Research Article
BibTex RIS Cite

P20S Plastik Kalıp Çeliğinin Frezelenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğü ve Teorik Yorulma Ömrüne Etkisi

Year 2022, Volume: 8 Issue: 2, 393 - 405, 01.09.2022

Abstract

Bu çalışmada, P20S plastik kalıp çeliğinin farklı kesme parametreleri ile frezelenmesinde kesme parametrelerinin yüzey pürüzlülüğüne ve yüzey pürüzlülüğüne bağlı teorik yorulma ömrüne etkilerinin belirlenmesi amaçlanmıştır. Verilerin istatiksel analizi için deney tasarımı Merkezi Kompozit Deney tasarımı ile 18 deney olarak belirlenmiştir. Deneyler sonucunda yüzey pürüzlülüğünü ve teorik yorulma ömrünü değerlendirmek için Ra, Rz, Sm ve sertlik gibi çıktı parametreleri ölçülmüştür. Rz, Sm ve sertlik değerleri √𝑎𝑟𝑒𝑎 modelinde kullanılarak yorulma ömrü hesaplanmış ve kesme parametrelerine bağlı teorik yorulma ömründeki değişimler değerlendirilmiştir. Sonuç olarak, en düşük yüzey pürüzlülüğü ile en yüksek teorik yorulma ömrü 220 m/dk kesme hızında, 0,05 mm/diş ilerleme miktarında ve 0,5 mm kesme derinliğinde sırası ile 0,188 µm ve 507,796 Mpa olduğu tepit edilmiştir. Kesme hızının artması ve ilerleme miktarı ile kesme derinliğinin azalması yüzey pürüzlülüğü ve teorik yorulma ömrü üzerinde olumlu bir etkiye sahip olduğu görülmüştür. Varyans analizi sonuçlarına göre yüzey pürüzlülüğü ve teorik yorulma ömrü için en etkin kesme parametresi sırası ile %68,6 ve %59,34 oranıyla ilerleme miktarı olmuştur.

References

  • [1] W. L. Xiao, H. B. Chen, Y. Yin, “Effects of surface roughness on the fatigue life of alloy steel,” Key Engineering Materials, vol. 525-526, pp. 417-420, Nov. 2013, doi: 10.4028/www.scientific.net/KEM.525-526.417.
  • [2] Y. Xiong, W. Wang, Y. Shi, R. Jiang, K. Lin, X. Liu, “Fatigue behavior of in-situ TiB2/7050Al metal matrix composites: Fracture mechanisms and fatigue life modeling after milling,” International Journal of Fatigue, vol. 138, pp. 105698, Sep. 2020, doi: 10.1016/j.ijfatigue.2020.105698.
  • [3] E. Santecchia, A. M. S. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, M. El Mehtedi, S. Spigarelli, “A review on fatigue life prediction methods for metals,” Advances in Materials Science and Engineering, vol.2016, pp. 1-26, Sep 2016, doi: 10.1155/2016/9573524.
  • [4] A. Javidi, U. Rieger, W. Eichlseder, “The effect of machining on the surface integrity and fatigue life,” International Journal of Fatigue, vol. 30, pp. 2050-255, Oct-Nov 2008, doi: 10.1016/j.ijfatigue.2008.01.005.
  • [5] E. Zahavi and V. Torbilo, “Fatigue design: life expectancy of machine parts,” CRC Press, 1996.
  • [6] C. R. Liu, S. Mittal, “Optimal pre-stressing the surface of a component by superfinish hard turning for maximum fatigue life in rolling contact,” Wear, vol. 219, pp. 128-140, Aug. 1998, doi: 10.1016/S0043-1648(98)00240-3.
  • [7] M. Jacobson, “Surface integrity of hard-turned M50 steel,” Proceedings of the Institution of Mechanical Engineers Part B J. Eng. Manuf, vol. 216, pp. 47-54, Jan. 2002, doi: 10.1243/0954405021519681.
  • [8] M. Jacobson, D. Patrik, G. Fredrik, “Cutting speed influence on surface integrity of hard turned bainite steel” J. Mater. Proc. Technol, vol. 128, pp. 318-323, Oct. 2002, doi: 10.1016/S0924-0136(02)00472-7.
  • [9] H. B. Özerkan, “Tornalamada oluşan yüzey pürüzlülüğünün yorulma ömrüne etkisinin teorik değerlendirilmesi,” Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 33, ss. 189-198, Haziran, 2018.
  • [10] D. Novovic, R. C. Dewes, D. K. Aspinwall, W. Voice, P. Bowen, “The effect of machined topography and integrity on fatigue life,” International Journal of Machine Tools and Manufacture, vol. 44, pp. 125-134, Feb 2004, doi: 10.1016/j.ijmachtools.2003.10.018.
  • [11] C. Yao, D. Wu, Q. Jin, X. Huang, J. Ren, D. Zhang, “Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy,” Transactions of Nonferrous Metals Society of China, vol. 23, pp. 650-660, Mar. 2013, doi: 10.1016/S1003-6326(13)62512-1.
  • [12] İ. Tekaüt, “Theoretical evaluation of the effect of surfaces processed with abrasive water jet on fatigue life,” Transactions of Famena, vol. 43, pp. 85-98, 2019, doi: 10.21278/TOF.43207.
  • [13] M. Field, J. Kahles, “Review of surface integrity of machined components,” Ann CIRP, vol. 20, pp. 153-163, 1971.
  • [14] Y. Murakami, “Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions,” Elsevier Science, Oxford, pp. 305-320, 2002.
  • [15] E. Nas, S. Akıncıoğlu, “Kriyojenik işlem görmüş nikel esaslı süper alaşımın elektro-erozyon işleme performansı optimizasyonu,” Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, vol. 7, pp. 115-126, Ocak 2019, doi: 10.21541/apjes.412042.
  • [16] R. Soundararajan, A. Ramesh, N. Mohanraj, N. Parthasarathi, “An investigation of material removal rate and surface roughness of squeeze casted A413 alloy on WEDM by multi response optimization using RSM,” J. Alloys Compd., vol. 685, pp. 533-545, Nov. 2016, doi: 10.1016/j.jallcom.2016.05.292.
  • [17] A. Das, S. R. Das, S. K. Patel, B. B. Biswal, “Effect of MQL and nanofluid on the machinability aspects of hardened alloy steel,” Mach. Sci. Technol, vol. 24, pp. 291-320, Sep. 2020, doi: 10.1080/10910344.2019.1669167.
  • [18] F. Günan, T. Kıvak, Ç. V. Yıldırım, M. Sarıkaya, “Performance evaluation of MQL with AL2O3 mixed nanofluids prepared at different concentrations in milling of Hastelloy C276 alloy,” J. Mater. Res. Technol, vol. 9, pp. 10386-10400, Oct. 2020, doi: 10.1016/j.jmrt.2020.07.018.
  • [19] B. Özlü, “Investigation of the effect of cutting parameters on cutting force, surface roughness and chip shape in turning of Sleipner cold work tool steel,” J. Fac. Eng. Arch. Gazi Univ, vol. 36, pp. 1241-1251, 2021, doi: 10.17341/gazimmfd.668169.
  • [20] B. Özlü, H. Demir, M. Türkmen, S. Gündüz, “Examining the machinability of 38MnVS6 microalloyed steel, cooled in different mediums after hot forging with the coated carbide and ceramic tool,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci, vol. 235, pp. 6228-6239, Nov. 2021, doi: 10.1177/0954406220984498.
  • [21] M. Akgün, H. Demir, “Estimation of surface roughness and flank wear in milling of Inconel 625 Superalloy,” Surf. Rev. Lett, vol. 28, pp. 2150011, 2021, doi: 10.1142/S0218625X21500116.
  • [22] M. Akgün, “Optimization of process parameters affecting cutting force, power consumption and surface roughness using taguchi-based gray relational analysis in turning AISI 1040 steel,” Surf. Rev. Lett, vol. 29, pp. 2250029, 2022, doi: 10.1142/S0218625X22500299.
  • [23] R. Çakıroğlu, M. Günay, “Elektro erozyonla tornalama yöntemiyle işlenen soğuk iş takım çeliğinin yorulma ömrünün tahmini,” Journal of Polytechnic, vol. 24, pp. 495-502, 2021, doi: 10.2339/politeknik.705903.
  • [24] R. G. Hills, T.G. “Trucano, Statistical validation of engineering and scientific models: Background,” Sandia National Laboratories SAND99-1256. 36, 1999.
  • [25] A. Çiçek, T. Kıvak, E. Ekici, “Optimization of drilling parameters using taguchi technique and response surface methodology (RSM) in drilling of AISI 304 steel with cryogenically treated HSS drills,” Journal of Intelligent Manufacturing, vol. 26, pp. 295-305, May. 2015, doi: 10.1007/s10845-013-0783-5.
  • [26] F. Kara, “Taguchi optimization of surface roughness and flank wear during the turning of DIN 1.2344 tool steel,” Mater. Test, vol. 59, pp. 903-908, Oct. 2017, doi: 10.3139/120.111085.
  • [27] E. Nas, B. Öztürk, “Optimization of surface roughness via the taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials,” Mater. Test, vol. 60, vol. 519-525, Nov. 2018, doi: 10.3139/120.111181.
Year 2022, Volume: 8 Issue: 2, 393 - 405, 01.09.2022

Abstract

References

  • [1] W. L. Xiao, H. B. Chen, Y. Yin, “Effects of surface roughness on the fatigue life of alloy steel,” Key Engineering Materials, vol. 525-526, pp. 417-420, Nov. 2013, doi: 10.4028/www.scientific.net/KEM.525-526.417.
  • [2] Y. Xiong, W. Wang, Y. Shi, R. Jiang, K. Lin, X. Liu, “Fatigue behavior of in-situ TiB2/7050Al metal matrix composites: Fracture mechanisms and fatigue life modeling after milling,” International Journal of Fatigue, vol. 138, pp. 105698, Sep. 2020, doi: 10.1016/j.ijfatigue.2020.105698.
  • [3] E. Santecchia, A. M. S. Hamouda, F. Musharavati, E. Zalnezhad, M. Cabibbo, M. El Mehtedi, S. Spigarelli, “A review on fatigue life prediction methods for metals,” Advances in Materials Science and Engineering, vol.2016, pp. 1-26, Sep 2016, doi: 10.1155/2016/9573524.
  • [4] A. Javidi, U. Rieger, W. Eichlseder, “The effect of machining on the surface integrity and fatigue life,” International Journal of Fatigue, vol. 30, pp. 2050-255, Oct-Nov 2008, doi: 10.1016/j.ijfatigue.2008.01.005.
  • [5] E. Zahavi and V. Torbilo, “Fatigue design: life expectancy of machine parts,” CRC Press, 1996.
  • [6] C. R. Liu, S. Mittal, “Optimal pre-stressing the surface of a component by superfinish hard turning for maximum fatigue life in rolling contact,” Wear, vol. 219, pp. 128-140, Aug. 1998, doi: 10.1016/S0043-1648(98)00240-3.
  • [7] M. Jacobson, “Surface integrity of hard-turned M50 steel,” Proceedings of the Institution of Mechanical Engineers Part B J. Eng. Manuf, vol. 216, pp. 47-54, Jan. 2002, doi: 10.1243/0954405021519681.
  • [8] M. Jacobson, D. Patrik, G. Fredrik, “Cutting speed influence on surface integrity of hard turned bainite steel” J. Mater. Proc. Technol, vol. 128, pp. 318-323, Oct. 2002, doi: 10.1016/S0924-0136(02)00472-7.
  • [9] H. B. Özerkan, “Tornalamada oluşan yüzey pürüzlülüğünün yorulma ömrüne etkisinin teorik değerlendirilmesi,” Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 33, ss. 189-198, Haziran, 2018.
  • [10] D. Novovic, R. C. Dewes, D. K. Aspinwall, W. Voice, P. Bowen, “The effect of machined topography and integrity on fatigue life,” International Journal of Machine Tools and Manufacture, vol. 44, pp. 125-134, Feb 2004, doi: 10.1016/j.ijmachtools.2003.10.018.
  • [11] C. Yao, D. Wu, Q. Jin, X. Huang, J. Ren, D. Zhang, “Influence of high-speed milling parameter on 3D surface topography and fatigue behavior of TB6 titanium alloy,” Transactions of Nonferrous Metals Society of China, vol. 23, pp. 650-660, Mar. 2013, doi: 10.1016/S1003-6326(13)62512-1.
  • [12] İ. Tekaüt, “Theoretical evaluation of the effect of surfaces processed with abrasive water jet on fatigue life,” Transactions of Famena, vol. 43, pp. 85-98, 2019, doi: 10.21278/TOF.43207.
  • [13] M. Field, J. Kahles, “Review of surface integrity of machined components,” Ann CIRP, vol. 20, pp. 153-163, 1971.
  • [14] Y. Murakami, “Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions,” Elsevier Science, Oxford, pp. 305-320, 2002.
  • [15] E. Nas, S. Akıncıoğlu, “Kriyojenik işlem görmüş nikel esaslı süper alaşımın elektro-erozyon işleme performansı optimizasyonu,” Akademik Platform Mühendislik ve Fen Bilimleri Dergisi, vol. 7, pp. 115-126, Ocak 2019, doi: 10.21541/apjes.412042.
  • [16] R. Soundararajan, A. Ramesh, N. Mohanraj, N. Parthasarathi, “An investigation of material removal rate and surface roughness of squeeze casted A413 alloy on WEDM by multi response optimization using RSM,” J. Alloys Compd., vol. 685, pp. 533-545, Nov. 2016, doi: 10.1016/j.jallcom.2016.05.292.
  • [17] A. Das, S. R. Das, S. K. Patel, B. B. Biswal, “Effect of MQL and nanofluid on the machinability aspects of hardened alloy steel,” Mach. Sci. Technol, vol. 24, pp. 291-320, Sep. 2020, doi: 10.1080/10910344.2019.1669167.
  • [18] F. Günan, T. Kıvak, Ç. V. Yıldırım, M. Sarıkaya, “Performance evaluation of MQL with AL2O3 mixed nanofluids prepared at different concentrations in milling of Hastelloy C276 alloy,” J. Mater. Res. Technol, vol. 9, pp. 10386-10400, Oct. 2020, doi: 10.1016/j.jmrt.2020.07.018.
  • [19] B. Özlü, “Investigation of the effect of cutting parameters on cutting force, surface roughness and chip shape in turning of Sleipner cold work tool steel,” J. Fac. Eng. Arch. Gazi Univ, vol. 36, pp. 1241-1251, 2021, doi: 10.17341/gazimmfd.668169.
  • [20] B. Özlü, H. Demir, M. Türkmen, S. Gündüz, “Examining the machinability of 38MnVS6 microalloyed steel, cooled in different mediums after hot forging with the coated carbide and ceramic tool,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci, vol. 235, pp. 6228-6239, Nov. 2021, doi: 10.1177/0954406220984498.
  • [21] M. Akgün, H. Demir, “Estimation of surface roughness and flank wear in milling of Inconel 625 Superalloy,” Surf. Rev. Lett, vol. 28, pp. 2150011, 2021, doi: 10.1142/S0218625X21500116.
  • [22] M. Akgün, “Optimization of process parameters affecting cutting force, power consumption and surface roughness using taguchi-based gray relational analysis in turning AISI 1040 steel,” Surf. Rev. Lett, vol. 29, pp. 2250029, 2022, doi: 10.1142/S0218625X22500299.
  • [23] R. Çakıroğlu, M. Günay, “Elektro erozyonla tornalama yöntemiyle işlenen soğuk iş takım çeliğinin yorulma ömrünün tahmini,” Journal of Polytechnic, vol. 24, pp. 495-502, 2021, doi: 10.2339/politeknik.705903.
  • [24] R. G. Hills, T.G. “Trucano, Statistical validation of engineering and scientific models: Background,” Sandia National Laboratories SAND99-1256. 36, 1999.
  • [25] A. Çiçek, T. Kıvak, E. Ekici, “Optimization of drilling parameters using taguchi technique and response surface methodology (RSM) in drilling of AISI 304 steel with cryogenically treated HSS drills,” Journal of Intelligent Manufacturing, vol. 26, pp. 295-305, May. 2015, doi: 10.1007/s10845-013-0783-5.
  • [26] F. Kara, “Taguchi optimization of surface roughness and flank wear during the turning of DIN 1.2344 tool steel,” Mater. Test, vol. 59, pp. 903-908, Oct. 2017, doi: 10.3139/120.111085.
  • [27] E. Nas, B. Öztürk, “Optimization of surface roughness via the taguchi method and investigation of energy consumption when milling spheroidal graphite cast iron materials,” Mater. Test, vol. 60, vol. 519-525, Nov. 2018, doi: 10.3139/120.111181.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Mechanical Engineering
Journal Section Research Articles
Authors

Barış Özlü 0000-0002-8594-1234

Publication Date September 1, 2022
Submission Date June 10, 2022
Acceptance Date August 13, 2022
Published in Issue Year 2022 Volume: 8 Issue: 2

Cite

IEEE B. Özlü, “P20S Plastik Kalıp Çeliğinin Frezelenmesinde Kesme Parametrelerinin Yüzey Pürüzlülüğü ve Teorik Yorulma Ömrüne Etkisi”, GJES, vol. 8, no. 2, pp. 393–405, 2022.

GJES is indexed and archived by:

3311333114331153311633117

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg