Research Article
BibTex RIS Cite

Investigation of tribological properties of amorphous thermoplastic samples with different filling densities produced by an additive manufacturing method

Year 2022, Volume: 8 Issue: 3, 540 - 546, 31.12.2022

Abstract

ASA (Acrylonitrile Styrene Acrylate) filament is widely used in outdoor applications thanks to its superior properties. It is exposed to wear due to the environments in which it is used. In this study, the tribological properties of the samples produced at different infill densities (30%, 60%, and 90%) were investigated. Samples were produced using the fused filament fabrication method prior to experiments. Friction tests were carried out on a pin-on disc test device. The friction coefficient, wear rates, hardness, and diameter values of the samples were measured. According to the results obtained, it was understood that there was little change in the tribological properties of the samples according to the infill densities. In addition, 90% infill density samples present higher hardness values and lower wear rates compared to other samples. The study also shows that the fused filament fabrication method is a suitable technique to produce samples from the strong ASA polymer.

References

  • [1] M. R. Khosravani, A. Zolfagharian, M. Jennings, and T. Reinicke, “Structural performance of 3D-printed composites under various loads and environmental conditions,” Polym. Test., vol. 91, no. August, p. 106770, 2020.
  • [2] B. Huang et al., “Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration,” Addit. Manuf., vol. 36, p. 101452, Dec. 2020.
  • [3] W. Wang et al., “Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration,” Int. J. Bioprinting, vol. 2, no. 2, pp. 95–104, 2016.
  • [4] M. H. Hassan et al., “The Potential of Polyethylene Terephthalate Glycol as Biomaterial for Bone Tissue Engineering,” Polym. 2020, Vol. 12, Page 3045, vol. 12, no. 12, p. 3045, Dec. 2020.
  • [5] N. Vidakis et al., “Sustainable Additive Manufacturing: Mechanical Response of Polyethylene Terephthalate Glycol over Multiple Recycling Processes,” Mater. 2021, Vol. 14, Page 1162, vol. 14, no. 5, p. 1162, Mar. 2021.
  • [6] Ş. Şirin, E. Aslan, and G. Akincioğlu, “Effects of 3D-printed PLA material with different filling densities on coefficient of friction performance,” Rapid Prototyp. J., no. ahead-of-print, 2022.
  • [7] A. El Magri, S. Vanaei, M. Shirinbayan, S. Vaudreuil, and A. Tcharkhtchi, “An investigation to study the effect of process parameters on the strength and fatigue behavior of 3d-printed pla-graphene,” Polymers (Basel)., vol. 13, no. 19, pp. 1–16, 2021.
  • [8] M. J. Reich, A. L. Woern, N. G. Tanikella, and J. M. Pearce, “Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing,” Mater. 2019, Vol. 12, Page 1642, vol. 12, no. 10, p. 1642, May 2019.
  • [9] K. Bulanda et al., “Polymer Composites Based on Polycarbonate (PC) Applied to Additive Manufacturing Using Melted and Extruded Manufacturing (MEM) Technology,” Polym. 2021, Vol. 13, Page 2455, vol. 13, no. 15, p. 2455, Jul. 2021.
  • [10] V. Kishore et al., “Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components,” Addit. Manuf., vol. 14, pp. 7–12, 2017. [11] B. M. Tymrak, M. Kreiger, and J. M. Pearce, “Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions,” Mater. Des., vol. 58, pp. 242–246, 2014.
  • [12] D. M. Sánchez, M. de la Mata, F. J. Delgado, V. Casal, and S. I. Molina, “Development of carbon fiber acrylonitrile styrene acrylate composite for large format additive manufacturing,” Mater. Des., vol. 191, p. 108577, 2020.
  • [13] A. Afshar and R. Wood, “Development of weather-resistant 3d printed structures by multi-material additive manufacturing,” J. Compos. Sci., vol. 4, no. 3, 2020.
  • [14] Y. Qi, B. Xiang, W. Tan, and J. Zhang, “Hydrophobic surface modification of TiO2 nanoparticles for production of acrylonitrile-styrene-acrylate terpolymer/TiO2 composited cool materials,” Appl. Surf. Sci., vol. 419, pp. 213–223, Oct. 2017.
  • [15] B. Huang, C. Vyas, J. J. Byun, M. El-Newehy, Z. Huang, and P. Bártolo, “Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation,” Mater. Sci. Eng. C, vol. 108, p. 110374, 2020.
  • [16] A. Sharma, D. Chhabra, R. Sahdev, A. Kaushik, and U. Punia, “Investigation of wear rate of FDM printed TPU, ASA and multi-material parts using heuristic GANN tool,” Materials Today: Proceedings. 2022.
  • [17] A. Patil, A. Patel, and R. Purohit, “An overview of Polymeric Materials for Automotive Applications,” Mater. Today Proc., vol. 4, no. 2, pp. 3807–3815, 2017.
  • [18] S. Guessasma, S. Belhabib, and H. Nouri, “Microstructure, Thermal and Mechanical Behavior of 3D Printed Acrylonitrile Styrene Acrylate,” Macromolecular Materials and Engineering, vol. 304, no. 7. 2019.
  • [19] A. El Magri, S. E. Ouassil, and S. Vaudreuil, “Effects of printing parameters on the tensile behavior of 3D-printed acrylonitrile styrene acrylate (ASA) material in Z direction,” Polym. Eng. Sci., vol. 62, no. 3, pp. 848–860, 2022.
  • [20] T. K. Meyer, N. G. Tanikella, M. J. Reich, and J. M. Pearce, “Potential of distributed recycling from hybrid manufacturing of 3-D printing and injection molding of stamp sand and acrylonitrile styrene acrylate waste composite,” Sustain. Mater. Technol., vol. 25, p. e00169, Sep. 2020.
  • [21] D. Jin, T. K. Meyer, S. Chen, K. Ampadu Boateng, J. M. Pearce, and Z. You, “Evaluation of lab performance of stamp sand and acrylonitrile styrene acrylate waste composites without asphalt as road surface materials,” Constr. Build. Mater., vol. 338, p. 127569, Jul. 2022.
  • [22] M. Mcfarland and E. Antunes, “Small-Scale Static Fire Tests of 3D Printing Hybrid Rocket Fuel Grains Produced from Di ff erent Materials,” 2019.
  • [23] J. M. Vázquez Martínez, D. Piñero Vega, J. Salguero, and M. Batista, “Evaluation of the printing strategies design on the mechanical and tribological response of acrylonitrile styrene acrylate (ASA) additive manufacturing parts,” Rapid Prototyp. J., vol. 28, no. 3, pp. 479–489, 2022.

Eklemeli imalat yöntemiyle üretilen farklı dolgu yoğunluklarına sahip amorf termoplastik numunelerin tribolojik özelliklerinin incelenmesi

Year 2022, Volume: 8 Issue: 3, 540 - 546, 31.12.2022

Abstract

ASA (Akrilonitril Stiren Akrilat) filament üstün özellikleri sayesinde dış mekan uygulamalarında yaygın olarak kullanılmaktadır. Kullanıldığı ortamlardan dolayı aşınmaya maruz kalmaktadır. Bu çalışmada, farklı dolgu yoğunluklarında (%30, %60 ve %90) üretilen numunelerin tribolojik özellikleri araştırılmıştır. Deneylerden önce kaynaşmış filament üretim yöntemi kullanılarak numuneler üretilmiştir. Sürtünme testleri, pin-on disk test cihazında gerçekleştirilmiştir. Numunelerin sürtünme katsayısı, aşınma oranları, sertlik ve çap değerleri ölçülmüştür. Elde edilen sonuçlara göre, dolgu yoğunluklarına bağlı olarak numunelerin tribolojik özelliklerinde çok az değişiklik olduğu anlaşılmıştır. Ayrıca, %90 dolgu yoğunluklu numuneler, diğer numunelere kıyasla daha yüksek sertlik değerleri ve daha düşük aşınma oranları göstermektedir. Çalışma ayrıca, kaynaşmış filament üretim yönteminin, güçlü ASA polimerinden numune üretmek için uygun bir teknik olduğunu göstermektedir.

References

  • [1] M. R. Khosravani, A. Zolfagharian, M. Jennings, and T. Reinicke, “Structural performance of 3D-printed composites under various loads and environmental conditions,” Polym. Test., vol. 91, no. August, p. 106770, 2020.
  • [2] B. Huang et al., “Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration,” Addit. Manuf., vol. 36, p. 101452, Dec. 2020.
  • [3] W. Wang et al., “Morphological, mechanical and biological assessment of PCL/pristine graphene scaffolds for bone regeneration,” Int. J. Bioprinting, vol. 2, no. 2, pp. 95–104, 2016.
  • [4] M. H. Hassan et al., “The Potential of Polyethylene Terephthalate Glycol as Biomaterial for Bone Tissue Engineering,” Polym. 2020, Vol. 12, Page 3045, vol. 12, no. 12, p. 3045, Dec. 2020.
  • [5] N. Vidakis et al., “Sustainable Additive Manufacturing: Mechanical Response of Polyethylene Terephthalate Glycol over Multiple Recycling Processes,” Mater. 2021, Vol. 14, Page 1162, vol. 14, no. 5, p. 1162, Mar. 2021.
  • [6] Ş. Şirin, E. Aslan, and G. Akincioğlu, “Effects of 3D-printed PLA material with different filling densities on coefficient of friction performance,” Rapid Prototyp. J., no. ahead-of-print, 2022.
  • [7] A. El Magri, S. Vanaei, M. Shirinbayan, S. Vaudreuil, and A. Tcharkhtchi, “An investigation to study the effect of process parameters on the strength and fatigue behavior of 3d-printed pla-graphene,” Polymers (Basel)., vol. 13, no. 19, pp. 1–16, 2021.
  • [8] M. J. Reich, A. L. Woern, N. G. Tanikella, and J. M. Pearce, “Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing,” Mater. 2019, Vol. 12, Page 1642, vol. 12, no. 10, p. 1642, May 2019.
  • [9] K. Bulanda et al., “Polymer Composites Based on Polycarbonate (PC) Applied to Additive Manufacturing Using Melted and Extruded Manufacturing (MEM) Technology,” Polym. 2021, Vol. 13, Page 2455, vol. 13, no. 15, p. 2455, Jul. 2021.
  • [10] V. Kishore et al., “Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components,” Addit. Manuf., vol. 14, pp. 7–12, 2017. [11] B. M. Tymrak, M. Kreiger, and J. M. Pearce, “Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions,” Mater. Des., vol. 58, pp. 242–246, 2014.
  • [12] D. M. Sánchez, M. de la Mata, F. J. Delgado, V. Casal, and S. I. Molina, “Development of carbon fiber acrylonitrile styrene acrylate composite for large format additive manufacturing,” Mater. Des., vol. 191, p. 108577, 2020.
  • [13] A. Afshar and R. Wood, “Development of weather-resistant 3d printed structures by multi-material additive manufacturing,” J. Compos. Sci., vol. 4, no. 3, 2020.
  • [14] Y. Qi, B. Xiang, W. Tan, and J. Zhang, “Hydrophobic surface modification of TiO2 nanoparticles for production of acrylonitrile-styrene-acrylate terpolymer/TiO2 composited cool materials,” Appl. Surf. Sci., vol. 419, pp. 213–223, Oct. 2017.
  • [15] B. Huang, C. Vyas, J. J. Byun, M. El-Newehy, Z. Huang, and P. Bártolo, “Aligned multi-walled carbon nanotubes with nanohydroxyapatite in a 3D printed polycaprolactone scaffold stimulates osteogenic differentiation,” Mater. Sci. Eng. C, vol. 108, p. 110374, 2020.
  • [16] A. Sharma, D. Chhabra, R. Sahdev, A. Kaushik, and U. Punia, “Investigation of wear rate of FDM printed TPU, ASA and multi-material parts using heuristic GANN tool,” Materials Today: Proceedings. 2022.
  • [17] A. Patil, A. Patel, and R. Purohit, “An overview of Polymeric Materials for Automotive Applications,” Mater. Today Proc., vol. 4, no. 2, pp. 3807–3815, 2017.
  • [18] S. Guessasma, S. Belhabib, and H. Nouri, “Microstructure, Thermal and Mechanical Behavior of 3D Printed Acrylonitrile Styrene Acrylate,” Macromolecular Materials and Engineering, vol. 304, no. 7. 2019.
  • [19] A. El Magri, S. E. Ouassil, and S. Vaudreuil, “Effects of printing parameters on the tensile behavior of 3D-printed acrylonitrile styrene acrylate (ASA) material in Z direction,” Polym. Eng. Sci., vol. 62, no. 3, pp. 848–860, 2022.
  • [20] T. K. Meyer, N. G. Tanikella, M. J. Reich, and J. M. Pearce, “Potential of distributed recycling from hybrid manufacturing of 3-D printing and injection molding of stamp sand and acrylonitrile styrene acrylate waste composite,” Sustain. Mater. Technol., vol. 25, p. e00169, Sep. 2020.
  • [21] D. Jin, T. K. Meyer, S. Chen, K. Ampadu Boateng, J. M. Pearce, and Z. You, “Evaluation of lab performance of stamp sand and acrylonitrile styrene acrylate waste composites without asphalt as road surface materials,” Constr. Build. Mater., vol. 338, p. 127569, Jul. 2022.
  • [22] M. Mcfarland and E. Antunes, “Small-Scale Static Fire Tests of 3D Printing Hybrid Rocket Fuel Grains Produced from Di ff erent Materials,” 2019.
  • [23] J. M. Vázquez Martínez, D. Piñero Vega, J. Salguero, and M. Batista, “Evaluation of the printing strategies design on the mechanical and tribological response of acrylonitrile styrene acrylate (ASA) additive manufacturing parts,” Rapid Prototyp. J., vol. 28, no. 3, pp. 479–489, 2022.
There are 22 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering
Journal Section Articles
Authors

Gülşah Akıncıoğlu 0000-0002-4768-4935

Enes Aslan 0000-0002-1849-2715

Publication Date December 31, 2022
Submission Date July 30, 2022
Acceptance Date December 3, 2022
Published in Issue Year 2022 Volume: 8 Issue: 3

Cite

IEEE G. Akıncıoğlu and E. Aslan, “Investigation of tribological properties of amorphous thermoplastic samples with different filling densities produced by an additive manufacturing method”, GJES, vol. 8, no. 3, pp. 540–546, 2022.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg