Research Article
BibTex RIS Cite

Makine Öğrenmesi ve Derin Öğrenme Yöntemleri ile Hidroponik Tarım

Year 2023, Volume: 9 Issue: 3, 508 - 519, 01.01.2024

Abstract

Günümüzde dünyamızın hızla artan nüfusu karşısında, hızla azalan ham madde ve besin gibi ihtiyaçların karşılanması için araştırmacılar yeni kaynak arayışlarının yanında var olan kaynakları daha etkin ve verimli kullanan çalışmalara da yöneldiler. İnsanlığın en büyük ihtiyaçlarından biri olan besin ihtiyacının karşılanmasında kullanılabilecek alternatif yöntemlerden biri olan hidroponik tarımın kullanımı gün geçtikçe daha popüler hale gelmiştir. Toprak yerine besin solüsyonlu su kullanılması, hava şartlarından etkilenmemesi, kapalı alanlarda uygulanabilmesi ve dikey yönlü olabilmesi hidroponik tarımı diğer tarım yöntemlerinden daha farklı kılan özelliklerdir. Bunun yanında bu tarım yönteminde toprak bulunmaması beraberinde daha çok gözlem ve gözetim ihtiyacını getirmektedir. Bu çalışmanın amacı, hidroponik tarımda verimin artırılması için gerekli olan gözlem ve gözetim ihtiyacının makine öğrenmesi ve derin öğrenme yöntemleri kullanılarak sağlanabileceğini göstermektir. Bu amaçla beş adet makine öğrenmesi ve derin öğrenme yöntemleri kullanılarak yapılan deneysel çalışmalarda hidroponik tarımın verimliliğinin arttırıldığı gözlemlenilmiştir. Derin öğrenme yöntemi %99,7 başarı ile diğer yöntemlere göre daha iyi sonuç elde etmiştir.

References

  • [1] D. Vuuren, A. Bouwman, & A. Beusen, "phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion", Global Environmental Change, vol. 20, no. 3, p. 428-439, 2010. doi:10.1016/j.gloenvcha.2010.04.004
  • [2] S. Madakam, R. Ramaswamy, & S. Tripathi, "internet of things (iot): a literature review", journal of computer and communications, vol. 03, no. 05, p. 164-173, 2015. doi:10.4236/jcc.2015.35021
  • [3] J. Chaiwongsai, "Automatic Control and Management System for Tropical Hydroponic Cultivation," 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-4, doi:10.1109/ISCAS.2019.8702572
  • [4] O. Gandhi, M. Ramdhani, M. A. Murti and C. Setianingsih, "Water Flow Control System Based on Context Aware Algorithm and IoT for Hydroponic," 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), Bali, Indonesia, 2019, pp. 212-217, doi:10.1109/IoTaIS47347.2019.8980373
  • [5] Iswanto, P. Megantoro and A. Ma’arif, "Nutrient Film Technique for Automatic Hydroponic System Based on Arduino," 2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE), Lombok, Indonesia, 2020, pp. 84-86, doi:10.1109/ICIEE49813.2020.9276920
  • [6] A. Satoh, "A Hydroponic Planter System to enable an Urban Agriculture Service Industry," 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE), Nara, Japan, 2018, pp. 281-284, doi:10.1109/GCCE.2018.8574661
  • [7] H. Andrianto, Suhardi and A. Faizal, "Development of Smart Greenhouse System for Hydroponic Agriculture," 2020 International Conference on Information Technology Systems and Innovation (ICITSI), Bandung, Indonesia, 2020, pp. 335-340, doi:10.1109/ICITSI50517.2020.9264917
  • [8] A. V. Korzhakov, S. V. Oskin and S. A. Korzhakova, "Acoustic and Magnetic Treatment Process Automatization in Hydroponic Solution Preparation System," 2019 International Russian Automation Conference (RusAutoCon), Sochi, Russia, 2019, pp. 1-5, doi:10.1109/RUSAUTOCON.2019.8867684
  • [9] K. Lisha Kamala and S. Anna Alex, "Apple Fruit Disease Detection for Hydroponic plants using Leading edge Technology Machine Learning and Image Processing," 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2021, pp. 820-825, doi:10.1109/ICOSEC51865.2021.9591903
  • [10] A. Raghuvanshi et al., “Intrusion Detection Using Machine Learning for Risk Mitigation in IoT-Enabled Smart Irrigation in Smart Farming,” J. Food Qual., vol. 2022, p. 3955514, Feb. 2022, doi:10.1155/2022/3955514.
  • [11] E. Elbasi et al., "Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review," in IEEE Access, vol. 11, pp. 171-202, 2023, doi:10.1109/ACCESS.2022.3232485
  • [12] T. Karanisa, Y. Achour, A. Ouammi, and S. Sayadi, “Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar,” Environ. Syst. Decis., vol. 42, no. 4, pp. 521–546, Dec. 2022, doi:10.1007/s10669-022-09862-2
  • [13] C. J. G. Aliac and E. Maravillas, "IOT Hydroponics Management System," 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 2018, pp. 1-5, doi:10.1109/HNICEM.2018.8666372
  • [14] J. Pitakphongmetha, N. Boonnam, S. Wongkoon, T. Horanont, D. Somkiadcharoen and J. Prapakornpilai, "Internet of things for planting in smart farm hydroponics style," 2016 International Computer Science and Engineering Conference (ICSEC), Chiang Mai, Thailand, 2016, pp. 1-5, doi:10.1109/ICSEC.2016.7859872
  • [15] D. Yolanda, H. Hindersah, F. Hadiatna and M. A. Triawan, "Implementation of Real-Time Fuzzy logic control for NFT-based hydroponic system on Internet of Things environment," 2016 6th International Conference on System Engineering and Technology (ICSET), Bandung, Indonesia, 2016, pp. 153-159, doi:10.1109/ICSEngT.2016.7849641
  • [16] T. Kaewwiset and T. Yooyativong, "Electrical conductivity and pH adjusting system for hydroponics by using linear regression," 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, 2017, pp. 761-764, doi:10.1109/ECTICon.2017.8096350
  • [17] M. Mehra, S. Saxena, S. Sankaranarayanan, R. J. Tom, and M. Veeramanikandan, “IoT based hydroponics system using Deep Neural Networks,” Comput. Electron. Agric., vol. 155, pp. 473–486, Dec. 2018, doi:10.1016/j.compag.2018.10.015
  • [18] M. I. Alipio, A. E. M. Dela Cruz, J. D. A. Doria and R. M. S. Fruto, "A smart hydroponics farming system using exact inference in Bayesian network," 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), Nagoya, Japan, 2017, pp. 1-5, doi:10.1109/GCCE.2017.8229470
  • [19] El Naqa ve M. J. Murphy, "What is machine learning?," Machine Learning in Radiation Oncology, Springer, Cham, 2015, ss. 3-11.
  • [20] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, Berlin, Heidelberg, 1995, ISBN: 0387945598.
  • [21] X. -z. Wang and S. -x. Lu, "Improved Fuzzy Multicategory Support Vector Machines Classifier," 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, 2006, pp. 3585-3589, doi:10.1109/ICMLC.2006.258575 [22] A. C. Braun, U. Weidner and S. Hinz, "Support vector machines, import vector machines and relevance vector machines for hyperspectral classification — A comparison," 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, Portugal, 2011, pp. 1-4, doi:10.1109/WHISPERS.2011.6080861
  • [23] H. Hairani, A. Anggrawan, A. I. Wathan, K. A. Latif, K. Marzuki and M. Zulfikri, "The Abstract of Thesis Classifier by Using Naive Bayes Method," 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), Pekan, Malaysia, 2021, pp. 312-315, doi:10.1109/ICSECS52883.2021.00063
  • [24] M. S. Nair, K. Revathy and R. Tatavarti, "An Improved Decision-Based Algorithm for Impulse Noise Removal," 2008 Congress on Image and Signal Processing, Sanya, China, 2008, pp. 426-431, doi:10.1109/CISP.2008.21
  • [25] D. Wang, D. Yuan and C. Miao, "Sparse Naïve Bayes Base on Entropy Correlation for GPR Image Denoising," 2020 IEEE 3rd International Conference on Electronics and Communication Engineering (ICECE), Xi'An, China, 2020, pp. 167-171, doi:10.1109/ICECE51594.2020.9353029
  • [26] S. S. Gavankar and S. D. Sawarkar, "Eager decision tree," 2017 2nd International Conference for Convergence in Technology (I2CT), Mumbai, India, 2017, pp. 837-840, doi:10.1109/I2CT.2017.8226246
  • [27] F. -J. Yang, "An Extended Idea about Decision Trees," 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 2019, pp. 349-354, doi:10.1109/CSCI49370.2019.00068
  • [28] X. Song, T. Xie and S. Fischer, "POSTER: A Memory-Access-Efficient Adaptive Implementation of kNN on FPGA through HLS," 2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT), Seattle, WA, USA, 2019, pp. 503-504, doi:10.1109/PACT.2019.00066
  • [29] Y. Peng, G. Kou, Y. Shi, & Z. Chen, "a descriptive framework for the field of data mining and knowledge discovery", International Journal of Information Technology & Decision Making, vol. 07, no. 04, p. 639-682, 2008. doi:10.1142/s0219622008003204
  • [30] J. Vieira, R. P. Duarte and H. C. Neto, "kNN-STUFF: kNN STreaming Unit for Fpgas," in IEEE Access, vol. 7, pp. 170864-170877, 2019, doi:10.1109/ACCESS.2019.2955864
  • [31] Y. -h. Wang, Y. Ou, X. -d. Deng, L. -r. Zhao and C. -y. Zhang, "The Ship Collision Accidents Based on Logistic Regression and Big Data," 2019 Chinese Control And Decision Conference (CCDC), Nanchang, China, 2019, pp. 4438-4440, doi:10.1109/CCDC.2019.8832686
  • [32] L. Zhang, S. Wang, & B. Liu, "deep learning for sentiment analysis: a survey", Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, vol. 8, no. 4, 2018. doi:10.1002/widm.1253
  • [33] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi:10.1038/nature14539
  • [34] P. Haddad, C. Brain, & J. Scott, "nonadherence with antipsychotic medication in schizophrenia: challenges and management strategies", patient related outcome measures, p. 43, 2014. doi:10.2147/prom.s42735
  • [35] C. Zhang and P. C. Woodland, “Parameterised sigmoid and reLU hidden activation functions for DNN acoustic modelling,” in Interspeech 2015, ISCA, Sep. 2015, pp. 3224–3228. doi:10.21437/Interspeech.2015-649
  • [36] Z. Li, H. Li, X. Jiang, B. Chen, Y. Zhang and G. Du, "Efficient FPGA Implementation of Softmax Function for DNN Applications," 2018 12th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID), Xiamen, China, 2018, pp. 212-216, doi:10.1109/ICASID.2018.8693206
  • [37] Q. Zhou et al., "Enhanced Multi-Level Signal Recovery in Mobile Fronthaul Network Using DNN Decoder," in IEEE Photonics Technology Letters, vol. 30, no. 17, pp. 1511-1514, 1 Sept.1, 2018, doi:10.1109/LPT.2018.2852601

Hydroponic Agriculture with Machine Learning and Deep Learning Methods

Year 2023, Volume: 9 Issue: 3, 508 - 519, 01.01.2024

Abstract

In the face of the rapidly increasing population of our world today, researchers have turned to studies that use existing resources more effectively and efficiently in addition to searching for new resources in order to meet the rapidly decreasing needs such as raw materials and nutrients. The use of hydroponic agriculture, which is one of the alternative methods that can be used to meet the need for nutrients, which is one of the greatest needs of humanity, has become more popular day by day. The use of nutrient solution water instead of soil, the fact that it is not affected by weather conditions, that it can be applied indoors and that it can be vertically oriented are the characteristics that make hydroponic agriculture different from other agricultural methods. In addition, the lack of soil in this agricultural method brings with it the need for more observation and supervision. The aim of this study is to show that the observation and surveillance needs necessary to increase yield in hydroponic agriculture can be achieved using machine learning and deep learning methods. For this purpose, it has been observed that the efficiency of hydroponic agriculture has been increased in experimental studies conducted using five machine learning and deep learning methods. The deep learning method has achieved better results with 99.7% success compared to other methods.

References

  • [1] D. Vuuren, A. Bouwman, & A. Beusen, "phosphorus demand for the 1970–2100 period: a scenario analysis of resource depletion", Global Environmental Change, vol. 20, no. 3, p. 428-439, 2010. doi:10.1016/j.gloenvcha.2010.04.004
  • [2] S. Madakam, R. Ramaswamy, & S. Tripathi, "internet of things (iot): a literature review", journal of computer and communications, vol. 03, no. 05, p. 164-173, 2015. doi:10.4236/jcc.2015.35021
  • [3] J. Chaiwongsai, "Automatic Control and Management System for Tropical Hydroponic Cultivation," 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 2019, pp. 1-4, doi:10.1109/ISCAS.2019.8702572
  • [4] O. Gandhi, M. Ramdhani, M. A. Murti and C. Setianingsih, "Water Flow Control System Based on Context Aware Algorithm and IoT for Hydroponic," 2019 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS), Bali, Indonesia, 2019, pp. 212-217, doi:10.1109/IoTaIS47347.2019.8980373
  • [5] Iswanto, P. Megantoro and A. Ma’arif, "Nutrient Film Technique for Automatic Hydroponic System Based on Arduino," 2020 2nd International Conference on Industrial Electrical and Electronics (ICIEE), Lombok, Indonesia, 2020, pp. 84-86, doi:10.1109/ICIEE49813.2020.9276920
  • [6] A. Satoh, "A Hydroponic Planter System to enable an Urban Agriculture Service Industry," 2018 IEEE 7th Global Conference on Consumer Electronics (GCCE), Nara, Japan, 2018, pp. 281-284, doi:10.1109/GCCE.2018.8574661
  • [7] H. Andrianto, Suhardi and A. Faizal, "Development of Smart Greenhouse System for Hydroponic Agriculture," 2020 International Conference on Information Technology Systems and Innovation (ICITSI), Bandung, Indonesia, 2020, pp. 335-340, doi:10.1109/ICITSI50517.2020.9264917
  • [8] A. V. Korzhakov, S. V. Oskin and S. A. Korzhakova, "Acoustic and Magnetic Treatment Process Automatization in Hydroponic Solution Preparation System," 2019 International Russian Automation Conference (RusAutoCon), Sochi, Russia, 2019, pp. 1-5, doi:10.1109/RUSAUTOCON.2019.8867684
  • [9] K. Lisha Kamala and S. Anna Alex, "Apple Fruit Disease Detection for Hydroponic plants using Leading edge Technology Machine Learning and Image Processing," 2021 2nd International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2021, pp. 820-825, doi:10.1109/ICOSEC51865.2021.9591903
  • [10] A. Raghuvanshi et al., “Intrusion Detection Using Machine Learning for Risk Mitigation in IoT-Enabled Smart Irrigation in Smart Farming,” J. Food Qual., vol. 2022, p. 3955514, Feb. 2022, doi:10.1155/2022/3955514.
  • [11] E. Elbasi et al., "Artificial Intelligence Technology in the Agricultural Sector: A Systematic Literature Review," in IEEE Access, vol. 11, pp. 171-202, 2023, doi:10.1109/ACCESS.2022.3232485
  • [12] T. Karanisa, Y. Achour, A. Ouammi, and S. Sayadi, “Smart greenhouses as the path towards precision agriculture in the food-energy and water nexus: case study of Qatar,” Environ. Syst. Decis., vol. 42, no. 4, pp. 521–546, Dec. 2022, doi:10.1007/s10669-022-09862-2
  • [13] C. J. G. Aliac and E. Maravillas, "IOT Hydroponics Management System," 2018 IEEE 10th International Conference on Humanoid, Nanotechnology, Information Technology,Communication and Control, Environment and Management (HNICEM), Baguio City, Philippines, 2018, pp. 1-5, doi:10.1109/HNICEM.2018.8666372
  • [14] J. Pitakphongmetha, N. Boonnam, S. Wongkoon, T. Horanont, D. Somkiadcharoen and J. Prapakornpilai, "Internet of things for planting in smart farm hydroponics style," 2016 International Computer Science and Engineering Conference (ICSEC), Chiang Mai, Thailand, 2016, pp. 1-5, doi:10.1109/ICSEC.2016.7859872
  • [15] D. Yolanda, H. Hindersah, F. Hadiatna and M. A. Triawan, "Implementation of Real-Time Fuzzy logic control for NFT-based hydroponic system on Internet of Things environment," 2016 6th International Conference on System Engineering and Technology (ICSET), Bandung, Indonesia, 2016, pp. 153-159, doi:10.1109/ICSEngT.2016.7849641
  • [16] T. Kaewwiset and T. Yooyativong, "Electrical conductivity and pH adjusting system for hydroponics by using linear regression," 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), Phuket, Thailand, 2017, pp. 761-764, doi:10.1109/ECTICon.2017.8096350
  • [17] M. Mehra, S. Saxena, S. Sankaranarayanan, R. J. Tom, and M. Veeramanikandan, “IoT based hydroponics system using Deep Neural Networks,” Comput. Electron. Agric., vol. 155, pp. 473–486, Dec. 2018, doi:10.1016/j.compag.2018.10.015
  • [18] M. I. Alipio, A. E. M. Dela Cruz, J. D. A. Doria and R. M. S. Fruto, "A smart hydroponics farming system using exact inference in Bayesian network," 2017 IEEE 6th Global Conference on Consumer Electronics (GCCE), Nagoya, Japan, 2017, pp. 1-5, doi:10.1109/GCCE.2017.8229470
  • [19] El Naqa ve M. J. Murphy, "What is machine learning?," Machine Learning in Radiation Oncology, Springer, Cham, 2015, ss. 3-11.
  • [20] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, Berlin, Heidelberg, 1995, ISBN: 0387945598.
  • [21] X. -z. Wang and S. -x. Lu, "Improved Fuzzy Multicategory Support Vector Machines Classifier," 2006 International Conference on Machine Learning and Cybernetics, Dalian, China, 2006, pp. 3585-3589, doi:10.1109/ICMLC.2006.258575 [22] A. C. Braun, U. Weidner and S. Hinz, "Support vector machines, import vector machines and relevance vector machines for hyperspectral classification — A comparison," 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, Portugal, 2011, pp. 1-4, doi:10.1109/WHISPERS.2011.6080861
  • [23] H. Hairani, A. Anggrawan, A. I. Wathan, K. A. Latif, K. Marzuki and M. Zulfikri, "The Abstract of Thesis Classifier by Using Naive Bayes Method," 2021 International Conference on Software Engineering & Computer Systems and 4th International Conference on Computational Science and Information Management (ICSECS-ICOCSIM), Pekan, Malaysia, 2021, pp. 312-315, doi:10.1109/ICSECS52883.2021.00063
  • [24] M. S. Nair, K. Revathy and R. Tatavarti, "An Improved Decision-Based Algorithm for Impulse Noise Removal," 2008 Congress on Image and Signal Processing, Sanya, China, 2008, pp. 426-431, doi:10.1109/CISP.2008.21
  • [25] D. Wang, D. Yuan and C. Miao, "Sparse Naïve Bayes Base on Entropy Correlation for GPR Image Denoising," 2020 IEEE 3rd International Conference on Electronics and Communication Engineering (ICECE), Xi'An, China, 2020, pp. 167-171, doi:10.1109/ICECE51594.2020.9353029
  • [26] S. S. Gavankar and S. D. Sawarkar, "Eager decision tree," 2017 2nd International Conference for Convergence in Technology (I2CT), Mumbai, India, 2017, pp. 837-840, doi:10.1109/I2CT.2017.8226246
  • [27] F. -J. Yang, "An Extended Idea about Decision Trees," 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 2019, pp. 349-354, doi:10.1109/CSCI49370.2019.00068
  • [28] X. Song, T. Xie and S. Fischer, "POSTER: A Memory-Access-Efficient Adaptive Implementation of kNN on FPGA through HLS," 2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT), Seattle, WA, USA, 2019, pp. 503-504, doi:10.1109/PACT.2019.00066
  • [29] Y. Peng, G. Kou, Y. Shi, & Z. Chen, "a descriptive framework for the field of data mining and knowledge discovery", International Journal of Information Technology & Decision Making, vol. 07, no. 04, p. 639-682, 2008. doi:10.1142/s0219622008003204
  • [30] J. Vieira, R. P. Duarte and H. C. Neto, "kNN-STUFF: kNN STreaming Unit for Fpgas," in IEEE Access, vol. 7, pp. 170864-170877, 2019, doi:10.1109/ACCESS.2019.2955864
  • [31] Y. -h. Wang, Y. Ou, X. -d. Deng, L. -r. Zhao and C. -y. Zhang, "The Ship Collision Accidents Based on Logistic Regression and Big Data," 2019 Chinese Control And Decision Conference (CCDC), Nanchang, China, 2019, pp. 4438-4440, doi:10.1109/CCDC.2019.8832686
  • [32] L. Zhang, S. Wang, & B. Liu, "deep learning for sentiment analysis: a survey", Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, vol. 8, no. 4, 2018. doi:10.1002/widm.1253
  • [33] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436–444, May 2015, doi:10.1038/nature14539
  • [34] P. Haddad, C. Brain, & J. Scott, "nonadherence with antipsychotic medication in schizophrenia: challenges and management strategies", patient related outcome measures, p. 43, 2014. doi:10.2147/prom.s42735
  • [35] C. Zhang and P. C. Woodland, “Parameterised sigmoid and reLU hidden activation functions for DNN acoustic modelling,” in Interspeech 2015, ISCA, Sep. 2015, pp. 3224–3228. doi:10.21437/Interspeech.2015-649
  • [36] Z. Li, H. Li, X. Jiang, B. Chen, Y. Zhang and G. Du, "Efficient FPGA Implementation of Softmax Function for DNN Applications," 2018 12th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID), Xiamen, China, 2018, pp. 212-216, doi:10.1109/ICASID.2018.8693206
  • [37] Q. Zhou et al., "Enhanced Multi-Level Signal Recovery in Mobile Fronthaul Network Using DNN Decoder," in IEEE Photonics Technology Letters, vol. 30, no. 17, pp. 1511-1514, 1 Sept.1, 2018, doi:10.1109/LPT.2018.2852601
There are 36 citations in total.

Details

Primary Language English
Subjects Computer Software
Journal Section Research Articles
Authors

Nurten Bulut 0000-0002-1895-8749

Mehmet Hacıbeyoglu 0000-0003-1830-8516

Publication Date January 1, 2024
Submission Date December 5, 2022
Acceptance Date October 11, 2023
Published in Issue Year 2023 Volume: 9 Issue: 3

Cite

IEEE N. Bulut and M. Hacıbeyoglu, “Hydroponic Agriculture with Machine Learning and Deep Learning Methods”, GJES, vol. 9, no. 3, pp. 508–519, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg