Research Article
BibTex RIS Cite

Atmosferik Türbülansın Gauss Işının Üzerindeki Etkisi

Year 2023, Volume: 9 Issue: 1, 46 - 52, 30.04.2023

Abstract

Bu çalışmada atmosferik türbülans ortamında yayılan Gauss ışınlarının alıcı düzleme ulaşan alan ifadesi kullanılarak, çalışma dalga boyu, kaynak boyutu ve alıcı açıklığı yarıçap uzunluğu parametrelerinin, serbest alan optik haberleşme sistemlerinin en önemli gürültü kaynağı olan parıldama üzerinde etkileri analiz edilmiştir. Atmosferi modelleyebilmek için dalga optikte yer alan rastgele faz ekran modeli kullanılmıştır. Ayrıca yayılma mesafesinin ışının alıcı düzlem yoğunluğunu nasıl etkilediğini incelemek amacıyla farklı mesafelerde yayılan Gauss ışınlarının yoğunluk profilleri incelenmiştir. Elde edilen sonuçlar, türbülanslı bir atmosferde yayılan, büyük kaynak boyutuna ve düşük çalışma dalga boyuna sahip Gauss ışınlarının parıldama değerlerinin az olması, ışının orijinal profilini koruduğu sonucuna ulaştırmaktadır. Alıcı açıklığı yarıçapının artması, sistemde daha fazla ışının algılanmasını sağlamasından dolayı parıldama değerinde azalmayı sağlamaktadır. Yapılan bu çalışma ile 5G ve 6G haberleşme sistemleri, lazer uydu haberleşmesi ve uzaktan algılama gibi çeşitli uygulamalarda yer alan kablosuz optik haberleşme sistemlerinin bir örneği olan serbest alan optik haberleşme sistem performansını iyileştirilmesine katkı sağlanmaktadır.

References

  • [1] H. Kaushal, V. K. Jain and S. Kar, “Overview of wireless optical communication systems,” In Free space optical communication, Springer, New Delhi, 1-39, 2017.
  • [2] A. Mansour, R. Mesleh, and M. Abaza, “New challenges in wireless and free space optical communications,” Optics and lasers in engineering, 89, 95-108, 2017.
  • [3] H. T. Eyyuboğlu, “Scintillation behaviour of vortex beams in strong turbulence region,” Journal of Modern Optics, 63(21), 2374-2381, 2016.
  • [4] I. Alimi, A. Shahpari, A. Sousa, R. Ferreira, P. Monteiro, and A. Teixeira, “Challenges and opportunities of optical wireless communication Technologies,” Optical communication technology, 10, 2017.
  • [5] M. C. Naboulsi, H. Sizun, and F. de Fornel, “Fog attenuation prediction for optical and infrared waves,” Optical Engineering, 43(2), 319-329, 2004.
  • [6] J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” JOSA A, 19(9), 1794-1802, 2002.
  • [7] A.N. Kolmogorov, “The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers,” Acad. Sci. U.S.S.R., 30, 301-305, 1951.
  • [8] L. C. Andrews, R. L. Phillips, C. Y. Hopenand, M. A. Al-Habash, “Theory of optical scintillation,” JOSA A, 16(6), 1417-1429, 1999.
  • [9] J. Alda, “Laser and Gaussian beam propagation and transformation,” Encyclopedia of optical engineering, 999, 2003.
  • [10] L. C. Andrews, M. A. Al-Habash, C. Y Hopen and R. L. Phillips, “Theory of optical scintillation: Gaussian-beam wave model,” Waves in Random Media, 11(3), 271, 2001.
  • [11] H. T. Eyyuboğlu, D. Voelz and X. Xiao, “Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation,” Applied optics, 52(33), 8032-8039, 2013.
  • [12] A. Ijaz, L. Zhang, M. Grau, A. Mohamed, S. Vural, A. U. Quddus, M. A. Imran, C. H. Foh and R. Tafazolli, “Enabling massive IoT in 5G and beyond systems: phy radio frame design considerations,” IEEE Access, 4, 3322-3339, 2016.
  • [13] J.D. Schmidt, “Numerical simulation of optical wave propagation with examples in MATLAB,”SPIE Press: Washington, DC, Chapters 7, 8 and 9, 2010.
  • [14] M. Bayraktar, “Comparison of probability of error performance for truncated Bessel and Bessel Gauss Beams,” M.Sc., Department of Electronic and Communication Engineering, Ankara, 71, 2015.
  • [15] H. T. Eyyuboğlu, “Scintillation analysis of hypergeometric Gaussian beam via phase screen method,” Optics communications, 309, 103-107, 2013.
  • [16] K. Elmabruk and H. T. Eyyuboglu, “Analysis of flat-topped Gaussian vortex beam scintillation properties in atmospheric turbulence,” Optical Engineering, 58(6), 066115, 2019.
  • [17] R. Rao, “Statistics of the fractal structure and phase singularity of a plane light wave propagation in atmospheric turbulence,” Appl. Opt, 47, 269–276, 2008.
  • [18] E. Jera, and A. Mohamed, “Gaussian Beam Propagation Through Turbulent Atmosphere using Second-Order Split-Step Algorithm,” National Aerospace and Electronics Conference (NAECON), (pp. 675-677), 2019.
  • [19] H.T. Eyyuboğlu, “Aperture averaged scintillation of fully and partially coherent Gaussian, annular Gaussian, flat toped and dark hollow beams,” Opt. Commun, 339,141-147, 2015.
Year 2023, Volume: 9 Issue: 1, 46 - 52, 30.04.2023

Abstract

References

  • [1] H. Kaushal, V. K. Jain and S. Kar, “Overview of wireless optical communication systems,” In Free space optical communication, Springer, New Delhi, 1-39, 2017.
  • [2] A. Mansour, R. Mesleh, and M. Abaza, “New challenges in wireless and free space optical communications,” Optics and lasers in engineering, 89, 95-108, 2017.
  • [3] H. T. Eyyuboğlu, “Scintillation behaviour of vortex beams in strong turbulence region,” Journal of Modern Optics, 63(21), 2374-2381, 2016.
  • [4] I. Alimi, A. Shahpari, A. Sousa, R. Ferreira, P. Monteiro, and A. Teixeira, “Challenges and opportunities of optical wireless communication Technologies,” Optical communication technology, 10, 2017.
  • [5] M. C. Naboulsi, H. Sizun, and F. de Fornel, “Fog attenuation prediction for optical and infrared waves,” Optical Engineering, 43(2), 319-329, 2004.
  • [6] J. C. Ricklin and F. M. Davidson, “Atmospheric turbulence effects on a partially coherent Gaussian beam: implications for free-space laser communication,” JOSA A, 19(9), 1794-1802, 2002.
  • [7] A.N. Kolmogorov, “The local structure of turbulence in an incompressible viscous fluid for very large Reynolds numbers,” Acad. Sci. U.S.S.R., 30, 301-305, 1951.
  • [8] L. C. Andrews, R. L. Phillips, C. Y. Hopenand, M. A. Al-Habash, “Theory of optical scintillation,” JOSA A, 16(6), 1417-1429, 1999.
  • [9] J. Alda, “Laser and Gaussian beam propagation and transformation,” Encyclopedia of optical engineering, 999, 2003.
  • [10] L. C. Andrews, M. A. Al-Habash, C. Y Hopen and R. L. Phillips, “Theory of optical scintillation: Gaussian-beam wave model,” Waves in Random Media, 11(3), 271, 2001.
  • [11] H. T. Eyyuboğlu, D. Voelz and X. Xiao, “Scintillation analysis of truncated Bessel beams via numerical turbulence propagation simulation,” Applied optics, 52(33), 8032-8039, 2013.
  • [12] A. Ijaz, L. Zhang, M. Grau, A. Mohamed, S. Vural, A. U. Quddus, M. A. Imran, C. H. Foh and R. Tafazolli, “Enabling massive IoT in 5G and beyond systems: phy radio frame design considerations,” IEEE Access, 4, 3322-3339, 2016.
  • [13] J.D. Schmidt, “Numerical simulation of optical wave propagation with examples in MATLAB,”SPIE Press: Washington, DC, Chapters 7, 8 and 9, 2010.
  • [14] M. Bayraktar, “Comparison of probability of error performance for truncated Bessel and Bessel Gauss Beams,” M.Sc., Department of Electronic and Communication Engineering, Ankara, 71, 2015.
  • [15] H. T. Eyyuboğlu, “Scintillation analysis of hypergeometric Gaussian beam via phase screen method,” Optics communications, 309, 103-107, 2013.
  • [16] K. Elmabruk and H. T. Eyyuboglu, “Analysis of flat-topped Gaussian vortex beam scintillation properties in atmospheric turbulence,” Optical Engineering, 58(6), 066115, 2019.
  • [17] R. Rao, “Statistics of the fractal structure and phase singularity of a plane light wave propagation in atmospheric turbulence,” Appl. Opt, 47, 269–276, 2008.
  • [18] E. Jera, and A. Mohamed, “Gaussian Beam Propagation Through Turbulent Atmosphere using Second-Order Split-Step Algorithm,” National Aerospace and Electronics Conference (NAECON), (pp. 675-677), 2019.
  • [19] H.T. Eyyuboğlu, “Aperture averaged scintillation of fully and partially coherent Gaussian, annular Gaussian, flat toped and dark hollow beams,” Opt. Commun, 339,141-147, 2015.
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Electrical Engineering
Journal Section Research Articles
Authors

Gamze Nur Seçilmiş 0000-0003-0207-4516

Kholoud Elmabruk 0000-0002-8873-584X

Publication Date April 30, 2023
Submission Date May 25, 2022
Acceptance Date December 8, 2022
Published in Issue Year 2023 Volume: 9 Issue: 1

Cite

IEEE G. N. Seçilmiş and K. Elmabruk, “Atmosferik Türbülansın Gauss Işının Üzerindeki Etkisi”, GJES, vol. 9, no. 1, pp. 46–52, 2023.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg