071628.

Machinability of CoCrMo Alloy used in Biomedical applications: Investigation of Cutting Tool Type

Yıl 2022, Cilt: 8 Sayı: 2, 215 - 227, 01.09.2022

Öz

A study was conducted on the machinability of CoCrMo material, which is widely used in the health-care industry as an implant material. When it came to dry machining testing, three separate variables of cutting speed and feed rate were used in conjunction with three different cutting tools (DCMT from two different firms and DCGT inserts). Cutting tools with varied mechanical properties depending on hardness and toughness are available. A machine's output is defined as an average of surface roughness (Ra) and cutting temperature (T), which is calculated as the outcome of experimental study during machining. The outcomes of the tests were evaluated based on the signal-to-noise ratio (S / N) that was obtained. It was decided to apply the Analysis of Variance (ANOVA) approach to determine the influence of factors on Ra and T. In the analysis of variance, the feed rate was the most effective factor on Ra, with a precision ratio of 61.4%, while the cutting speed was the most effective factor on cutting temperature, with a precision ratio of 63.9%. The lowest Ra values were discovered when machining at the fastest possible cutting speed and feed rate, whereas the lowest T values were discovered when machining at the slowest possible cutting speed and feed rate.

Proje Numarası

KBÜBAP-18-YL-189

Kaynakça

  • E. Şap and H. Çelik, “Investigation of Effects of Ti and Mn Addition on Microstructure and Mechanical Properties of Cobalt Based Alloys,” Electronic Journal of Machine Technologies, vol. 9, no. 3, pp. 25–33, 2012.
  • E. Şap, “Investigation of effects of some metals on cobalt based alloys,” Fırat University Graduate School of Natural and Applied Sciences, 2010.
  • I. Milošev, “CoCrMo Alloy for Biomedical Applications,” in Biomedical Applications, S. S. Djokić, Ed. Boston, MA: Springer US, 2012, pp. 1–72. doi: 10.1007/978-1-4614-3125-1_1.
  • E. Bahce, M. S. Güler, E. EMİR, and C. ÖZEL, “CoCrMo Tibial Komponentin Karbür Takı m ile İşlenmesinde Yüzey Özelliklerinin Araştırılması,” Ordu University Journal of Science and Technology, vol. 8, no. 1, pp. 16–30, 2018.
  • G. Meral, M. Sarıkaya, M. Mia, H. Dilipak, U. Şeker, and M. K. Gupta, “Multi-objective optimization of surface roughness, thrust force, and torque produced by novel drill geometries using Taguchi-based GRA,” International Journal of Advanced Manufacturing Technology, vol. 101, no. 5–8, pp. 1595–1610, 2019, doi: 10.1007/s00170-018-3061-z.
  • M. E. Korkmaz and M. Günay, “Experimental and Statistical Analysis on Machinability of Nimonic80A Superalloy with PVD Coated Carbide,” Sigma Journal of Engineering and Natural Sciences, vol. 36, no. 4, pp. 1141–1152, 2018.
  • A. T. Abbas, D. Y. Pimenov, I. N. Erdakov, M. A. Taha, M. S. Soliman, and M. M. El Rayes, “ANN surface roughness optimization of AZ61 magnesium alloy finish turning: Minimum machining times at prime machining costs,” Materials, vol. 11, no. 5, 2018, doi: 10.3390/ma11050808.
  • A. T. Abbas, D. Y. Pimenov, I. N. Erdakov, M. A. Taha, M. M. El Rayes, and M. S. Soliman, “Artificial intelligence monitoring of hardening methods and cutting conditions and their effects on surface roughness, performance, and finish turning costs of solid-state recycled aluminum alloy 6061 chips,” Metals, vol. 8, no. 6, 2018, doi: 10.3390/met8060394.
  • M. S. Alajmi and A. M. Almeshal, “Modeling of Cutting Force in the Turning of AISI 4340 Using Gaussian Process Regression Algorithm,” Applied Sciences, vol. 11, no. 9. 2021. doi: 10.3390/app11094055.
  • M. Kuntoğlu, A. Aslan, D. Y. Pimenov, K. Giasin, T. Mikolajczyk, and S. Sharma, “Modeling of Cutting Parameters and Tool Geometry for Multi-Criteria Optimization of Surface Roughness and Vibration via Response Surface Methodology in Turning of AISI 5140 Steel,” Materials, vol. 13, no. 19. 2020. doi: 10.3390/ma13194242.
  • M. K. Gupta, M. Mia, G. R. Singh, D. Y. Pimenov, M. Sarikaya, and V. S. Sharma, “Hybrid cooling-lubrication strategies to improve surface topography and tool wear in sustainable turning of Al 7075-T6 alloy,” International Journal of Advanced Manufacturing Technology, vol. 101, no. 1–4, pp. 55–69, 2019, doi: 10.1007/s00170-018-2870-4.
  • M. Mia and N. R. Dhar, “Optimization of surface roughness and cutting temperature in high-pressure coolant-assisted hard turning using Taguchi method,” The International Journal of Advanced Manufacturing Technology, pp. 739–753, 2017, doi: 10.1007/s00170-016-8810-2.
  • N. S. R. K et al., “Investigation of surface modification and tool wear on milling Nimonic 80A under hybrid lubrication,” Tribology International, vol. 155, p. 106762, 2021, doi: https://doi.org/10.1016/j.triboint.2020.106762.
  • M. Günay, M. E. Korkmaz, and N. Yaşar, “Performance analysis of coated carbide tool in turning of Nimonic 80A superalloy under different cutting environments,” Journal of Manufacturing Processes, vol. 56, pp. 678–687, 2020, doi: https://doi.org/10.1016/j.jmapro.2020.05.031.
  • M. A. Erden, N. Yaşar, M. E. Korkmaz, B. Ayvacı, K. Nimel Sworna Ross, and M. Mia, “Investigation of microstructure, mechanical and machinability properties of Mo-added steel produced by powder metallurgy method,” The International Journal of Advanced Manufacturing Technology, 2021, doi: 10.1007/s00170-021-07052-z.
  • M. E. Korkmaz and Nafiz Yaşar, “FEM modelling of turning of AA6061-T6: Investigation of chip morphology, chip thickness and shear angle,” Journal of Production Systems and Manufacturing Science, vol. 2, no. 1, pp. 50–58, 2021.
  • M. Mia and N. R. Dhar, “Response surface and neural network based predictive models of cutting temperature in hard turning,” Journal of Advanced Research, vol. 7, no. 6, pp. 1035–1044, 2016, doi: https://doi.org/10.1016/j.jare.2016.05.004.
  • M. Mia and N. R. Dhar, “Effects of duplex jets high-pressure coolant on machining temperature and machinability of Ti-6Al-4V superalloy,” Journal of Materials Processing Technology, vol. 252, pp. 688–696, 2018, doi: https://doi.org/10.1016/j.jmatprotec.2017.10.040.
  • M. E. Korkmaz and M. Günay, “Finite Element Modelling of Cutting Forces and Power Consumption in Turning of AISI 420 Martensitic Stainless Steel,” Arabian Journal for Science and Engineering, vol. 43, no. 9, pp. 4863–4870, Sep. 2018, doi: 10.1007/s13369-018-3204-4.
  • E. Bahçe, M. S. Güler, and E. Emir, “Investigation of surface quality of CoCrMo alloy used in the tibial component of the knee prosthesis according to the methods of turning and turning-grinding,” Materials Science, vol. 26, no. 1, pp. 41–48, 2020, doi: 10.5755/j01.ms.26.1.21729.
  • A. Bordin, A. Ghiotti, S. Bruschi, L. Facchini, and F. Bucciotti, “Machinability Characteristics of Wrought and EBM CoCrMo Alloys,” Procedia CIRP, vol. 14, pp. 89–94, 2014, doi: https://doi.org/10.1016/j.procir.2014.03.082.
  • S. Bruschi, A. Ghiotti, and A. Bordin, “Effect of the process parameters on the machinability characteristics of a CoCrMo Alloy,” Key Engineering Materials, vol. 554–557, pp. 1976–1983, 2013, doi: 10.4028/www.scientific.net/KEM.554-557.1976.
  • B. Karpuschewski and J. Döring, “Influence of the Tool Geometry on the Machining of Cobalt Chromium Femoral Heads,” Procedia CIRP, vol. 49, pp. 67–71, 2016, doi: https://doi.org/10.1016/j.procir.2015.07.034.
  • A. Shokrani, V. Dhokia, and S. T. Newman, “Cryogenic High Speed Machining of Cobalt Chromium Alloy,” Procedia CIRP, vol. 46, pp. 404–407, 2016, doi: https://doi.org/10.1016/j.procir.2016.04.045.
  • K. Jagtap and R. Pawade, “A Comparative Analysis of Cutting Forces in Precision Turning of Co-Cr-Mo Bio-implant Alloy in Dry and Wet Machining Environments,” Advances in Intelligent Systems Research, vol. 137, pp. 234–241, 2017, doi: 10.2991/iccasp-16.2017.38.
  • M. R. Dijmarescu, T. D. Popovici, I. C. Tarba, M. C. Dijmarescu, and C. F. Bisu, “An experimental study on cutting forces when machining a CoCrMo alloy,” IOP Conference Series: Materials Science and Engineering, vol. 400, no. 2, 2018, doi: 10.1088/1757-899X/400/2/022019.
  • B. Karpuschewski, H. J. Pieper, and J. Döring, “Impact of the cooling system on the cutting of medical cobalt chromium with ceramic cutting inserts,” Production Engineering, vol. 8, no. 5, pp. 613–618, 2014, doi: 10.1007/s11740-014-0559-6.
  • G. Matula, A. Szatkowska, K. Matus, B. Tomiczek, and M. Pawlyta, “Structure and Properties of Co-Cr-Mo Alloy Manufactured by Powder Injection Molding Method,” Materials, vol. 14, no. 8. 2021. doi: 10.3390/ma14082010.
  • Y. Okazaki, A. Ishino, and S. Higuchi, “Chemical, Physical, and Mechanical Properties and Microstructures of Laser-Sintered Co–25Cr–5Mo–5W (SP2) and W–Free Co–28Cr–6Mo Alloys for Dental Applications,” Materials, vol. 12, no. 24. 2019. doi: 10.3390/ma12244039.
  • H. R. Kim et al., “Microstructures and Mechanical Properties of Co-Cr Dental Alloys Fabricated by Three CAD/CAM-Based Processing Techniques,” Materials, vol. 9, no. 7. 2016. doi: 10.3390/ma9070596.
  • M. Özdemir, “Analysis of the Effect Rates of Cutting Parameters on Surface Roughness using Surface Response Method,” Gazi University Science Journal: PART:C ‘Design and Technology,’ vol. 7, no. 3, pp. 639–648, 2019, doi: 10.29109/gujsc.595722.
  • K. Leksycki, E. Feldshtein, G. M. Królczyk, and S. Legutko, “On the Chip Shaping and Surface Topography When Finish Cutting 17-4 PH Precipitation-Hardening Stainless Steel under Near-Dry Cutting Conditions,” Materials, vol. 13, no. 9. 2020. doi: 10.3390/ma13092188.
  • O. Çakır, M. Kıyak, and E. Altan, “Comparison of gases applications to wet and dry cuttings in turning,” Journal of Materials Processing Technology, vol. 153–154, pp. 35–41, 2004, doi: https://doi.org/10.1016/j.jmatprotec.2004.04.190.
  • Y. Yamane, N. Narutaki, and K. Hayashi, “Suppression of tool wear by using an inert gas in face milling,” Journal of Materials Processing Technology, vol. 62, no. 4, pp. 380–383, 1996, doi: https://doi.org/10.1016/S0924-0136(96)02439-9.
  • P. Fallböhmer, C. A. Rodrı́guez, T. Özel, and T. Altan, “High-speed machining of cast iron and alloy steels for die and mold manufacturing,” Journal of Materials Processing Technology, vol. 98, no. 1, pp. 104–115, 2000, doi: https://doi.org/10.1016/S0924-0136(99)00311-8.
  • B. Özlü, M. Akgün, and H. Demir, “AA6061 Alaşımının tornalanmasında kesme parametrelerinin yüzey pürüzlülüğü üzerine etkisinin analizi ve optimizasyonu,” Gazi Mühendislik Bilimleri Dergisi, vol.5, no. 2, pp. 151-158, 2019, doi: https://dx.doi.org/10.30855/gmbd.2019.02.04.
  • A. Takmaz, “Optimization By The Taguchi Method Of Effect On The Surface Roughness Of Cryogenic Treatment Applied To Cutting Tools,” Düzce University, 2018.
  • A. Bordin, S. Bruschi, and A. Ghiotti, “The Effect of Cutting Speed and Feed Rate on the Surface Integrity in Dry Turning of CoCrMo Alloy,” Procedia CIRP, vol. 13, pp. 219–224, 2014, doi: https://doi.org/10.1016/j.procir.2014.04.038.
  • M. R. Dijmarescu, M. C. Dijmarescu, I. Voiculescu, T. D. Popovici, and I. C. Tarba, “Study on the influence of cutting parameters on surface quality when machining a CoCrMo alloy,” IOP Conference Series: Materials Science and Engineering, vol. 400, no. 2, 2018, doi: 10.1088/1757-899X/400/2/022020.
  • R. Çakıroğlu, and G. Uzun, “Yüksek ilerleme ile frezeleme işlemi esnasında oluşan kesme kuvvetinin ve iş parçası yüzey pürüzlülüğünün yapay sinir ağları ile modellenmesi,” Gazi Mühendislik Bilimleri Dergisi, vol. 7, no. 1, pp. 58-66, 2021, doi: https://dx.doi.org/10.30855/gmbd.2021.01.07.
  • M. Günay, İ. Korkut, E. Aslan, and U. Şeker, “Experimental investigation of the effect of cutting tool rake angle on main cutting force,” Journal of Materials Processing Technology, vol. 166, no. 1, pp. 44–49, Jul. 2005, doi: 10.1016/J.JMATPROTEC.2004.07.092.
  • M. Sekmen, M. Günay, and U. Şeker, “Effect on Formations of Built-up Edge and Built-up Layer, Surface Roughness of Cutting Speed and Rake Angle in the Machining of Aluminum Alloys,” Journal of Polytechnic, vol. 18, no. 3, pp. 141–148, 2015.
  • N. A. Abukhshim, P. T. Mativenga, and M. A. Sheikh, “Heat generation and temperature prediction in metal cutting: A review and implications for high speed machining,” International Journal of Machine Tools and Manufacture, vol. 46, no. 7, pp. 782–800, 2006, doi: https://doi.org/10.1016/j.ijmachtools.2005.07.024.
  • I. Campos, M. Farah, N. López, G. Bermúdez, G. Rodríguez, and C. VillaVelázquez, “Evaluation of the tool life and fracture toughness of cutting tools boronized by the paste boriding process,” Applied Surface Science, vol. 254, no. 10, pp. 2967–2974, 2008, doi: https://doi.org/10.1016/j.apsusc.2007.10.038.
  • M. S. I. Chowdhury, B. Bose, S. Rawal, G. S. Fox-Rabinovich, and S. C. Veldhuis, “Investigation of the Wear Behavior of PVD Coated Carbide Tools during Ti6Al4V Machining with Intensive Built Up Edge Formation,” Coatings, vol. 11, no. 3. 2021. doi: 10.3390/coatings11030266.
  • M. Yavuz, H. Gökçe, and U. Şeker, “Matkap geometrisinin takım aşınması ve talaş oluşumu üzerine etkisinin araştırılması,” Gazi Mühendislik Bilimleri Dergisi, vol. 3, no. 1, 2017, doi: https://dergipark.org.tr/tr/pub/gmbd/issue/30198/323487.
  • S. Sulaiman, A. Roshan, and S. Borazjani, “Effect of cutting parameters on cutting temperature of TiAL6V4 alloy,” Applied Mechanics and Materials, vol. 392, no. May 2016, pp. 68–72, 2013, doi: 10.4028/www.scientific.net/AMM.392.68.
  • J. Yuan, J. M. Boyd, D. Covelli, T. Arif, G. S. Fox-Rabinovich, and S. C. Veldhuis, “Influence of Workpiece Material on Tool Wear Performance and Tribofilm Formation in Machining Hardened Steel,” Lubricants, vol. 4, no. 2. 2016. doi: 10.3390/lubricants4020010.
  • E. Şap et al., “Parametric Optimization for Improving the Machining Process of Cu/Mo-SiCP Composites Produced by Powder Metallurgy,” Materials, vol. 14, no. 8. 2021. doi: 10.3390/ma14081921.
  • M. F. Ghazali et al., “Tool Wear and Surface Evaluation in Drilling Fly Ash Geopolymer Using HSS, HSS-Co, and HSS-TiN Cutting Tools,” Materials, vol. 14(7), no. 7, p. 1628, 2021, doi: 10.3390/ma14071628.
Toplam 50 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Büşra Mutlu 0000-0003-1122-7254

Rüstem Binali 0000-0003-0775-3817

Recep Demirsöz

Nafiz Yaşar 0000-0002-1427-1384

Proje Numarası KBÜBAP-18-YL-189
Yayımlanma Tarihi 1 Eylül 2022
Gönderilme Tarihi 10 Mart 2022
Kabul Tarihi 9 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 8 Sayı: 2

Kaynak Göster

IEEE B. Mutlu, R. Binali, R. Demirsöz, ve N. Yaşar, “Machinability of CoCrMo Alloy used in Biomedical applications: Investigation of Cutting Tool Type”, GMBD, c. 8, sy. 2, ss. 215–227, 2022.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg