Araştırma Makalesi
BibTex RIS Kaynak Göster

Performing System Modeling Study of Knee Joint Simulator Prototype in accordance with ISO 14243/3 Standard and Simulating Gait Profile in Matlab Simulink Environment

Yıl 2023, Cilt: 9 Sayı: 3, 622 - 633, 01.01.2024

Öz

Knee wear simulators are used to model joint mechanics and detect wear performance, referencing ISO14243-1/3 protocols. In this study, it is aimed to create a system model for a joint knee wear simulator prototype and then obtain input and output signals with the Matlab Simulink program. As a result of the study, transfer functions for torque and position were obtained and a block diagram was created in the Matlab Simulink environment. Based on the ISO 14243-3 protocol, motion curves were modeled in the Matlab Simulink environment and converted to input reference signals. Finally, PID controlled closed loop was integrated into the DC servo motor circuit to obtain output signals, and using these signals, the walking cycle was successfully simulated in Matlab SimMechanics environment in accordance with ISO 14243-3. When the system model is evaluated, it is understood that it has advantages such as being able to work with open source microcontrollers such as Ardunio, low cost, and easy adaptation of any data to the system. In this study, it is aimed to obtain a suitable system model for the knee wear simülatör prototype and to serve as an example for easily accessible test simulators for use in scientific studies or R&D processes.

Kaynakça

  • [1] S. Affatato, “Displacement or force control knee simulators? Variations in kinematics and in wear,” Artificial Organs, vol. 40, no. 2, pp.195-201, February 2016. doi:10.1111/aor.12508
  • [2] E. Bahçe ve E. Demir, “Diz Eklem Protezi Aşınma Test Simülatörü Tasarım ve İmalatı,” Ordu Üniversitesi Bilim ve Teknoloji Dergisi,” vol. 8, no. 2, pp. 187-194, Aralık 2018. https://dergipark.org.tr
  • [3] A. Wang, A. Essner, C. Stark and JH. Dumbleton, “A biaxial line-contact wear machine for the evaluation of implant bearing materials for total knee joint replacement,” Wear, vol. 225-229, pp. 701-707, April 1999. doi:10.1016/S0043-1648(99)00025-3
  • [4] M.R. Blunn Gw, “Four station knee simulator wear testing comparing titanium niobium nitride with cobalt chrome,” Journal of Bioengineering & Biomedical Science, vol. 3, no. 3, August 2013. doi:10.4172/2155-9538.1000125
  • [5] P.S. Walker, MT. Lowry, G. Yildirim and A. Kumar, “Kinematic differences in posterior stabilized total knees determined by a holistic experimental evaluation method,” Journal of Medical Devices, vol. 7, no. 3, p.3, September 2013. doi:10.1115/1.4024506
  • [6] T. Schwenke, D. Orozco, E. Schneider and MA. Wimmer, “Differences in wear between load and displacement control tested total knee replacements,” Wear, vol. 267, no. 5-9, pp. 757-762, June 2009. doi:10.1016/j.wear.2009.01.028
  • [7] T. Calliess, S. Schado, B.I. Richter, C. Becher, M. Ezechieli and S. Ostermeier, “Quadriceps force during knee extension in different replacement scenarios with a modular partial prosthesis,” Clinical Biomechanics, vol. 29, no. 2, pp. 218-222, February 2014. doi:10.1016/j.clinbiomech.2013.11.007
  • [8] C.K. Fitzpatrick, C. Maag, CW. Clary, A. Metcalfe, J. Langhorn and PJ. Rullkoetter, “Validation of a new computational 6-DOF knee simulator during dynamic activities,” Journal of Biomechanics, vol. 49, no. 14, pp. 3177-3184, October 2016. doi:10.1016/j.jbiomech.2016.07.040
  • [9] S. Abdel-Jaber, C. Belvedere, A. Leardini and S. Affatato, “Wear simulation of total knee prostheses using load and kinematics waveforms from stair climbing,” Journal of Biomechanics, vol. 48, no. 14, pp. 3830-3836, November 2015. doi:10.1016/j.jbiomech.2015.09.007
  • [10] A. Liu, LM. Jennings, E. Ingham and J. Fisher, “Tribology studies of the natural knee using an animal model in a new whole joint natural knee simulator,” Journal of biomechanics, vol. 48, no. 12, pp. 3004-3011, September 2015. doi:10.1016/j.jbiomech.2015.07.043
  • [11] ISO 14243-1 Implants for Surgery – Wear of Total Knee-joint Prostheses – Part 1: Loading and Displacement Parameters for Wear-testing Machines with Load Control and Corresponding Environmental Conditions for Test, International Standardization Organization, Geneva, Switzerland 14243-1, 2014.
  • [12] K. Ogata, Modern Control Engineering, Fifth edition, New Jersey:Pearson , 2010, pp.63-97.
  • [13] A. Hossain and M. Rasheduzzaman, “Integrating servomotor concepts into mechatronics engineering technology curriculum emphasizing high speed packaging machinery,” In2011 ASEE Annual Conference & Exposition, pp. 22-915 June 2011.
  • [14] C. Beykont, Ç. Çakir ve İ. Altay, “Analog Servo Motor Devresi Tasarımı ve Simulasyonu,”, in UMTS 2007- 13.Ulusal Makina Teorisi Sempozyumu, 7-9 Haziran 2007, Sivas, Turkey, 2007, vol.1, pp. 539-551.
  • [15] M.F. Işık ve İ. Coşkun, “Mikrodenetleyici Tabanlı Servo Sistem Denetimi,” emo.org.tr, Elektrik Mühendisleri Odası. [Online]. Available: https://www.emo.org.tr/ekler/77e672678ddfb70_ek.pdf. [Accessed: Augst. 14, 2023]
  • [16] D. R. Meier, “Modeling DC Servo Motors Control Systems,” faculty-web.msoe.edu,Tech Note©, MSOE. [Online]. Available: https://faculty-web.msoe.edu/meier/ee3720/technotes/dcservo.pdf. [Accessed: Augst. 14, 2023]
  • [17] Y. Ütük, “Anten servo sistemi için PID, LQG ve kayan kipli kontrolcü tasarımı ve performans kıyaslaması,” Yüksek Lisans Tezi, TOBB ETÜ, Ankara, 2020.
  • [18] M. Dursun ve S. Engin, “Deadbeat control of a DC servo motor at low speed,” In 2018 4th International Conference on Control, Automation and Robotics (ICCAR), 20-23 Ap. 2018, Auckland, New Zealand, New Zealand:IEEE, 2018, pp. 282-286.
  • [19] R. Dorf and R. Bishop, Modern Kontrol Sistemleri, New Jersey: Nobel, 2020.
  • [20] Sem IV, “I. Algorithms” Vıvekananda, 2019. [Online]. Available: https://vcenggw.ac.in. [Accessed: Sept. 12, 2023].
  • [21] Q. Xiong and WJ. Cai, “Effective transfer function method for decentralized control system design of multi-input multi-output processes,” Journal of Process Control, vol. 16, no. 8, pp. 773-784, September 2006. doi:10.1016/j.jprocont.2006.04.001
  • [22] F. Golnaraghi and B.C. Kuo, Automatic Control Systems: Introduction To Stability, Danvers: Wiley, 2017.

Diz Eklemi Simülatör Prototipinin ISO 14243/3 Standardına Uygun Sistem Modelleme Çalışmasının Yapılması ve Matlab Simulink Ortamında Yürüyüş Profilinin Simule Edilmesi

Yıl 2023, Cilt: 9 Sayı: 3, 622 - 633, 01.01.2024

Öz

Diz aşınma sümülatörleri, ISO14243-1/3 protokollerini referans alarak eklem mekaniğini modellemek ve aşınma performansını tespit etmek için kullanılmaktadır. Aşınma performansını etkileyen en önemli dinamik faktörler, femur ve insert ara yüzeylerinde oluşan hareket ve kuvvet çiftleri olarak belirlenmiştir. Gerçekleştirilen çalışmada, bir eklem diz simülatör prototipi için sistem modellemenin oluşturulması, Matlab Simulink ortamında girdi ve çıktı sinyallerinin elde edilmesi hedeflenmiştir. Yapılan çalışmalarla, tork ve konum için transfer fonksiyonları elde edilmiş ve Matlab Simulink ortamında blok diyagramı oluşturulmuştur. ISO 14243-3 protokolü esas alınarak hareket eğrileri Matlab Simulink ortamında modellenmiş ve girdi referans sinyallerine dönüştürülmüştür. Son olarak, PID kontrollü kapalı döngü, DC servo motor devresine entegre edilerek çıktı sinyalleri elde edilmiş ve bu sinyaller kullanılarak Matlab Simmechanics ortamında yürüme döngüsü başarılı bir şekilde simüle edilmiştir. Elde edilen sistem modeli değerlendirildiğinde, ardunio veya PLC’ye adapte edilerek bir simülatör test setup’ında kullanabilinecek ve yürürlükteki standarda uygun olarak eklem mekaniğini modelleyecek etkinliğe sahip olduğu tespit edilmiştir.

Teşekkür

Çalışmalarımıza katkılarını esirgemeyen sayın Prof. Dr. Mahir DURSUN ve sayın Yük. Müh. Servet ŞEHİRLİ hocalarımıza, deneysel çalışmalar için katkı sunan Mazaka Endüstriyel Ürünler San. Tic. ve Teknoloji AŞ firmasına teşekkürü borç biliriz.

Kaynakça

  • [1] S. Affatato, “Displacement or force control knee simulators? Variations in kinematics and in wear,” Artificial Organs, vol. 40, no. 2, pp.195-201, February 2016. doi:10.1111/aor.12508
  • [2] E. Bahçe ve E. Demir, “Diz Eklem Protezi Aşınma Test Simülatörü Tasarım ve İmalatı,” Ordu Üniversitesi Bilim ve Teknoloji Dergisi,” vol. 8, no. 2, pp. 187-194, Aralık 2018. https://dergipark.org.tr
  • [3] A. Wang, A. Essner, C. Stark and JH. Dumbleton, “A biaxial line-contact wear machine for the evaluation of implant bearing materials for total knee joint replacement,” Wear, vol. 225-229, pp. 701-707, April 1999. doi:10.1016/S0043-1648(99)00025-3
  • [4] M.R. Blunn Gw, “Four station knee simulator wear testing comparing titanium niobium nitride with cobalt chrome,” Journal of Bioengineering & Biomedical Science, vol. 3, no. 3, August 2013. doi:10.4172/2155-9538.1000125
  • [5] P.S. Walker, MT. Lowry, G. Yildirim and A. Kumar, “Kinematic differences in posterior stabilized total knees determined by a holistic experimental evaluation method,” Journal of Medical Devices, vol. 7, no. 3, p.3, September 2013. doi:10.1115/1.4024506
  • [6] T. Schwenke, D. Orozco, E. Schneider and MA. Wimmer, “Differences in wear between load and displacement control tested total knee replacements,” Wear, vol. 267, no. 5-9, pp. 757-762, June 2009. doi:10.1016/j.wear.2009.01.028
  • [7] T. Calliess, S. Schado, B.I. Richter, C. Becher, M. Ezechieli and S. Ostermeier, “Quadriceps force during knee extension in different replacement scenarios with a modular partial prosthesis,” Clinical Biomechanics, vol. 29, no. 2, pp. 218-222, February 2014. doi:10.1016/j.clinbiomech.2013.11.007
  • [8] C.K. Fitzpatrick, C. Maag, CW. Clary, A. Metcalfe, J. Langhorn and PJ. Rullkoetter, “Validation of a new computational 6-DOF knee simulator during dynamic activities,” Journal of Biomechanics, vol. 49, no. 14, pp. 3177-3184, October 2016. doi:10.1016/j.jbiomech.2016.07.040
  • [9] S. Abdel-Jaber, C. Belvedere, A. Leardini and S. Affatato, “Wear simulation of total knee prostheses using load and kinematics waveforms from stair climbing,” Journal of Biomechanics, vol. 48, no. 14, pp. 3830-3836, November 2015. doi:10.1016/j.jbiomech.2015.09.007
  • [10] A. Liu, LM. Jennings, E. Ingham and J. Fisher, “Tribology studies of the natural knee using an animal model in a new whole joint natural knee simulator,” Journal of biomechanics, vol. 48, no. 12, pp. 3004-3011, September 2015. doi:10.1016/j.jbiomech.2015.07.043
  • [11] ISO 14243-1 Implants for Surgery – Wear of Total Knee-joint Prostheses – Part 1: Loading and Displacement Parameters for Wear-testing Machines with Load Control and Corresponding Environmental Conditions for Test, International Standardization Organization, Geneva, Switzerland 14243-1, 2014.
  • [12] K. Ogata, Modern Control Engineering, Fifth edition, New Jersey:Pearson , 2010, pp.63-97.
  • [13] A. Hossain and M. Rasheduzzaman, “Integrating servomotor concepts into mechatronics engineering technology curriculum emphasizing high speed packaging machinery,” In2011 ASEE Annual Conference & Exposition, pp. 22-915 June 2011.
  • [14] C. Beykont, Ç. Çakir ve İ. Altay, “Analog Servo Motor Devresi Tasarımı ve Simulasyonu,”, in UMTS 2007- 13.Ulusal Makina Teorisi Sempozyumu, 7-9 Haziran 2007, Sivas, Turkey, 2007, vol.1, pp. 539-551.
  • [15] M.F. Işık ve İ. Coşkun, “Mikrodenetleyici Tabanlı Servo Sistem Denetimi,” emo.org.tr, Elektrik Mühendisleri Odası. [Online]. Available: https://www.emo.org.tr/ekler/77e672678ddfb70_ek.pdf. [Accessed: Augst. 14, 2023]
  • [16] D. R. Meier, “Modeling DC Servo Motors Control Systems,” faculty-web.msoe.edu,Tech Note©, MSOE. [Online]. Available: https://faculty-web.msoe.edu/meier/ee3720/technotes/dcservo.pdf. [Accessed: Augst. 14, 2023]
  • [17] Y. Ütük, “Anten servo sistemi için PID, LQG ve kayan kipli kontrolcü tasarımı ve performans kıyaslaması,” Yüksek Lisans Tezi, TOBB ETÜ, Ankara, 2020.
  • [18] M. Dursun ve S. Engin, “Deadbeat control of a DC servo motor at low speed,” In 2018 4th International Conference on Control, Automation and Robotics (ICCAR), 20-23 Ap. 2018, Auckland, New Zealand, New Zealand:IEEE, 2018, pp. 282-286.
  • [19] R. Dorf and R. Bishop, Modern Kontrol Sistemleri, New Jersey: Nobel, 2020.
  • [20] Sem IV, “I. Algorithms” Vıvekananda, 2019. [Online]. Available: https://vcenggw.ac.in. [Accessed: Sept. 12, 2023].
  • [21] Q. Xiong and WJ. Cai, “Effective transfer function method for decentralized control system design of multi-input multi-output processes,” Journal of Process Control, vol. 16, no. 8, pp. 773-784, September 2006. doi:10.1016/j.jprocont.2006.04.001
  • [22] F. Golnaraghi and B.C. Kuo, Automatic Control Systems: Introduction To Stability, Danvers: Wiley, 2017.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyomekanik
Bölüm Araştırma Makalesi
Yazarlar

Özkan Hizaroğlu 0000-0003-3062-1572

Adnan Akkurt

Yayımlanma Tarihi 1 Ocak 2024
Gönderilme Tarihi 31 Mayıs 2023
Kabul Tarihi 27 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 9 Sayı: 3

Kaynak Göster

IEEE Ö. Hizaroğlu ve A. Akkurt, “Diz Eklemi Simülatör Prototipinin ISO 14243/3 Standardına Uygun Sistem Modelleme Çalışmasının Yapılması ve Matlab Simulink Ortamında Yürüyüş Profilinin Simule Edilmesi”, GMBD, c. 9, sy. 3, ss. 622–633, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY) 1366_2000-copia-2.jpg