Review
BibTex RIS Cite

Uçak Motorlarında Süperalaşımlar Yerine Kullanılabilecek Olan Kompozit Malzemelerin İncelenmesi

Year 2023, Volume: 9 Issue: 3, 585 - 595, 01.01.2024

Abstract

Günümüzde, uçak motorlarında yüksek ısı ve sıcaklık dayanımı gerektiren bölgelerde süperalaşım malzemeler sıkça tercih edilmektedir. Süperalaşım malzemeleri, yüksek ısıl dayanımı ve mukavemet değerleri sayesinde uçak motorlarında kullanılmak için idealdir. Ancak, süperalaşımların işlenmesi oldukça pahalıdır ve yüksek sıcaklıklarda korozyona uğrayarak hasar görebilmektedir. Yüksek sıcaklıklardaki korozyonu önleyebilmek için süperalaşım malzemelere uygun malzemelerle kaplama işlemi uygulanmaktadır. Uçakların hafifletilmesi ve performanslarının arttırılması amaçlarıyla gerçekleştirilen araştırmalarla, uçak motorlarında yoğunluğu daha düşük seramik, metal ve plastik kompozitlerin kullanımına odaklanılmaktadır. Kompozit malzemeler, süperalaşımlardan daha hafif olup uçakların toplam ağırlığında %10'a kadar azalma sağlanabilmektedir. Çalışmada uçak motorlarında süperalaşımlar yerine kullanılabilecek olan kompozit malzemeler araştırılarak kaynak oluşturulması hedeflenmiştir.

References

  • [1] I. Elfaleh, F., Abbasi, M., Habibi, F., Ahmad, M., Guedri, N., Mondher, and C., Garnier, “A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials,” Results in Engineering, vol. 19, pp. 1–31, Sep. 2023, doi:10.1016/j.rineng.2023.101271.
  • [2] A. K. Kaw, Kompozit Malzeme Mekaniği, 1st ed. Ankara: Efil Yayınevi, 2014.
  • [3] Y. Şahin, Kompozit Malzemelere Giriş, 4th ed. Ankara: Seçkin Yayıncılık, 2022.
  • [4] P. Balakrishnan, M. J. John, L. Pothen, M. S. Sreekala, and S. Thomas, 12 - Natural fibre and polymer matrix composites and their applications in aerospace engineering, Advanced Composite Materials for Aerospace Engineering, S. Rana and R. Fangueiro, Ed., Woodhead Publishing, 2016, pp. 365–383. doi:10.1016/B978-0-08-100037-3.00012-2.
  • [5] J. Zhang, P. Wang, R. Yan, and R. X. Gao, “Long short-term memory for machine remaining life prediction,” Journal of Manufacturing Systems, vol. 48, pp. 78–86, Jul. 2018, doi:10.1016/j.jmsy.2018.05.011.
  • [6] G. Sjöberg, “Aircraft Engine Structure Materials,” North Atlantic Treaty Organization Science and Technology Organization, pp. 1–24, January 2012, doi:10.14339/RTO-EN-AVT-207-13-pdf
  • [7] N. R. Muktinutalapati, Materials for Gas Turbines – An Overview, Advances in Gas Turbine Technology, IntechOpen, 2011, pp. 293–314. doi:10.5772/20730.
  • [8] E. Akca and A. Gürsel, “A review on superalloys and IN718 nickel-based INCONEL superalloy,” Periodicals of Engineering and Natural Sciences, vol. 3, no. 1, pp. 1-13 , Jun. 2015, doi:10.21533/pen.v3i1.43.
  • [9] T. M. Pollock and S. Tin, “Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties,” Journal of Propulsion and Power, vol. 22, no. 2, pp. 361–374, Mar. 2006, doi:10.2514/1.18239.
  • [10] B. Beşergil, “Karbon-Karbon Kompozitler; Üretim Prosesler (production processes).” bilsenbesergil.blogspot.com. Jun. 15, 2019. [Online]. Available: http://bilsenbesergil.blogspot.com/p/blog-page_90.html. [Accessed: Nov. 12, 2023]
  • [11] S. Kesarwani, “Polymer Composites in Aviation Sector,” International Journal of Engineering Research and Technology, vol. 6, no. 6, pp. 518–525, June 2017, doi:10.17577/IJERTV6IS060291.
  • [12] NASA, “Polyimide Boosts High-Temperature Performance,” ntrs.nasa.gov, September 1, 2008. [Online]. Available: https://ntrs.nasa.gov/citations/20090002513. [Accessed: Nov. 12, 2023].
  • [13] K. J. Bowles and G. Nowak, “Thermo-Oxidative Stability Studies of Celion 6000/PMR-15 Unidirectional Composites, PMR-15, and Celion 6000 Fiber,” Journal of Composite Materials, vol. 22, no. 10, pp. 966–985, October 1988, doi:10.1177/002199838802201005.
  • [14] K. Bowles, L. McCorkle, and L. Ingrahm, “Comparison of Graphite Fabric Reinforced PMR-15 and Avimid N Composites After Long Term Isothermal Aging at Various Temperatures,” Journal of Advanced Materials, pp. 1–29, February 1998.
  • [15] D. L. McDanels, T. T. Serafini, and J. A. DiCarlo, “Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications,” Journal of Materials for Energy Systems, vol. 8, no. 1, pp. 80–91, June 1986, doi:10.1007/BF02833463.
  • [16] D. Wilson, “PMR-15 processing, properties and problems—a review,” British Polymer Journal, vol. 20, no. 5, pp. 405–416, November 1988, doi:10.1002/pi.4980200505.
  • [17] R. D. Vannucci, “Properties of PMR Polyimide composites made with improved high strength graphite fibers,” Twelfth National SAMPE Technical Conference Seattle, January 1980, pp. 1–19. [Online]. Available: https://ntrs.nasa.gov/citations/19800019943. [Accessed: Nov. 12, 2023].
  • [18] J. Dominy, “Structural composites in civil gas turbine aero engines,” Composites Manufacturing, vol. 5, no. 2, pp. 69–72, June 1994, doi:10.1016/0956-7143(94)90057-4.
  • [19] Y. Uzunonat, “Uçak Motoru Uygulamalarında Alternatif Çözümler: MoSi2 Esaslı Malzemelerin Yapısal Eleman Olarak Kullanımı,” Mühendis ve Makina, vol. 57, no. 679, pp. 44-52, August 2016.
  • [20] B. Parveez, M. I. Kittur, I. A. Badruddin, S. Kamangar, M. Hussien, and M. A. Umarfarooq, “Scientific Advancements in Composite Materials for Aircraft Applications: A Review,” Polymers, vol. 14, no. 22, pp. 1-32, Jan. 2022, doi:10.3390/polym14225007.
  • [21] E. Nas, H. Gökkaya, and G. Sur, “Sıcak Presleme Yöntemi Kullanılarak Kompozit Malzemelerin Üretilebilirliği Üzerine Bir Değerlendirme,” Karaelmas Fen ve Mühendislik Dergisi, vol. 3, no. 2, pp. 56-65, Jun. 2013.
  • [22] D. Sciti, S. Guicciardi, and A. Bellosi, “Properties of Si3N4 – MOSi2 Composites with a Nanostructured Matrix,” 26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings, January 13-18, 2002, Florida, USA, Volume 23, H. T. Lin, M. Singh, Eds., 2002, pp. 673–679. doi:10.1002/9780470294758.ch74
  • [23] J. A. DiCarlo, “Advances in SiC/SiC Composites for Aero-Propulsion,” nasa.gov, NASA/TM-2013-217889, Jul. 2013. [Online]. Available: https://ntrs.nasa.gov/citations/20140000988. [Accessed: Nov. 12, 2023].
  • [24] M. Jinsheng, S. Liwei, and H. Yongxiang, “Application of Composite Materials in Engine,” Materials Science: Advanced Composite Materials, pp. 1–9, 2017, doi:10.18063/msacm.v1i1.499.
  • [25] G. Karadimas and K. Salonitis, “Ceramic Matrix Composites for Aero Engine Applications—A Review,” Applied Sciences, vol. 13, no. 5, pp.1-42, Jan. 2023, doi:10.3390/app13053017.
  • [26] T. M. Besmann, D. P. Stinton, R. A. Lowden, and W. Y. Lee, Chemical Vapor Deposition (CVD) and Infiltration (CVI), Carbide, Nitride and Boride Materials Synthesis and Processing, A. W. Weimer, Ed., Dordrecht: Springer Netherlands, 1997, pp. 547–577. doi:10.1007/978-94-009-0071-4_22.
  • [27] A. Lazzeri and M. B. Coltelli, Chemical vapour infiltration of composites and their applications, Chemical Vapour Deposition (CVD), CRC Press, 2019, pp. 1–28. doi:10.1201/9781315117904-8.
  • [28] K. U. Kainer, Basics of Metal Matrix Composites, Metal Matrix Composites, John Wiley & Sons, Ltd, 2006, pp. 1–54. doi:10.1002/3527608117.ch1.
  • [29] C. T. Salemme and G. C. Murphy, “Metal spar/superhybrid shell composite fan blades,” ntrs.nasa, NASA-CR-159594, Aug. 1979. [Online]. Available: https://ntrs.nasa.gov/citations/19790022124. [Accessed: Nov. 12, 2023]
  • [30] Z. Ali, Y. Gao, B. Tang, X. Wu, Y. Wang, M. Li, X. Hou, L. Li, N. Jiang and J. Yu, “Preparation, Properties and Mechanisms of Carbon Fiber/Polymer Composites for Thermal Management Applications,” Polymers, vol. 13, 169, pp. 1-22, Jan. 2021, doi:10.3390/polym13010169.
  • [31] D. D. L. Chung, Ed., Composite Materials, Springer, London, 2010, pp. 1–34, doi:10.1007/978-1-84882-831-5.
  • [32] M. Roosta, H. Baharvandi, and H. Abdizade, “An experimental investigation on the fabrication of W-Cu composite through hot-press,” International Journal of Industrial Chemistry, vol. 3, 10, pp.1-6, Jul. 2012, doi:10.1007/978-1-84882-831-5_1
  • [33] E. Tejado, A. v. Müller, J.-H. You, and J. Y. Pastor, “The thermo-mechanical behaviour of W-Cu metal matrix composites for fusion heat sink applications: The influence of the Cu content,” Journal of Nuclear Materials, vol. 498, pp. 468–475, Jan. 2018, doi:10.1016/j.jnucmat.2017.08.020.
  • [34] Y. Zhang, Y. Li, Y. Li, M. Song, X. Zhang, and W. Zhang, “TMOs@Gr/Cu composites: Microstructure and properties,” Materials & Design, vol. 182, pp. 1-7, 30, Nov. 2019, doi:10.1016/j.matdes.2019.108030.
  • [35] A. R. Shelke, J. Balwada, S. Sharma, A. D. Pingale, S. U. Belgamwar, and J. S. Rathore, “Development and characterization of Cu-Gr composite coatings by electro-co-deposition technique,” Materials Today: Proceedings, vol. 28, pp. 2090–2095, Jan. 2020, doi:10.1016/j.matpr.2020.03.244.
  • [36] C. Hou, X. Song, F. Tang, Y., Li, L. Cao, J. Wang and N. Zouren, “W–Cu composites with submicron- and nanostructures: progress and challenges,” NPG Asia Materials, vol. 11, no. 74, pp. 1-20, Dec. 2019, doi:10.1038/s41427-019-0179-x.

The Examination of Composite Materials as Alternatives to Superalloys in Aircraft Engines

Year 2023, Volume: 9 Issue: 3, 585 - 595, 01.01.2024

Abstract

In contemporary aviation, superalloy materials are frequently preferred in areas of aircraft engines where high heat and temperature resistance are crucial. Superalloys are considered ideal for use in aircraft engines due to their high thermal resistance and strength values. However, the processing of superalloys is quite expensive, and they can be susceptible to corrosion at high temperatures. To prevent corrosion at elevated temperatures, a coating process with suitable materials is applied to superalloy materials. Research efforts aimed at reducing the weight of aircraft and enhancing their performance have focused on the use of ceramic, metal, and plastic composites with lower density in aircraft engines. Composite materials are lighter than superalloys, and they can contribute to a reduction in the total weight of aircraft by up to 10%. This study aims to create a resource by investigating composite materials that could be used instead of superalloys in aircraft engines.

References

  • [1] I. Elfaleh, F., Abbasi, M., Habibi, F., Ahmad, M., Guedri, N., Mondher, and C., Garnier, “A comprehensive review of natural fibers and their composites: An eco-friendly alternative to conventional materials,” Results in Engineering, vol. 19, pp. 1–31, Sep. 2023, doi:10.1016/j.rineng.2023.101271.
  • [2] A. K. Kaw, Kompozit Malzeme Mekaniği, 1st ed. Ankara: Efil Yayınevi, 2014.
  • [3] Y. Şahin, Kompozit Malzemelere Giriş, 4th ed. Ankara: Seçkin Yayıncılık, 2022.
  • [4] P. Balakrishnan, M. J. John, L. Pothen, M. S. Sreekala, and S. Thomas, 12 - Natural fibre and polymer matrix composites and their applications in aerospace engineering, Advanced Composite Materials for Aerospace Engineering, S. Rana and R. Fangueiro, Ed., Woodhead Publishing, 2016, pp. 365–383. doi:10.1016/B978-0-08-100037-3.00012-2.
  • [5] J. Zhang, P. Wang, R. Yan, and R. X. Gao, “Long short-term memory for machine remaining life prediction,” Journal of Manufacturing Systems, vol. 48, pp. 78–86, Jul. 2018, doi:10.1016/j.jmsy.2018.05.011.
  • [6] G. Sjöberg, “Aircraft Engine Structure Materials,” North Atlantic Treaty Organization Science and Technology Organization, pp. 1–24, January 2012, doi:10.14339/RTO-EN-AVT-207-13-pdf
  • [7] N. R. Muktinutalapati, Materials for Gas Turbines – An Overview, Advances in Gas Turbine Technology, IntechOpen, 2011, pp. 293–314. doi:10.5772/20730.
  • [8] E. Akca and A. Gürsel, “A review on superalloys and IN718 nickel-based INCONEL superalloy,” Periodicals of Engineering and Natural Sciences, vol. 3, no. 1, pp. 1-13 , Jun. 2015, doi:10.21533/pen.v3i1.43.
  • [9] T. M. Pollock and S. Tin, “Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties,” Journal of Propulsion and Power, vol. 22, no. 2, pp. 361–374, Mar. 2006, doi:10.2514/1.18239.
  • [10] B. Beşergil, “Karbon-Karbon Kompozitler; Üretim Prosesler (production processes).” bilsenbesergil.blogspot.com. Jun. 15, 2019. [Online]. Available: http://bilsenbesergil.blogspot.com/p/blog-page_90.html. [Accessed: Nov. 12, 2023]
  • [11] S. Kesarwani, “Polymer Composites in Aviation Sector,” International Journal of Engineering Research and Technology, vol. 6, no. 6, pp. 518–525, June 2017, doi:10.17577/IJERTV6IS060291.
  • [12] NASA, “Polyimide Boosts High-Temperature Performance,” ntrs.nasa.gov, September 1, 2008. [Online]. Available: https://ntrs.nasa.gov/citations/20090002513. [Accessed: Nov. 12, 2023].
  • [13] K. J. Bowles and G. Nowak, “Thermo-Oxidative Stability Studies of Celion 6000/PMR-15 Unidirectional Composites, PMR-15, and Celion 6000 Fiber,” Journal of Composite Materials, vol. 22, no. 10, pp. 966–985, October 1988, doi:10.1177/002199838802201005.
  • [14] K. Bowles, L. McCorkle, and L. Ingrahm, “Comparison of Graphite Fabric Reinforced PMR-15 and Avimid N Composites After Long Term Isothermal Aging at Various Temperatures,” Journal of Advanced Materials, pp. 1–29, February 1998.
  • [15] D. L. McDanels, T. T. Serafini, and J. A. DiCarlo, “Polymer, metal, and ceramic matrix composites for advanced aircraft engine applications,” Journal of Materials for Energy Systems, vol. 8, no. 1, pp. 80–91, June 1986, doi:10.1007/BF02833463.
  • [16] D. Wilson, “PMR-15 processing, properties and problems—a review,” British Polymer Journal, vol. 20, no. 5, pp. 405–416, November 1988, doi:10.1002/pi.4980200505.
  • [17] R. D. Vannucci, “Properties of PMR Polyimide composites made with improved high strength graphite fibers,” Twelfth National SAMPE Technical Conference Seattle, January 1980, pp. 1–19. [Online]. Available: https://ntrs.nasa.gov/citations/19800019943. [Accessed: Nov. 12, 2023].
  • [18] J. Dominy, “Structural composites in civil gas turbine aero engines,” Composites Manufacturing, vol. 5, no. 2, pp. 69–72, June 1994, doi:10.1016/0956-7143(94)90057-4.
  • [19] Y. Uzunonat, “Uçak Motoru Uygulamalarında Alternatif Çözümler: MoSi2 Esaslı Malzemelerin Yapısal Eleman Olarak Kullanımı,” Mühendis ve Makina, vol. 57, no. 679, pp. 44-52, August 2016.
  • [20] B. Parveez, M. I. Kittur, I. A. Badruddin, S. Kamangar, M. Hussien, and M. A. Umarfarooq, “Scientific Advancements in Composite Materials for Aircraft Applications: A Review,” Polymers, vol. 14, no. 22, pp. 1-32, Jan. 2022, doi:10.3390/polym14225007.
  • [21] E. Nas, H. Gökkaya, and G. Sur, “Sıcak Presleme Yöntemi Kullanılarak Kompozit Malzemelerin Üretilebilirliği Üzerine Bir Değerlendirme,” Karaelmas Fen ve Mühendislik Dergisi, vol. 3, no. 2, pp. 56-65, Jun. 2013.
  • [22] D. Sciti, S. Guicciardi, and A. Bellosi, “Properties of Si3N4 – MOSi2 Composites with a Nanostructured Matrix,” 26th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: B: Ceramic Engineering and Science Proceedings, January 13-18, 2002, Florida, USA, Volume 23, H. T. Lin, M. Singh, Eds., 2002, pp. 673–679. doi:10.1002/9780470294758.ch74
  • [23] J. A. DiCarlo, “Advances in SiC/SiC Composites for Aero-Propulsion,” nasa.gov, NASA/TM-2013-217889, Jul. 2013. [Online]. Available: https://ntrs.nasa.gov/citations/20140000988. [Accessed: Nov. 12, 2023].
  • [24] M. Jinsheng, S. Liwei, and H. Yongxiang, “Application of Composite Materials in Engine,” Materials Science: Advanced Composite Materials, pp. 1–9, 2017, doi:10.18063/msacm.v1i1.499.
  • [25] G. Karadimas and K. Salonitis, “Ceramic Matrix Composites for Aero Engine Applications—A Review,” Applied Sciences, vol. 13, no. 5, pp.1-42, Jan. 2023, doi:10.3390/app13053017.
  • [26] T. M. Besmann, D. P. Stinton, R. A. Lowden, and W. Y. Lee, Chemical Vapor Deposition (CVD) and Infiltration (CVI), Carbide, Nitride and Boride Materials Synthesis and Processing, A. W. Weimer, Ed., Dordrecht: Springer Netherlands, 1997, pp. 547–577. doi:10.1007/978-94-009-0071-4_22.
  • [27] A. Lazzeri and M. B. Coltelli, Chemical vapour infiltration of composites and their applications, Chemical Vapour Deposition (CVD), CRC Press, 2019, pp. 1–28. doi:10.1201/9781315117904-8.
  • [28] K. U. Kainer, Basics of Metal Matrix Composites, Metal Matrix Composites, John Wiley & Sons, Ltd, 2006, pp. 1–54. doi:10.1002/3527608117.ch1.
  • [29] C. T. Salemme and G. C. Murphy, “Metal spar/superhybrid shell composite fan blades,” ntrs.nasa, NASA-CR-159594, Aug. 1979. [Online]. Available: https://ntrs.nasa.gov/citations/19790022124. [Accessed: Nov. 12, 2023]
  • [30] Z. Ali, Y. Gao, B. Tang, X. Wu, Y. Wang, M. Li, X. Hou, L. Li, N. Jiang and J. Yu, “Preparation, Properties and Mechanisms of Carbon Fiber/Polymer Composites for Thermal Management Applications,” Polymers, vol. 13, 169, pp. 1-22, Jan. 2021, doi:10.3390/polym13010169.
  • [31] D. D. L. Chung, Ed., Composite Materials, Springer, London, 2010, pp. 1–34, doi:10.1007/978-1-84882-831-5.
  • [32] M. Roosta, H. Baharvandi, and H. Abdizade, “An experimental investigation on the fabrication of W-Cu composite through hot-press,” International Journal of Industrial Chemistry, vol. 3, 10, pp.1-6, Jul. 2012, doi:10.1007/978-1-84882-831-5_1
  • [33] E. Tejado, A. v. Müller, J.-H. You, and J. Y. Pastor, “The thermo-mechanical behaviour of W-Cu metal matrix composites for fusion heat sink applications: The influence of the Cu content,” Journal of Nuclear Materials, vol. 498, pp. 468–475, Jan. 2018, doi:10.1016/j.jnucmat.2017.08.020.
  • [34] Y. Zhang, Y. Li, Y. Li, M. Song, X. Zhang, and W. Zhang, “TMOs@Gr/Cu composites: Microstructure and properties,” Materials & Design, vol. 182, pp. 1-7, 30, Nov. 2019, doi:10.1016/j.matdes.2019.108030.
  • [35] A. R. Shelke, J. Balwada, S. Sharma, A. D. Pingale, S. U. Belgamwar, and J. S. Rathore, “Development and characterization of Cu-Gr composite coatings by electro-co-deposition technique,” Materials Today: Proceedings, vol. 28, pp. 2090–2095, Jan. 2020, doi:10.1016/j.matpr.2020.03.244.
  • [36] C. Hou, X. Song, F. Tang, Y., Li, L. Cao, J. Wang and N. Zouren, “W–Cu composites with submicron- and nanostructures: progress and challenges,” NPG Asia Materials, vol. 11, no. 74, pp. 1-20, Dec. 2019, doi:10.1038/s41427-019-0179-x.
There are 36 citations in total.

Details

Primary Language Turkish
Subjects Materials Engineering (Other)
Journal Section Research Articles
Authors

Serhat Yudar 0000-0002-4192-8759

Publication Date January 1, 2024
Submission Date October 2, 2023
Acceptance Date December 6, 2023
Published in Issue Year 2023 Volume: 9 Issue: 3

Cite

IEEE S. Yudar, “Uçak Motorlarında Süperalaşımlar Yerine Kullanılabilecek Olan Kompozit Malzemelerin İncelenmesi”, GJES, vol. 9, no. 3, pp. 585–595, 2024.

Gazi Journal of Engineering Sciences (GJES) publishes open access articles under a Creative Commons Attribution 4.0 International License (CC BY). 1366_2000-copia-2.jpg