Araştırma Makalesi
BibTex RIS Kaynak Göster

Dinamik Mod Ayrıştırmasında Kontrol: Kovid-19 ve Aşılamaya İlişkin Bir Örnek Olay İncelemesi

Yıl 2023, Cilt: 9 Sayı: 4, 48 - 57, 31.12.2023

Öz

Epidemik hastalıklar tarih boyunca insan toplumlarına büyük tehditler oluşturmuş ve kamu sağlığını ciddi şekilde etkilemiştir. Epidemik hastalıklar hızla yayılabilir, büyük ölümlere ve ekonomik kayıplara yol açabilir. Bu nedenle, salgın hastalıkların kontrolü ve yönetimi, bilimsel ve teknolojik gelişmelerle birlikte geliştirilen yeni yaklaşımlar gerektirir. Dinamik Mod Ayrıştırmasında Kontrol (DMAk),dinamik sistemi dışarıdan etkileyen ve sistemin doğasını değiştiren sistemlerin durumunu tahmin eden bir makine öğrenmesi tekniğidir. Bu teknik, verilerdeki değişkenlerin, faktörlerin ve etkilerin birbirleriyle nasıl ilişkilendiklerini ve zamanla nasıl değiştiklerini incelemek için kullanılır. Bu çalışma da DMAk yönteminde 8 Şubat ile 11 Eylül 2021 tarihleri arasında Türkiye'nin 81 ilinin 100 bin kişideki haftalık kümülatif Covid-19 vaka sayısını durum matrisi, aynı tarih aralığında 100 bin kişideki toplam aşı sayısı kontrol matrisi olarak kullanıldı. Daha sonra Dinamik Mod Ayrıştırması (DMA) algoritması ve DMAk algoritmasının hesaplanan hata değerleri farklı hata metrikleri altında karşılaştırıldı. Bu çalışmada, Türkiye Sağlık Bakanlığı’nın Covid-19 vaka ve aşı sayısını içeren TURCOVID-19 açık veri kullanıldı.

Kaynakça

  • [1] W. 0 Kermack and A. G. Mckendrick, “A contribution to the mathematical theory of epidemics,” Proceedings of the Royal Society of London, vol. 115, no. 772, pp. 700–721, Aug. 1927. doi:10.1098/rspa.1927.0118
  • [2] R. M. Anderson and R. May, Infectious diseases of humans : dynamics and control. Oxford University Press, 1991.
  • [3] H. W. Hethcote and P. V. Driessche, “An SIS epidemic model with variable population size and a delay,” J Math Biol, vol. 34, no. 2, pp. 177–194, 1995. doi:10.1007/BF00178772
  • [4] L. J. S. Allen, “A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis,” Infect Dis Model, vol. 2, no. 2, pp. 128–142, May 2017. doi:10.1016/j.idm.2017.03.001
  • [5] S. A. Alanazi, M. M. Kamruzzaman, M. Alruwaili, N. Alshammari, S. A. Alqahtani and A. Karime, “Measuring and preventing COVID-19 using the SIR model and machine learning in smart health care,” J Healthc Eng, vol. 2020, November 2020. doi:10.1155/2020/8857346
  • [6] B. M. Ndiaye, L. Tendeng, and D. Seck, “Analysis of the COVID-19 pandemic by SIR model and machine learning technics for forecasting,” ArXiv, Apr. 2020. [Online]. Available: https://arxiv.org/abs/2004.01574v1. [Accessed: Dec. 09, 2023.]
  • [7] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” J Fluid Mech, vol. 656, pp. 5–28, July 2010, doi:10.1017/S0022112010001217
  • [8] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, “On dynamic mode decomposition: Theory and applications,” Journal of Computational Dynamics, vol. 1, no. 2, pp. 391–421, Nov. 2013, doi:10.3934/jcd.2014.1.391
  • [9] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from data by sparse identification of nonlinear dynamical systems,” Proc Natl Acad Sci U S A, vol. 113, no. 15, pp. 3932–3937, Apr. 2016, doi:10.1073/PNAS.1517384113/SUPPL_FILE/PNAS.1517384113.SAPP.PDF
  • [10] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor, Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. SIAM, Nov. 2016. doi:10.1137/1.9781611974508
  • [11] J.L.Proctor, S.L.Brunton, and J. N. Kutz, “Dynamic mode decomposition with control,” SIAM J. Applied Dynamical Systems, vol. 15, no. 1, pp. 142–161, Jan. 2016. doi:10.1137/15M1013857
  • [12] B. Dekhici, B. Benyahia, and B. Cherki, “Dynamic mode decomposition with control for data-driven modeling of anaerobic digestion process,” CARI, Oct. 2022. [Online]. Available: https://hal.science/hal-03696038. [Accessed: Dec. 09, 2023.]
  • [13] A. Onstenk, “Simulations in the Loop: Model Based Control for a Plastic Forming Process,” Master, Eindhoven University of Technology, 2021.
  • [14] S. Mustavee, S. Agarwal, C. Enyioha, and S. Das, “A linear dynamical perspective on epidemiology: interplay between early COVID-19 outbreak and human mobility,” Nonlinear Dyn, vol. 109, no. 2, pp. 1233–1252, Jul. 2022. doi:10.1007/s11071-022-07469-5
  • [15] T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature,” Geosci Model Dev, vol. 7, no. 3, pp. 1247–1250, Jun. 2014. doi:10.5194/gmd-7-1247-2014
  • [16] A. Uçar et al., “Türkiye’de Covid-19 Pandemisinin Monitörizasyonu Için Interaktif Ve Gerçek Zamanlı Bir Web Uygulaması: TURCOVID19,” Anadolu Kliniği Tıp Bilimleri Dergisi, vol. 25, no. Special Issue on COVID 19, pp. 154–155, Mar. 2020. doi:10.21673/anadoluklin.726347
  • [17] “TURCOVID19.” [Online]. Available: https://turcovid19.com/. [Accessed: Dec. 09, 2023.]

Dynamic Mode Decomposition with Control: A Case Study Of Covid-19 and Vaccination

Yıl 2023, Cilt: 9 Sayı: 4, 48 - 57, 31.12.2023

Öz

Epidemic diseases have posed great threats to human societies throughout history and have seriously affected public health. Epidemic diseases can spread rapidly and cause major deaths and economic losses. Therefore, the control and management of epidemic diseases requires new approaches developed with scientific and technological developments. The method of Dynamic Mode Decomposition with Control (DMDc) is a machine learning technique that predicts the state of systems, that affect the dynamic system from the outside and change the nature of the system. This technique is used to examine how the variables, factors, and effects in the data are related to each other and how they change over time. In this article, the DMDc method used the weekly cumulative number of Covid-19 cases per 100 thousand of Turkey's 81 provinces between February 8 and September 11, 2021, as the situation matrix, and the total number of vaccines per 100 thousand in the same date range as the control matrix and then calculated error values of the DMD and DMDc are compared with under the different error metrics. In this paper,the number of cases and vaccines in the Turkish Ministry of Health TURCOVID-19 open data set was used.

Kaynakça

  • [1] W. 0 Kermack and A. G. Mckendrick, “A contribution to the mathematical theory of epidemics,” Proceedings of the Royal Society of London, vol. 115, no. 772, pp. 700–721, Aug. 1927. doi:10.1098/rspa.1927.0118
  • [2] R. M. Anderson and R. May, Infectious diseases of humans : dynamics and control. Oxford University Press, 1991.
  • [3] H. W. Hethcote and P. V. Driessche, “An SIS epidemic model with variable population size and a delay,” J Math Biol, vol. 34, no. 2, pp. 177–194, 1995. doi:10.1007/BF00178772
  • [4] L. J. S. Allen, “A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis,” Infect Dis Model, vol. 2, no. 2, pp. 128–142, May 2017. doi:10.1016/j.idm.2017.03.001
  • [5] S. A. Alanazi, M. M. Kamruzzaman, M. Alruwaili, N. Alshammari, S. A. Alqahtani and A. Karime, “Measuring and preventing COVID-19 using the SIR model and machine learning in smart health care,” J Healthc Eng, vol. 2020, November 2020. doi:10.1155/2020/8857346
  • [6] B. M. Ndiaye, L. Tendeng, and D. Seck, “Analysis of the COVID-19 pandemic by SIR model and machine learning technics for forecasting,” ArXiv, Apr. 2020. [Online]. Available: https://arxiv.org/abs/2004.01574v1. [Accessed: Dec. 09, 2023.]
  • [7] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,” J Fluid Mech, vol. 656, pp. 5–28, July 2010, doi:10.1017/S0022112010001217
  • [8] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, “On dynamic mode decomposition: Theory and applications,” Journal of Computational Dynamics, vol. 1, no. 2, pp. 391–421, Nov. 2013, doi:10.3934/jcd.2014.1.391
  • [9] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from data by sparse identification of nonlinear dynamical systems,” Proc Natl Acad Sci U S A, vol. 113, no. 15, pp. 3932–3937, Apr. 2016, doi:10.1073/PNAS.1517384113/SUPPL_FILE/PNAS.1517384113.SAPP.PDF
  • [10] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor, Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems. SIAM, Nov. 2016. doi:10.1137/1.9781611974508
  • [11] J.L.Proctor, S.L.Brunton, and J. N. Kutz, “Dynamic mode decomposition with control,” SIAM J. Applied Dynamical Systems, vol. 15, no. 1, pp. 142–161, Jan. 2016. doi:10.1137/15M1013857
  • [12] B. Dekhici, B. Benyahia, and B. Cherki, “Dynamic mode decomposition with control for data-driven modeling of anaerobic digestion process,” CARI, Oct. 2022. [Online]. Available: https://hal.science/hal-03696038. [Accessed: Dec. 09, 2023.]
  • [13] A. Onstenk, “Simulations in the Loop: Model Based Control for a Plastic Forming Process,” Master, Eindhoven University of Technology, 2021.
  • [14] S. Mustavee, S. Agarwal, C. Enyioha, and S. Das, “A linear dynamical perspective on epidemiology: interplay between early COVID-19 outbreak and human mobility,” Nonlinear Dyn, vol. 109, no. 2, pp. 1233–1252, Jul. 2022. doi:10.1007/s11071-022-07469-5
  • [15] T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute error (MAE)? -Arguments against avoiding RMSE in the literature,” Geosci Model Dev, vol. 7, no. 3, pp. 1247–1250, Jun. 2014. doi:10.5194/gmd-7-1247-2014
  • [16] A. Uçar et al., “Türkiye’de Covid-19 Pandemisinin Monitörizasyonu Için Interaktif Ve Gerçek Zamanlı Bir Web Uygulaması: TURCOVID19,” Anadolu Kliniği Tıp Bilimleri Dergisi, vol. 25, no. Special Issue on COVID 19, pp. 154–155, Mar. 2020. doi:10.21673/anadoluklin.726347
  • [17] “TURCOVID19.” [Online]. Available: https://turcovid19.com/. [Accessed: Dec. 09, 2023.]
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Yazılım Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Simge Kacar Eroğlu 0000-0002-4602-2489

Gamze Yüksel 0000-0003-3578-2762

Yayımlanma Tarihi 31 Aralık 2023
Gönderilme Tarihi 19 Kasım 2023
Kabul Tarihi 18 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 4

Kaynak Göster

IEEE S. Kacar Eroğlu ve G. Yüksel, “Dynamic Mode Decomposition with Control: A Case Study Of Covid-19 and Vaccination”, GMBD, c. 9, sy. 4, ss. 48–57, 2023.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg